

FEATURES

- Low-Phase-Noise Mixer/Oscillator and PLL Synthesizer
- VHF-L, VHF-H, UHF Three-Band Local Oscillator
- I²C Bus Protocol (Bidirectional Data Transmission)
- 30-V Tuning Voltage Output
- Four NPN-Type Band-Switch Drivers
- One Auxiliary-Port, Five-Level ADC
- RF AGC Detector Circuit
- Crystal Oscillator Output
- Programmable Reference Divider Ratio (24/28/50/64/80/128)
- Standby Mode
- 5-V Power Supply
- 38-Pin TSSOP Package

APPLICATIONS

- Digital TV
- Digital CATV
- Set-Top Box

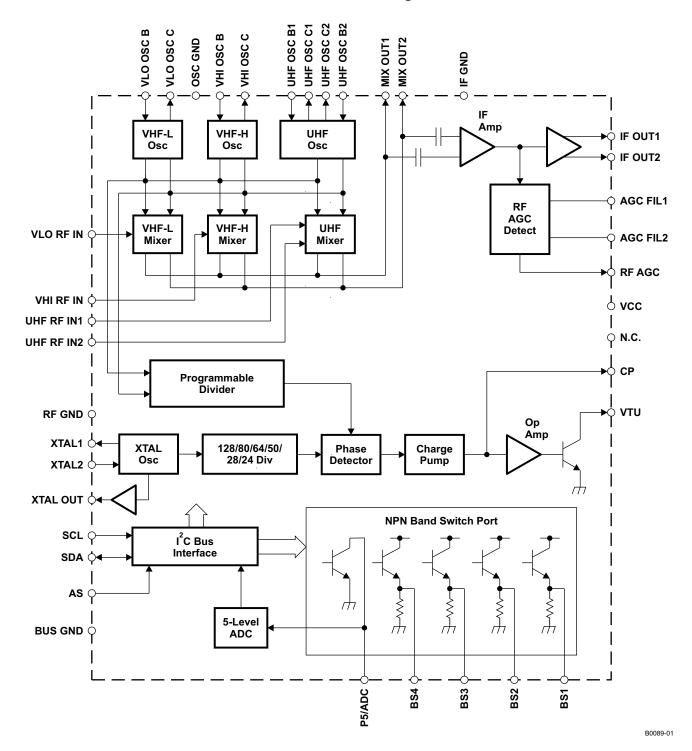
DESCRIPTION

The SN761662 is a low-phase-noise synthesized tuner IC designed for digital TV tuning systems. The circuit consists of a PLL synthesizer, three-band local oscillator and mixer, 30-V output tuning amplifier, four NPN band-switch drivers, and is available in a small-outline package. A 15-bit programmable counter and reference divider are controlled by I²C bus protocol. Tuning step frequency is selectable by this reference divider ratio for a crystal oscillator.

DBT PACKAGE (TOP VIEW)

			7
VLO OSC B	10	38	UHF RF IN2
VLO OSC C [2	37	UHF RF IN1
OSC GND	3	36	VHI RF IN
VHI OSC B	4	35	VLO RF IN
VHI OSC C	5	34] BS4
UHF OSC B1	6	33] RF GND
UHF OSC C1	7	32] MIXOUT2
UHF OSC C2 [8	31] MIXOUT1
UHF OSC B2	9	30] NC
IF GND	10	29	BUS GND
IF OUT1	11	28] RF AGC
IF OUT2	12	27	AGC FIL2
VCC [13	26	AGC FIL1
CP [14	25] BS3
VTU [15	24] BS2
P5/ADC	16	23] BS1
XTAL1 [17	22] SDA
XTAL2	18	21] SCL
XTALOUT [19	20] AS

P0034-02



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

MIXOUT1 and MIXOUT2 (pins 31 and 32) withstand 1.5 kV, and all other pins withstand 2 kV, according to the human body model (1.5 k Ω , 100 pF).

Functional Block Diagram

Pin Assignments

Pin Description

TERMINAL		DESCRIPTION	SCHEMATIC
NAME	NO.	DESCRIPTION	SCHEMATIC
AGC FIL1	26	Additional peak-hold capacitor pin	Figure 1
AGC FIL2	27	RF AGC LPF capacitor pin	Figure 1
AS	20	Address selection input	Figure 2
BS1	23	Band-switch1 output	Figure 3
BS2	24	Band-switch2 output	Figure 3
BS3	25	Band-switch3 output	Figure 3
BS4	34	Band-switch4 output	Figure 3
BUS GND	29	Serial bus/band-switch ground	
CP	14	Charge pump output	Figure 4
IF GND	10	IF ground	
IF OUT1	11	IF amplifier output	Figure 5
IF OUT2	12	IF amplifier output	Figure 5
MIX OUT1	31	Mixer output	Figure 6
MIX OUT2	32	Mixer output	Figure 6
N.C.	30	No connection	
OSC GND	3	Oscillator ground	
P5/ADC	16	Port 5 output/ADC input	Figure 7
RF AGC	28	RF AGC output	Figure 8
RF GND	33	RF ground	
SCL	21	Serial clock input	Figure 9
SDA	22	Serial data input/output	Figure 10
UHF OSC B1	6	UHF oscillator base1	Figure 11
UHF OSC B2	9	UHF oscillator base2	Figure 11
UHF OSC C1	7	UHF oscillator collector1	Figure 11
UHF OSC C2	8	UHF oscillator collector2	Figure 11
UHF RFIN1	37	UHF RF input	Figure 12
UHF RFIN2	38	UHF RF input	Figure 12
VCC	13	Supply voltage for mixer/oscillator/PLL: 5 V	
VHI OSC B	4	VHF HIGH oscillator base	Figure 13
VHI OSC C	5	VHF HIGH oscillator collector	Figure 13
VHI RFIN	36	VHF-H RF input	Figure 14
VLO OSC B	1	VHF LOW oscillator base	Figure 15
VLO OSC C	2	VHF LOW oscillator collector	Figure 15
VLO RFIN	35	VHF-L RF input	Figure 18
VTU	15	Tuning voltage amplifier output	Figure 4
XTAL1	17	4-MHz crystal oscillator output	Figure 16
XTAL2	18	4-MHz crystal oscillator input	Figure 16
XTALOUT	19	4-MHz oscillator output	Figure 17

TEXAS INSTRUMENTS www.ti.com

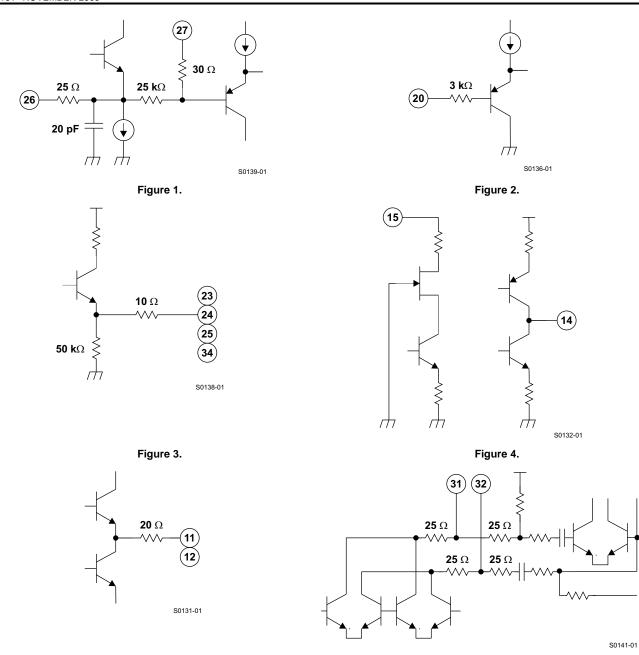
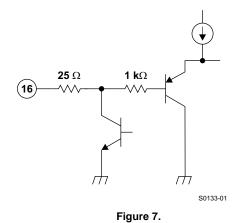
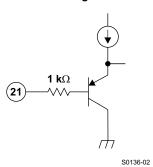




Figure 5.

Figure 6.

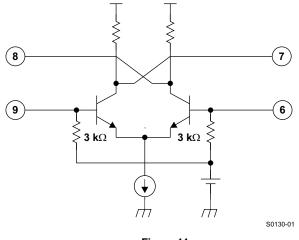


Figure 11.

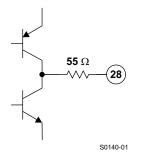
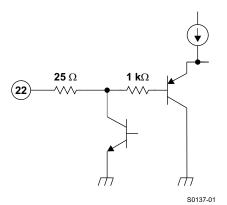
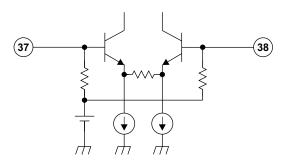
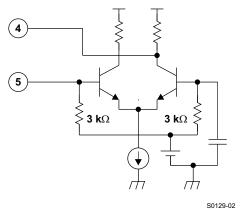


Figure 8.


Figure 10.

S0142-03

Figure 12.

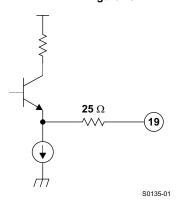


Figure 17.

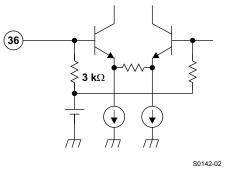


Figure 14.

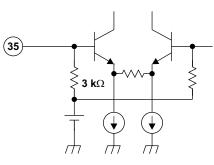



Figure 16.

S0142-01

Figure 18.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted) ⁽¹⁾

Supply voltage, V _{CC} ⁽²⁾	VCC	–0.4 V to 6.5 V
Input voltage 1, V _{GND} ⁽²⁾	RF GND, OSC GND, BUS GND	-0.4 V to 0.4 V
Input voltage 2, V _{VTU} ⁽²⁾	VTU	–0.4 V to 35 V
Input voltage 3, V _{IN} ⁽²⁾	Other pins	–0.4 V to 6.5 V
Continuous total dissipation, P _D ⁽³⁾	$T_A \le 25^{\circ}C$	1276 mW
Operating free-air temperature, T _A		–20°C to 85°C
Storage temperature range, T _{stg}		–65°C to 150°C
Maximum junction temperature, T _J		150°C
Maximum short-circuit time, t _{SC(max)}	Each pin to V _{CC} or to GND	10 s

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- Voltage values are with respect to the IF GND of the circuit. (2) (3)
- Derating factor is 10.2 mW/°C for $T_A \ge 25^{\circ}C$.

RECOMMENDED OPERATING CONDITIONS

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.5	5	5.5	V
Tuning supply voltage, V_{TU}			30	33	V
Output current of band switch, I_{BS}	One band switch on			10	mA
Output current of port 5, IP5				-5	mA
Operating free-air temperature, T_A		-20		85	°C

SN761662 **DTV TUNER IC**

SLES161-NOVEMBER 2005

ELECTRICAL CHARACTERISTICS, Total Device and Serial Interface

 V_{CC} = 4.5 V to 5.5 V, T_{A} = –20°C to 85°C, unless otherwise noted

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I _{CC} 1	Supply current 1			75		mA
I _{CC} 2	Supply current 2	One band switch on $(I_{BS} = 10 \text{ mA})$		87		mA
I _{CC-STBY}	Standby supply current	STBY = 1		8		mA
VIH	High-level input voltage (SCL, SDA)		2.3			V
V _{IL}	Low-level input voltage (SCL, SDA)				1.35	V
I _{IH}	High-level input current (SCL, SDA)				10	μA
I _{IL}	Low-level input current (SCL, SDA)		-10			μΑ
V _{POR}	Power-on-reset supply voltage (threshold of supply voltage between reset and operation mode)		2.1	2.8	3.5	V
I ² C INTER	FACE					
V _{ASH}	Address-select high-input voltage (AS)	$V_{CC} = 5 V$	4.5		5	V
V _{ASM1}	Address-select mid-input1 voltage (AS)	$V_{CC} = 5 V$	2		3	V
V _{ASM2}	Address-select mid-input2 voltage (AS)	$V_{CC} = 5 V$	1		1.5	V
V _{ASL}	Address-select low-input voltage (AS)	$V_{CC} = 5 V$			0.5	V
I _{ASH}	Address-select high-input current (AS)				10	μΑ
I _{ASL}	Address-select low-input current (AS)		-10			μΑ
V _{ADC}	ADC input voltage	See Table 10	0		V _{CC}	V
I _{ADH}	ADC high-level input current	$V_{ADC} = V_{CC}$			10	μA
I _{ADL}	ADC low-level input current	V _{ADC} = 0 V	-10			μΑ
V _{OL}	Low-level output voltage (SDA)	$V_{CC} = 5 \text{ V}, \text{ I}_{OL} = 3 \text{ mA}$			0.4	V
I _{SDAH}	High-level output leakage current (SDA)	V _{SDA} = 5.5 V			10	μΑ
f _{SCL}	Clock frequency (SCL)			100	400	kHz
t _{HD-DAT}	Data hold time	See timing chart, Figure 19	0			μs
t _{BUF}	Bus free time		1.3			μs
t _{HD-STA}	Start hold time		0.6			μs
t _{LOW}	SCL-low hold time		0.6			μs
t _{HIGH}	SCL-high hold time		0.6			μs
t _{SU-STA}	Start setup time		0.6			μs
t _{SU-DAT}	Data setup time		0.1			μs
t _r	SCL, SDA rise time				0.3	μs
t _f	SCL, SDA fall time				0.3	μs
t _{su-sто}	Stop setup time		0.6			μs

ELECTRICAL CHARACTERISTICS, PLL and Band Switch

 V_{CC} = 4.5 V to 5.5 V, T_{A} = –20°C to 85°C, unless otherwise noted

PARAMETER		PARAMETER TEST CONDITIONS		TYP	MAX	UNIT	
N	Divider ratio	15-bit frequency word	512		32767		
f _{XTAL}	Crystal oscillator frequency	$R_{XTAL} = 25 \Omega$ to 300 Ω		4		MHz	
Z _{XTAL}	Crystal oscillator input impedance			1.6		kΩ	
V _{XLO}	XTALOUT output voltage	Load = 10 pF/5.1 k Ω , V _{CC} = 5 V, T _A = 25°C		0.37		Vp-p	
V _{VTUL}	Tuning amplifier low-level output voltage	$R_L = 20 \text{ k}\Omega, V_{TU} = 33 \text{ V}$	0.2	0.3	0.46	V	
I _{VTUOFF}	Tuning amplifier leakage current	Tuning amplifier = off, V_{TU} = 33 V			10	μA	
I _{CP11}		CP[1:0] = 11		600			
I _{CP10}	Charge sums sumset	CP[1:0] = 10		300			
I _{CP01}	Charge-pump current	CP[1:0] = 01		140		μA	
I _{CP00}		CP[1:0] = 00		70			
V _{CP}	Charge-pump output voltage	PLL locked		1.95		V	
I _{CPOFF}	Charge-pump leakage current	$V_{CP} = 2 V, T_A = 25^{\circ}C$	-15		15	nA	
I _{BS}	Band-switch driver output current (BS1–BS4)				10	mA	
V _{BS1}	Band-switch driver output voltage	I _{BS} = 10 mA	3			V	
V _{BS2}	(BS1–BS4)	$I_{BS} = 10 \text{ mA}, V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C}$	3.5	3.9		v	
I _{BSOFF}	Band-switch driver leakage current (BS1–BS4)	$V_{BS} = 0 V$			8	μΑ	
I _{P5}	Band-switch port sink current (P5/ADC)				-5	mA	
V _{P5ON}	Band-switch port output voltage (P5/ADC)	$I_{P5} = -2 \text{ mA}, V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C}$			0.6	V	

ELECTRICAL CHARACRTERISTICS, RF AGC

 $V_{CC} = 5 \text{ V}, \text{ T}_{A} = 25^{\circ}\text{C}$, measured in Figure 20 reference measurement circuit at 50- Ω system, IF = 44 MHz, IF filter characteristics: $f_{peak} = 44 \text{ MHz}$, unless otherwise noted

	PARAMETER TEST CONDITIONS		MIN TYP	MAX	UNIT
I _{OAGC0}		ATC = 0	900		nA
I _{OAGC1}	 RF AGC output current 	ATC = 1	9		μA
V _{AGCSP00}		T1/ATSS = 0, ATP[2:0] = 000	117		
V _{AGCSP01}		T1/ATSS = 0, ATP[2:0] = 001	114		
V _{AGCSP02}		T1/ATSS = 0, ATP[2:0] = 010	111		
V _{AGCSP03}		T1/ATSS = 0, ATP[2:0] = 011	108		
V _{AGCSP04}		T1/ATSS = 0, ATP[2:0] = 100	105		- -
V _{AGCSP05}		T1/ATSS = 0, ATP[2:0] = 101	102		
V _{AGCSP06}		T1/ATSS = 0, ATP[2:0] = 110	99		
V _{AGCSP10}	Start-point IF output level	T1/ATSS = 1, ATP[2:0] = 000) 112		dBμV
V _{AGCSP11}		T1/ATSS = 1, ATP[2:0] = 001	109		
V _{AGCSP12}		T1/ATSS = 1, ATP[2:0] = 010	106		
V _{AGCSP13}		T1/ATSS = 1, ATP[2:0] = 011	103		
V _{AGCSP14}		T1/ATSS = 1, ATP[2:0] = 100	100		
V _{AGCSP15}		T1/ATSS = 1, ATP[2:0] = 101	97		
V _{AGCSP16}		T1/ATSS = 1, ATP[2:0] = 110	94		

SN761662 **DTV TUNER IC** SLES161-NOVEMBER 2005

ELECTRICAL CHARACTERISTICS, Mixer, Oscillator, IF Amplifier

 $V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C}$, measured in Figure 20 reference measurement circuit at 50- Ω system, IF = 44 MHz, IF filter characteristics: $f_{peak} = 44 \text{ MHz}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
G _{c1}	Conversion gain (mixer-IF amplifier),	f _{in} = 57 MHz ⁽¹⁾	35		dB
G _{c3}	VHF-LOW	f _{in} = 171 MHz ⁽¹⁾	35		
G _{c4}	Conversion gain (mixer-IF amplifier),	f _{in} = 177 MHz ⁽¹⁾	35		dB
G _{c6}	VHF-HIGH	f _{in} = 467 MHz ⁽¹⁾	35		
G _{c7}	Conversion gain (mixer-IF amplifier),	f _{in} = 473 MHz ⁽¹⁾	35		dB
G _{c9}	VHF-UHF	f _{in} = 864 MHz ⁽¹⁾	35		
NF ₁		f _{in} = 57 MHz	9		
NF ₃	Noise figure, VHF-LOW	f _{in} = 171 MHz	9		dB
NF_4		f _{in} = 177 MHz	9		
NF ₆	Noise figure, VHF-HIGH	f _{in} = 467 MHz	9		dB
NF ₇		f _{in} = 473 MHz	12		
NF ₉	Noise figure, UHF	f _{in} = 864 MHz	12		dB
CM ₁	1% cross-modulation distortion,	f _{in} = 57 MHz ⁽²⁾	79		ا ۱۹۹۵
CM ₃	VHF-LOW	f _{in} = 171 MHz ⁽²⁾	79		dBµV
CM_4	1% cross-modulation distortion,	f _{in} = 177 MHz ⁽²⁾	79		ا (بر حال
CM ₆	VHF-HIGH	f _{in} = 467 MHz ⁽²⁾	79		dBµV
CM ₇	10/ aroos modulation distortion LULE	f _{in} = 473 MHz ⁽²⁾	77		ا ۱۹۹۵
CM ₉	— 1% cross-modulation distortion, UHF	f _{in} = 864 MHz ⁽²⁾	77		dBµV
V _{IFO1}		f _{in} = 57 MHz	117		ا الانطا
V _{IFO3}	IF output voltage, VHF-LOW	f _{in} = 171 MHz	117		dBµV
V_{IFO4}		f _{in} = 177 MHz	117		dPu\/
V _{IFO6}	IF output voltage, VHF-HIGH	f _{in} = 467 MHz	117		dBµV
V _{IFO7}		f _{in} = 473 MHz	117		dPu\/
V _{IFO9}	IF output voltage, UHF	f _{in} = 864 MHz	117		dBµV
Φ_{PLVL11}		$f_{in} = 57 \text{ MHz}, \text{ offset} = 1 \text{ kHz}^{(3)}$	-90		
Φ_{PLVL12}	Phase noise, VHF-LOW	$f_{in} = 57 \text{ MHz}, \text{ offset} = 10 \text{ kHz}^{(4)}$	-95		dBc/Hz
Φ_{PLVL31}	Flase loise, VHF-LOW	$f_{in} = 171 \text{ MHz}, \text{ offset} = 1 \text{ kHz}^{(5)}$	-85		UDC/NZ
Φ_{PLVL32}		$f_{in} = 171 \text{ MHz}, \text{ offset} = 10 \text{ kHz}^{(4)}$	-95		
Φ_{PLVL41}		$f_{in} = 177 \text{ MHz}, \text{ offset} = 1 \text{ kHz}^{(3)}$	-85		
Φ_{PLVL42}		$f_{in} = 177 \text{ MHz}, \text{ offset} = 10 \text{ kHz}^{(4)}$	-90		dDa/Uz
Φ_{PLVL61}	Phase noise, VHF-HIGH	$f_{in} = 467 \text{ MHz}, \text{ offset} = 1 \text{ kHz}^{(5)}$	-77		dBc/Hz
Φ_{PLVL62}		$f_{in} = 467 \text{ MHz}, \text{ offset} = 10 \text{ kHz}^{(4)}$	-90		
Φ_{PLVL71}		$f_{in} = 473 \text{ MHz}, \text{ offset} = 1 \text{ kHz}^{(3)}$	-80		
Φ_{PLVL72}		$f_{in} = 473 \text{ MHz}, \text{ offset} = 10 \text{ kHz}^{(4)}$	-85		dBc/U-
Φ_{PLVL91}	Phase noise, UHF	$f_{in} = 864 \text{ MHz}, \text{ offset} = 1 \text{ kHz}^{(5)}$	-77		dBc/Hz
Φ_{PLVL92}		f _{in} = 864 MHz, offset = 10 kHz ⁽⁴⁾	-90		

(1) RF input level = 70 dB μ V, differential output

(1) KP input level = 70 dBµV, differential oduput (2) $f_{undes} = f_{des} \pm 6$ MHz, $P_{in} = 80$ dBµV, AM 1 kHz, 30%, DES/CM = S/I = 46 dB (3) CP[1:0] = 10 (CP current 350 µA), RS[2:0] = 011 (reference divider 64) (4) CP[1:0] = 00 (CP current 70 µA), RS[2:0] = 100 (reference divider 128) (5) CP[1:0] = 11 (CP current 600 µA), RS[2:0] = 100 (reference divider 128)

Functional Description

I²C Bus Mode

I^2C Write Mode (R/ $\overline{W} = 0$)

	MSB							LSB	
⁽¹⁾ Address byte (ADB)	1	1	0	0	0	MA1	MA0	$R/\overline{W} = 0$	А
Divider byte 1 (DB1)	0	N14	N13	N12	N11	N10	N9	N8	А
Divider byte 2 (DB2)	N7	N6	N5	N4	N3	N2	N1	N0	А
Control byte 1 (CB1)	1	0	ATP2	ATP1	ATP0	RS2	RS1	RS0	А
Band-switch byte (BB)	CP1	CP0	0	P5	BS4	BS3	BS2	BS1	А
Control byte 2 (CB2)	1	1	ATC	STBY	Т3	T2	T1/ATSS	T0/XLO	А

Table 1. Write Data Format

(1) A: Acknowledge

Table 2. Description of Data Symbols

SYMBOL	DESCRIPTION	DEFAULT
MA[1:0]	Address-set bits (see Table 3, Address Selection)	
N[14:0]	Programmable counter set bits	N14 = N13 = N12 = = N0 = 0
	$N = N14 \times 2^{14} + N13 \times 2^{13} + + N1 \times 2 + N0$	
CP[1:0]	Charge-pump current-set bit	CP = 1
	60 μA (CP = 0); 280 μA (CP = 1)	
T[2:0}	RF AGC start-point control bits (see Table 4, RF AGC Start Point)	ATP[2:0] = 011
RSA, RSB	Reference divider ratio-selection bits (see Table 5, Reference Divider Rati	o) RSA = 0, RSB = 1
OS	Tuning amplifier control bit	OS = 0
	Tuning voltage on $(OS = 0)$	
	Tuning voltage off, high impedance (OS = 1)	
BS[4:1]	Band-switch control bits	BSn = 0
	BSn = 0: OFF BSn = 1: ON	
	Band selection by BS[1:2]	
	BS1 BS2	
	1 0 VHF-LO	
	0 1 VHF-HI 0 0 UHF	
	0 0 UHF 1 1 Reserved	
Х	Don't care	

Table 3. Address Selection

MA1	MA0	Voltage Applied on AS Input
0	0	0 V to 0.1 V _{CC}
0	1	OPEN, or 0.2 V_{CC} to 0.3 V_{CC}
1	0	0.4 V _{CC} to 0.6 V _{CC}
1	1	0.9 V_{CC} to V_{CC}

Table 4. RF AGC Start Point

T1/ATSS	ATP2	ATP1	ATP0	IFOUT Level, dBµV
0	0	0	0	117
0	0	0	1	114
0	0	1	0	111
0	0	1	1	108
0	1	0	0	105
0	1	0	1	102
0	1	1	0	99
0	1	1	1	Disabled
1	0	0	0	112
1	0	0	1	109
1	0	1	0	106
1	0	1	1	103
1	1	0	0	100
1	1	0	1	97
1	1	1	0	94
1	1	1	1	Disabled

Table 5. Reference Divider Ratio

RS2	RS1	RS0	Reference Divider Ratio
0	0	0	24
0	0	1	28
0	1	0	50
0	1	1	64
1	0	0	128
1	X	1	80

Table 6. Charge Pump Current

CP1	CP0	Charge Pump Current, μA
0	0	70
0	1	140
1	0	350
1	1	600

Table 7. Test Bits/XTALOUT Control ⁽¹⁾

Т3	T2	T1/ATSS	T0/XLO	Device Operation	XTALOUT 4-MHz Output
0	0	Х	0	Normal operation	Enabled
0	0	Х	1	Normal operation	Disabled
Х	1	Х	Х	Test mode	Not available
1	Х	Х	Х	Test mode	Not available

(1) RFAGC and XTALOUT are not available in test mode.

Example I²C Data Write Sequences

Telegram examples:

Start-ADB-DB1-DB2-CB1-BB-CB2-Stop Start-ADB-DB1-DB2-Stop Start-ADB-CB1-BB-CB2-Stop Start-ADB-CB1-BB-CB2-Stop Start-ADB-CB1-BB-Stop Start-ADB-CB2-Stop

Abbreviations:

ADB: Address byte BB: Band-switch byte CB1: Control byte 1 CB2: Control byte 2 DB1: Divider byte 1 DB2: Divider byte 2 Start: Start condition Stop: Stop condition

I^2C Read Mode (R/W = 1)

Table 8. Read Data Format (A: Acknowledge)

	MSB							LSB	
Address byte (ADB)	1	1	0	0	0	MA1	MA0	R/W = 1	А
Status byte (SB)	POR	FL	1	1	Х	A2	A1	A0	-

Table 9. Description of Data Symbols

SYMBOL	DESCRIPTION	DEFAULT
MA[1:0]	Address set bits (see Table 3, Address Selection)	
POR	Power-on-reset flag	POR = 1
	POR set: power on POR reset: end-of-data transmission procedure	
FL	In-lock flag	
	PLL locked (FL = 1), unlocked (FL = 0)	
A[2:0]	Digital data of ADC (see Table 10, ADC Level)	
	Bit P5 must be set to 0.	

SN761662 DTV TUNER IC

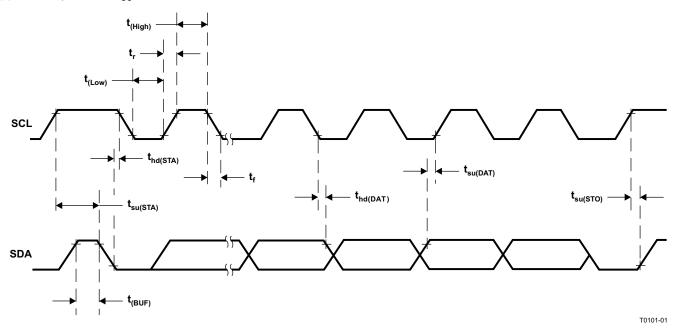
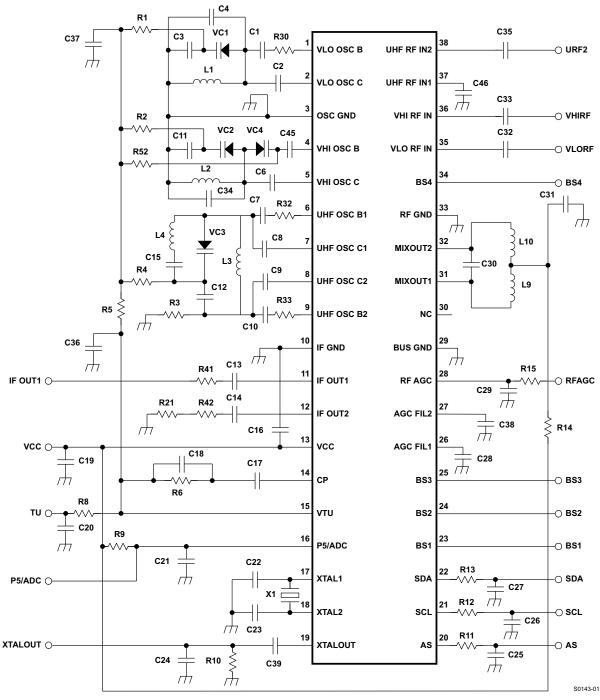

SLES161-NOVEMBER 2005

Table 10. ADC Level⁽¹⁾

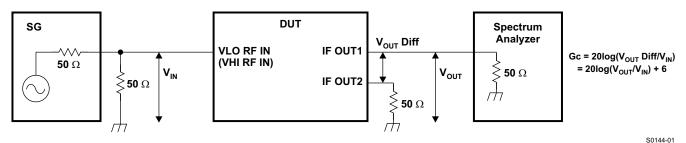
A2	A1	A0	Voltage Applied on ADC Input
1	0	0	0.6 V_{CC} to V_{CC}
0	1	1	0.45 V_{CC} to 0.6 V_{CC}
0	1	0	0.3 V_{CC} to 0.45 V_{CC}
0	0	1	0.15 V _{CC} to 0.3 V _{CC}
0	0	0	0 V to 0.15 V _{CC}


(1) Accuracy is $0.03 \times V_{CC}$.

APPLICATION INFORMATION

Reference Measurement Circuit

NOTE: This application information is advisory and a performance-check is required for actual application circuits. TI assumes no responsibility for the consequences of the use of this circuit nor for any infringement of patent or patent rights of third parties which may result from its use.


APPLICATION INFORMATION (continued)

Component Values for Measurement Circuit

PART NAME	VALUE	PART NAME	VALUE
C1 (VLO OSCB)	1 pF	C39 (XTALOUT)	2.2 nF
C2 (VLO OSCC)	2 pF	C45 (VHI OSC)	7 pF
C3 (VLO OSC)	47 pF	C46 (URF1)	2.2 nF
C4 (VLO OSC)	Open	L1 (VLO OSC)	φ 3,0 mm, 7T, wire 0,32 mm
C6 (VHI OSCC)	5 pF	L2 (VHI OSC)	φ2,0 mm, 3T, wire 0,4 mm
C7 (UHF OSCB1)	1 pF	L3 (UHF OSC)	φ1,8 mm, 3T, wire 0,4 mm
C8 (UHF OSCC1)	1 pF	L4 (UHF OSC)	φ1,8 mm, 3T, wire 0,4 mm
C9 (UHF OSCC2)	1 pF	L9 (MIXOUT)	680 nH (LK1608R68K-T)
C10 (UHF OSCB2)	1 pF	L10 (MIXOUT)	680 nH (LK1608R68K-T)
C11 (VHI OSC)	51 pF	R1 (VLO OSC)	3.3 kΩ
C12 (UHF OSC)	10 pF	R2 (VHI OSC)	3.3 kΩ
C13 (IFOUT)	2.2 nF	R3 (UHF OSC)	2.2 kΩ
C14 (IFOUT)	2.2 nF	R4 (UHF OSC)	1 kΩ
C15 (UHF OSC)	100 pF	R5 (VTU)	3 kΩ
C16 (VCC)	4.7 nF	R6 (CP)	47 kΩ
C17 (CP)	0.01 μF/50 V	R8 (VTU)	20 kΩ
C18 (CP)	22 pF/50 V	R9 (P5/ADC)	Open
C19 (VCC)	2.2 nF	R10 (XTALOUT)	5.1 kΩ
C20 (VTU)	2.2 nF/50 V	R11 (AS)	330 Ω
C21 (P5/ADC)	Open	R12 (SCL)	330 Ω
C22 (XTAL)	27 pF	R13 (SDA)	330 Ω
C23 (XTAL)	27 pF	R14 (VCC)	0
C24 (XTALOUT)	10 pF	R15 (RFAGC)	0
C25 (AS)	Open	R21 (IFOUT)	1 kΩ
C26 (SCL)	Open	R30 (VLO OSC)	10
C27 (SDA)	Open	R32 (UHF OSC)	0
C28 (AGCFIL1)	0.1 μF	R33 (UHF OSC)	0
C29 (RFAGC)	0.15 μF	R41 (IFOUT)	1 kΩ
C30 (MIXOUT)	5 pF	R42 (IFOUT)	0
C31 (MIXOUT)	2.2 nF	R52 (VHI OSC)	3.3 kΩ
C32 (VLORF)	2.2 nF	U1	SN761662
C33 (VHIRF)	2.2 nF	VC1 (VLO OSC)	MA2S374
C34 (VHI OSC)	0.5 pF	VC2 (VHI OSC)	MA2S374
C35 (URF2)	2.2 nF	VC3 (UHF OSC)	MA2S372
C36 (VTU)	Open	VC4 (VHI OSC)	MA2S372
C37 (VTU)	2.2 nF/50 V	X1	4-MHz crystal
C38 (RGCFIL2)	Open		

Test Circuits

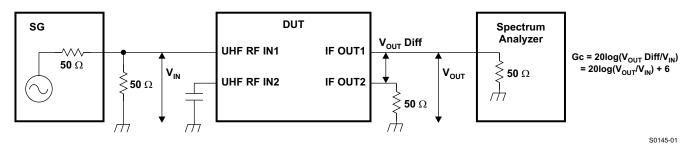


Figure 22. UHF-Conversion Gain-Measurement Circuit

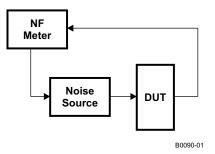


Figure 23. Noise-Figure Measurement Circuit

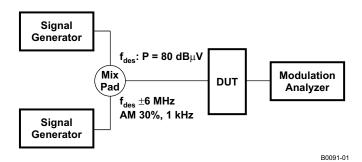


Figure 24. 1% Cross-Modulation Distortion Measurement Circuit

TYPICAL CHARACTERISTICS

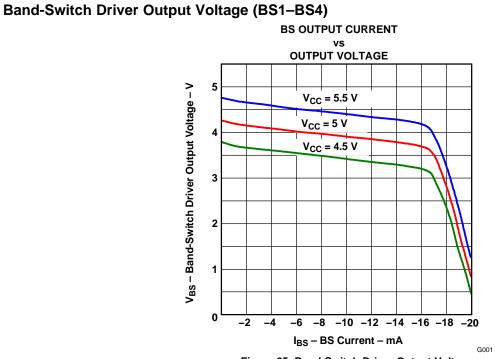
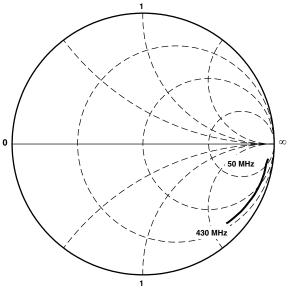
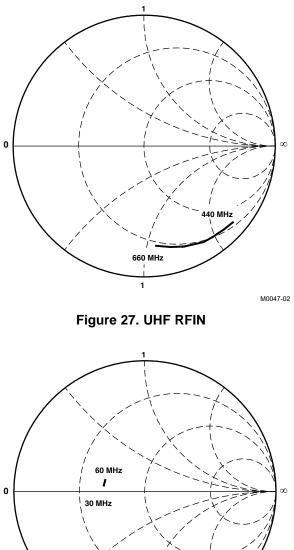



Figure 25. Band-Switch Driver Output Voltage


S-Parameter

M0047-01

TYPICAL CHARACTERISTICS (continued)

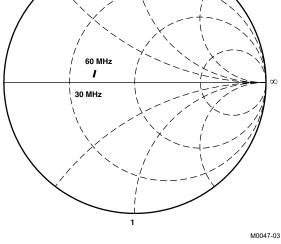


Figure 28. IFOUT

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
SN761662DBT	OBSOLETE	TSSOP	DBT	38		TBD	Call TI	Call TI	
SN761662DBTR	ACTIVE	TSSOP	DBT	38	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
SN761662DBTRG4	ACTIVE	TSSOP	DBT	38	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

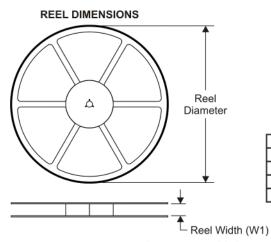
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

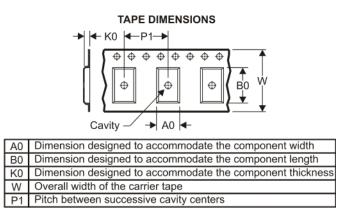
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

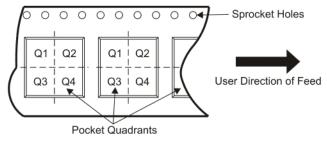
⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

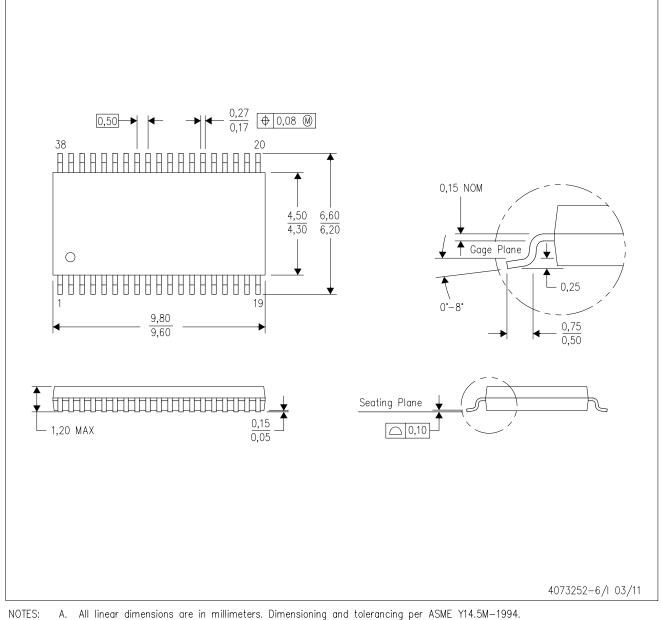
*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN761662DBTR	TSSOP	DBT	38	2000	330.0	16.4	6.9	10.2	1.8	12.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

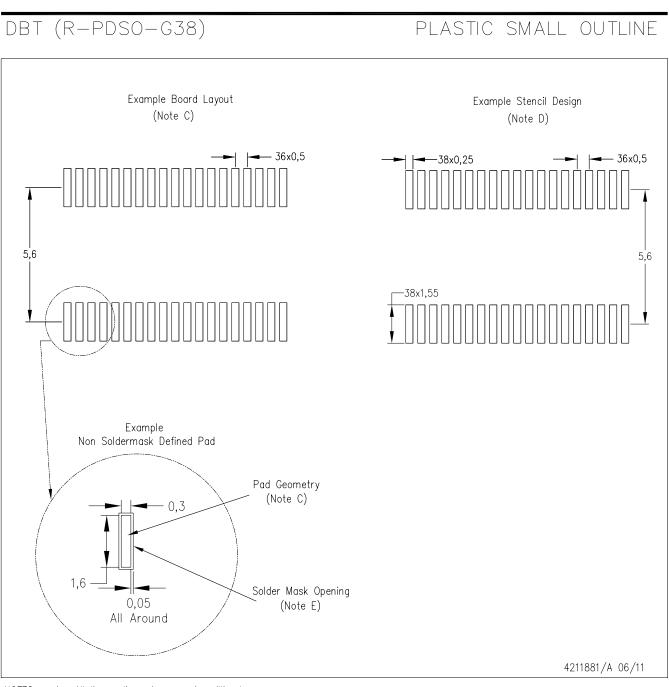
20-Oct-2010



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN761662DBTR	TSSOP	DBT	38	2000	346.0	346.0	33.0

DBT (R-PDSO-G38)


PLASTIC SMALL OUTLINE

B. This drawing is subject to change without notice.

- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-153.

- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Publication IPC-7351 is recommended for alternate designs
 - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525.
 - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
		to Hama Bana	a O a R a sau

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated