Features - Advanced Planar Technology - Ultra Low On-Resistance - · Logic Level Gate Drive - Dual N Channel MOSFET - Surface Mount - · Available in Tape & Reel - 175°C Operating Temperature - · Lead-Free, RoHS Compliant - Automotive Qualified * ## **Description** Specifically designed for Automotive applications, these HEXFET® Power MOSFET's in a Dual SO-8 package utilize the lastest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of these Automotive qualified HEXFET Power MOSFET's are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These benefits combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. The efficient SO-8 package provides enhanced thermal characteristics and dual MOSFET die capability making it ideal in a variety of power applications. This dual, surface mount SO-8 can dramatically reduce board space and is also available in Tape & Reel. | V _{DSS} | 55V | |--------------------------|--------| | R _{DS(on)} typ. | 0.043Ω | | max. | 0.050Ω | | I _D | 5.1A | | G | D | S | |------|-------|--------| | Gate | Drain | Source | | Page part number Backage Type | | Standard Pack | | Ordershie Bert Number | | |---------------------------------|--------------|---------------|------|-----------------------|--| | Base part number | Package Type | Form Quantity | | Orderable Part Number | | | AUIRF7341Q | SO-8 | Tape and Reel | 4000 | AUIRF7341QTR | | #### **Absolute Maximum Ratings** Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified. | Symbol | Parameter | Max. | Units | |--|---|--------------------------|-------| | V_{DS} | Drain-Source Voltage | 55 | V | | I _D @ T _A = 25°C | Continuous Drain Current, V _{GS} @ 10V | 5.1 | | | $I_D @ T_A = 70^{\circ}C$ | Continuous Drain Current, V _{GS} @ 10V | 4.2 | Α | | I _{DM} | Pulsed Drain Current ① | 42 | | | P _D @T _A = 25°C | Maximum Power Dissipation ③ | 2.4 | 10/ | | P _D @T _A = 70°C | Maximum Power Dissipation ③ | 1.7 | W | | | Linear Derating Factor | 16 | mW/°C | | V_{GS} | Gate-to-Source Voltage | ± 20 | V | | E _{AS} | Single Pulse Avalanche Energy (Thermally Limited) ② | 140 | mJ | | I _{AR} | Avalanche Current | 5.1 | Α | | E _{AR} | Repetitive Avalanche Energy | See Fig.17, 18, 15a, 15b | mJ | | T_J | Operating Junction and | -55 to + 175 | 00 | | T _{STG} | Storage Temperature Range | | °C | ### **Thermal Resistance** | Symbol | Parameter | Тур. | Max. | Units | |-----------------|-----------------------|------|------|-------| | $R_{\theta JA}$ | Junction-to-Ambient @ | | 62.5 | °C/W | HEXFET® is a registered trademark of Infineon. ^{*}Qualification standards can be found at www.infineon.com # Static @ T_J = 25°C (unless otherwise specified) | | Parameter | Min. | Тур. | Max. | Units | Conditions | |-----------------------------------|--------------------------------------|------|-------|-------|-------|---| | $V_{(BR)DSS}$ | Drain-to-Source Breakdown Voltage | 55 | | | V | $V_{GS} = 0V, I_D = 250\mu A$ | | $\Delta V_{(BR)DSS}/\Delta T_{J}$ | Breakdown Voltage Temp. Coefficient | | 0.052 | | V/°C | Reference to 25°C, I _D = 1mA | | Б | Ctatia Drain to Course On Besistance | | 0.043 | 0.050 | | V _{GS} = 10V, I _D = 5.1A ③ | | $R_{DS(on)}$ | Static Drain-to-Source On-Resistance | | 0.056 | 0.065 | Ω | V _{GS} = 4.5V, I _D = 4.42A ③ | | $V_{GS(th)}$ | Gate Threshold Voltage | 1.0 | | 3.0 | V | $V_{DS} = V_{GS}, I_{D} = 250 \mu A$ | | gfs | Forward Trans conductance | 10.4 | | | S | $V_{DS} = 10V, I_{D} = 5.2A$ | | ı | Drain-to-Source Leakage Current | | | 2.0 | | V_{DS} =44V, V_{GS} = 0V | | IDSS | Drain-to-Source Leakage Current | | | 25 | μA | $V_{DS} = 44V, V_{GS} = 0V, T_{J} = 150^{\circ}C$ | | I _{GSS} | Gate-to-Source Forward Leakage | | | 100 | nA | $V_{GS} = 20V$ | | | Gate-to-Source Reverse Leakage | | | -100 | IIA | $V_{GS} = -20V$ | # Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified) | Q_g | Total Gate Charge |
29 | 44 | | I _D =5.2A | |----------------|------------------------------|----------|-----|----|-------------------------| | Q_{gs} | Gate-to-Source Charge |
2.9 | 4.4 | nC | $V_{DS} = 44V$ | | Q_{gd} | Gate-to-Drain Charge |
7.3 | 11 | | V _{GS} = 10V | | $t_{d(on)}$ | Turn-On Delay Time |
9.2 | | | $V_{DD} = 28V$ | | t _r | Rise Time |
7.7 | | no | I _D = 1.0A | | $t_{d(off)}$ | Turn-Off Delay Time | 31 | | ns | $R_G = 6.0\Omega$ | | t _f | Fall Time |
12.5 | | | V _{GS} = 10V ③ | | C_{iss} | Input Capacitance | 780 | | | $V_{GS} = 0V$ | | C_{oss} | Output Capacitance |
190 | | pF | V _{DS} = 25V | | C_{rss} | Reverse Transfer Capacitance | 66 | | | f = 1.0 MHz | ## **Diode Characteristics** | | Parameter | Min. | Тур. | Max. | Units | Conditions | |-----------------|---------------------------|------|------|------|-------|--| | | Continuous Source Current | | | 2.4 | | MOSFET symbol | | Is | (Body Diode) | | | 2.4 | _ | showing the | | ı | Pulsed Source Current | | | 42 | Α | integral reverse | | I _{SM} | (Body Diode) ① | | | 42 | | p-n junction diode. | | V_{SD} | Diode Forward Voltage | | | 1.2 | V | $T_J = 25^{\circ}C, I_S = 2.6A, V_{GS} = 0V ② ③$ | | t _{rr} | Reverse Recovery Time | | 51 | 77 | ns | $T_J = 25^{\circ}C$, $I_F = 2.6A$, | | Q_{rr} | Reverse Recovery Charge | | 76 | 114 | nC | di/dt = 100A/µs ③ | #### Notes: - ① Repetitive rating; pulse width limited by max. junction temperature. - ② V_{DD} =25V, Starting T_J = 25°C, L = 10.7mH, R_G = 25 Ω , I_{AS} = 5.2A. - 3 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$. - 4 Surface mounted FR-4 board, $t \le 10 \text{sec.}$ (V) treating 10 (10.00 to 10.00 10.0 100 Fig. 1 Typical Output Characteristics Fig. 2 Typical Output Characteristics Fig. 3 Typical Transfer Characteristics **Fig. 4** Normalized On-Resistance vs. Temperature **Fig 5.** Typical Capacitance vs. Drain-to-Source Voltage **Fig 6.** Typical Gate Charge vs. Gate-to-Source Voltage Fig. 7 Typical Source-to-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area Fig 9. Maximum Drain Current vs. Case Temperature Fig 10a. Switching Time Test Circuit Fig 10b. Switching Time Waveforms Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient Fig 12. Typical On-Resistance Vs. Gate Voltage Fig 14a. Basic Gate Charge Waveform Fig 15a. Unclamped Inductive Test Circuit Fig 15b. Unclamped Inductive Waveforms Fig 13. Typical On-Resistance Vs. Drain Current Fig 14b. Gate Charge Test Circuit Fig 16. Maximum Avalanche Energy vs. Drain Current Fig 17. Typical Avalanche Current vs. Pulse width **Fig 18.** Maximum Avalanche Energy vs. Temperature Notes on Repetitive Avalanche Curves , Figures 17, 18: (For further info, see AN-1005 at www.infineon.com) - Avalanche failures assumption: Durchy a thormal phonomenon and failure - Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax}. This is validated for every part type. - 2. Safe operation in Avalanche is allowed as long as T_{jmax} is not exceeded. - 3. Equation below based on circuit and waveforms shown in Figures 15a, 15b. - 4. PD (ave) = Average power dissipation per single avalanche pulse. - BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). - 6. Iav = Allowable avalanche current. - 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 11, 17). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 11) $$\begin{split} P_{D \; (ave)} &= 1/2 \; (\; 1.3 \cdot BV \cdot I_{av}) = \Delta T / \; Z_{thJC} \\ I_{av} &= 2\Delta T / \; [1.3 \cdot BV \cdot Z_{th}] \\ E_{AS \; (AR)} &= P_{D \; (ave)} \cdot t_{av} \end{split}$$ 2015-9-30 # **SO-8 Package Outline** (Dimensions are shown in millimeters (inches) | DIM | INC | HES | MILLIM | ETERS | |-------|---------|-------|---------|-------| | DIIVI | MIN MAX | | MIN | MAX | | Α | .0532 | .0688 | 1.35 | 1.75 | | A1 | .0040 | .0098 | 0.10 | 0.25 | | b | .013 | .020 | 0.33 | 0.51 | | С | .0075 | .0098 | 0.19 | 0.25 | | D | .189 | .1968 | 4.80 | 5.00 | | Е | .1497 | .1574 | 3.80 | 4.00 | | е | .050 B | ASIC | 1.27 B | ASIC | | e 1 | .025 B | ASIC | 0.635 E | BASIC | | Н | .2284 | .2440 | 5.80 | 6.20 | | K | .0099 | .0196 | 0.25 | 0.50 | | L | .016 | .050 | 0.40 | 1.27 | | у | 0° | 8° | 0° | 8° | - 1. D IM EN S ION IN G & TOLERAN C IN G PER A S M E Y 1 4 .5 M 1994. 2. C ON TROLLIN G D IM EN S ION: MILLIM ETER - CONTROLLING DIMENSION. MILLIMETERS [IN CHES]. DIMENSIONS ARE SHOWN IN MILLIMETERS [IN CHES]. OUTLINE CONFORMS TO JEDEC OUTLINE M S-012AA. DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006]. - 6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010]. - 7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE. ## **SO-8 Part Marking Information** 2015-9-30 ## SO-8 Tape and Reel (Dimensions are shown in millimeters (inches) #### NOTES: - 1. CONTROLLING DIMENSION: MILLIMETER. - 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). - 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. ## NOTES: - 1. CONTROLLING DIMENSION: MILLIMETER. - 2. OUTLINE CONFORMS TO EIA-481 & EIA-541. #### **Qualification Information** | | ion inioniation | | | | | | | |----------------------|-------------------------------------|---|----------------------------------|--|--|--|--| | | | Automotive | | | | | | | | | (per AEC-Q101) | | | | | | | Qualificat | tion Level | Comments: This part number(s) passed Automotive qualification. Infineon's Industrial and Consumer qualification level is granted by extension of the higher Automotive level. | | | | | | | Moisture | pisture Sensitivity Level SO-8 MSL1 | | | | | | | | | | | Class M2 (+/- 200V) [†] | | | | | | | Machine Model | | AEC-Q101-002 | | | | | | FOD | Lluman Dady Madal | Class H1A (+/- 500V) [†] | | | | | | | ESD | Human Body Model | AEC-Q101-001 | | | | | | | Charged Device Model | | Class C5 (+/- 1125V) [†] | | | | | | | | | AEC-Q101-005 | | | | | | | RoHS Compliant Yes | | | | | | | | [†] Highest passing voltage. ## **Revision History** | Date | Comments | | | | | | |---|---|--|--|--|--|--| | 3/10/2014 • Added "Logic Level Gate Drive" bullet in the features section on page 1 | | | | | | | | 3/10/2014 | Updated data sheet with new IR corporate template | | | | | | | 9/30/2015 | Updated datasheet with corporate template | | | | | | | 9/30/2013 | Corrected ordering table on page 1. | | | | | | Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved. #### **IMPORTANT NOTICE** The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com). #### **WARNINGS** Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.