

Atmel AVR4016: Sensors Xplained Software
User Guide

Features

� Hardware-independent C language interfaces for sensor devices

� Conversion to standard units for all measurements

� Drivers for a variety of sensor types

� Easy-to-use configuration and initialization

1 Introduction

This application note is an introduction to the Common Sensors Service in the

Atmel® AVR® Software Framework (ASF). The Sensors Xplained software consists

of a high-level, C/C++ application programming interface (API) and binary driver

libraries for sensor devices on systems built around 8-bit and 32-bit Atmel AVR

XMEGA® and Atmel AVR UC3 microcontrollers. ASF board support modules for

the Atmel AVR Xplained MCU evaluation kits and Sensors Xplained add-on boards

(�top modules�) include configuration constants and runtime initialization calls that

allow developers to pair AVR microcontrollers with different combinations of

sensors on Sensors Xplained boards, and retarget standalone applications with

little or no modification to the application source code. Demonstration projects

included with the Sensors Xplained software illustrate how to bring together the

sensor API, libraries, board support modules, ASF drivers, and configuration

constants to build standalone applications.

Figure 1-1. Example Sensors Xplained add-on board.

Atmel
Microcontrollers

Application Note

Rev. 8367B-AVR-06/11

2 Atmel AVR4016
8367B-AVR-06/11

2 Overview

The Atmel Sensors Xplained software is implemented as a common service

extension to the Atmel AVR Software Framework (ASF), version 2.5 and later. The

sensor software includes a high-level, portable C/C++ API, binary libraries containing

sensor drivers, sensor configuration mechanisms, and example applications

illustrating sensor API calls. Applications do not require any code that is specific to a

particular sensor device. Instead, the application interacts with sensors in a device-

independent manner and can be retargeted to different combinations of

microcontrollers and sensors using a few basic configuration constants and linking

against the appropriate driver library.

2.1 Common sensors service

The Sensors Xplained API portion is installed as a shared service in an ASF 2.x tree

in the common/services/sensors directory, and includes API and driver header files,

configuration header files for ASF services and target board support modules, and

high-level utility functions.

Sensor device drivers and some interface routines in the Sensors Xplained API are

distributed only as linkable binary modules, without source code. All applications

written to this API must link against the appropriate library archive found in toolchain-

specific subdirectories below the thirdparty/sensors/libs directory. In addition,

the sensor hardware and platform interfaces make extensive use of conditionally

compiled ASF services and platform interfaces. As a result, additional ASF source

files are required when building an application that uses the Sensors Xplained

libraries. These dependencies are managed by the Atmel AVR Studio® 5 project

facility.

2.1.1 Sensors Xplained API modules

The common/services/sensors directory contains header files and C language

implementation files defining the Sensors Xplained application programming interface

(API). These include the sensor.h file (described below) and the

sensor_platform.c source file that is part of the sensor configuration mechanism.

A sensor API hardware abstraction layer (HAL) acts as a translation layer between

the AVR Software Framework drivers, sensor drivers, target board platform, and

sensor API. These statically configured modules provide access to the various driver

and board interfaces. The sensor_platform_init() routine is the primary runtime

mechanism by which applications initialize the target Xplained evaluation board and

Sensors Xplained board for use by the sensor API. Your application should call

sensor_platform_init() as its first step during system initialization. It replaces the

board_init() call that is typically made in other ASF-based applications.

The common/services/sensors directory also contains various other header and

source files. These are used by modules within the sensor service. You should not

include these files directly in your application or depend on the internal definitions,

which are subject to change in future releases.

2.1.2 The sensor.h header file

The common/services/sensors directory contains the sensor.h header file, which

is the primary file containing definitions that are required to use the Common Sensors

Service. These definitions include function prototypes for all API interfaces, data

Atmel AVR4016

 3

8367B-AVR-06/11

structure definitions, and various constants. The sensor.h file must be included in

any application code that will use the sensor interfaces.

If you are using the Atmel AVR Studio 5 project tools to create your application, either

from example applications or by selecting the sensor components to add to a custom

application, the avr.h header file will be automatically modified to include sensor.h.

In this case, your application does not need to include sensor.h directly � it may

simply include asf.h, as usual, and the necessary definitions will be available.

NOTE The code sequence examples that are found later in this document reference

sensor.h explicitly. If you are using an automatically generated asf.h file that

includes sensor.h, you may simply include asf.h instead.

2.1.3 The Sensors Xplained module_config directory

The C language header files located in common/services/sensors/module_config

provide reference versions of the ASF configuration files that contain settings

appropriate for use with the Sensors Xplained software.

If your application is based on the example sensor applications provided in AVR

Studio 5, these configuration settings will automatically be included in your application

build and will appear in the config directory within your project.

If you are adding sensor support to an existing or custom application using the AVR

Studio 5 project facility, you may need to modify the initial settings in various

configuration files (located in the config directory within your project) to match the

settings found in the corresponding files in

common/services/sensors/module_config.

2.1.4 Sensors Xplained drivers directory

The files located in the common/services/sensors/drivers directory supply

definitions required by the Sensors Xplained hardware abstraction layer. Sensor

applications do not require the definitions in these files, and you should not include

these files or reference any of the symbols they define within your application. The

definitions and API routines specified in the sensor.h file provide access to all

installed sensor peripherals. None of the Atmel or third-party sensor driver

implementations are provided in source code form, and all files within this directory

are subject to change in future versions of the Common Sensors Service. The

directory itself will be retained in the tree for those developers who are writing new

sensor drivers for use by the sensor service.

2.1.5 Sensors Xplained driver libraries

Sensor drivers and API functions must be linked into your application from static link

libraries built for the GCC and IAR� Systems toolchains. The libraries are located in

the thirdparty/sensors/libs/gcc and thirdparty/sensors/libs/iar

directories, respectively. Only necessary modules will be linked into your final system

image.

When you use the AVR Studio 5 project facility to create your application project, the

correct library will automatically be included in your build.

NOTE The sensor drivers and API functions found in the libraries are only available in binary
format. No source code is provided.

4 Atmel AVR4016
8367B-AVR-06/11

The library name indicates the supported target AVR microcontroller, as well as

whether or not the library is built with special flags targeting a build that will be used

for debugging purposes.

The GCC driver libraries located in the thirdparty/sensors/libs/gcc directory

have the following name formats:

libsensors-$mcu_series-debug.a

libsensors-$mcu_series-release.a

The IAR link libraries located in the thirdparty/sensors/libs/iar directory have a

similar format:

libsensors-$mcu_series-debug.r82

libsensors-$mcu_series-release.r82

In both cases, $mcu_series identifies the specific 8-bit or/and 32-bit AVR

microcontroller model being used. Table 2-1 lists the sensor driver libraries that are

currently available.

Table 2-1. Sensors Xplained libraries.

Library name Target MCU Toolchain

libsensors-at32uc3a3-debug.a AVR32 UC3-A3 GCC

libsensors-at32uc3a3-release.a AVR32 UC3-A3 GCC

libsensors-at32uc3a3-debug.r82 AVR32 UC3-A3 IAR

libsensors-at32uc3a3-release.r82 AVR32 UC3-A3 IAR

libsensors-at32uc3a-debug.a AVR32 UC3-A GCC

libsensors-at32uc3a-release.a AVR32 UC3-A GCC

libsensors-at32uc3a-debug.r82 AVR32 UC3-A IAR

libsensors-at32uc3a-release.r82 AVR32 UC3-A IAR

libsensors-at32uc3b-debug.a AVR32 UC3-B GCC

libsensors-at32uc3b-release.a AVR32 UC3-B GCC

libsensors-at32uc3b-debug.r82 AVR32 UC3-B IAR

libsensors-at32uc3b-release.r82 AVR32 UC3-B IAR

libsensors-at32uc3c-debug.a AVR32 UC3-C GCC

libsensors-at32uc3c-release.a AVR32 UC3-C GCC

libsensors-at32uc3c-debug.r82 AVR32 UC3-C IAR

libsensors-at32uc3c-release.r82 AVR32 UC3-C IAR

libsensors-at32uc3l-debug.a AVR32 UC3-L GCC

libsensors-at32uc3l-release.a AVR32 UC3-L GCC

libsensors-at32uc3l-debug.r82 AVR32 UC3-L IAR

libsensors-at32uc3l-release.r82 AVR32 UC3-L IAR

2.2 Sensors Xplained target boards

In addition to the sensor service API header, source, and library files, all Atmel

Sensors Xplained applications require target board support source files and board-

specific configuration files. Board support files for AVR evaluation and development

boards are located in the avr32/boards and xmega/boards subdirectories within the

Atmel AVR4016

 5

8367B-AVR-06/11

ASF tree. The common board support files for the Atmel Sensors Xplained extension

boards are located in the common/boards/sensors_xplained directory.

Rather than including the individual header files defined within each of these

directories, applications and board interface software should simply include the

common/boards/board.h file. This file is shared among all processor types, and

exposes board-specific definitions based on the values of specific configuration

constants, as discussed in following chapters.

6 Atmel AVR4016
8367B-AVR-06/11

3 Requirements

The following are the minimum requirements for creating standalone applications

using the Sensors Xplained software.

• Atmel AVR Studio 5

(http://www.atmel.com/dyn/products/tools_card.asp?tool_id=17212)

• Atmel AVR Software Framework (ASF), version 2.5 or later, including header file

updates for the 32-bit AVR toolchain

• Supported Atmel UC3 Xplained evaluation board

• Supported Atmel Sensors Xplained extension board

• Optional: IAR Embedded Workbench® for Atmel AVR32, version 3.31 or later

(http://www.iar.com)

• Hardware programmer supported by the above tools (for example, Atmel AVR

JTAGICE 3 or Atmel AVR One!)

AVR Studio 5 software is available on the Atmel website. Follow the accompanying

installation instructions and application notes to install the development environment

and toolchain.

The Common Sensors Service C/C++ source and header files, along with GCC and

IAR Systems static link libraries containing sensor drivers and API functions, are

included in the standard AVR Studio 5/ASF installation, but must be explicitly included

in your application when you create and configure your project.

http://www.atmel.com/dyn/products/tools_card.asp?tool_id=17212�
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=17212�
http://www.iar.com/�

Atmel AVR4016

 7

8367B-AVR-06/11

4 Creating an application

The Atmel AVR Studio 5/ASF installation contains several example applications,

which illustrate how to use the Atmel Sensors Xplained API to control sensor devices

and obtain measurement data. These applications, located in subdirectories below

the ASF common/applications/sensors directory, illustrate how an application

using the sensor API can be configured and built for various combinations of Xplained

processor boards and Sensors Xplained add-on extension boards. New sensor API

applications can be created by using the demonstration applications as templates, or

by starting with a generic application and adding the sensor service and board

support modules.

4.1 Example Sensors Xplained applications

Several example applications are included with the Sensors Xplained software to

illustrate how the sensor interfaces are used. All of these applications may be found

in the common/applications/sensors directory and use the same basic build

mechanism and board definitions described earlier. Other example applications may

be available in your particular installation.

• Inertial Sensor Demonstration (inertial_demo)

This simple application obtains data from an inertial sensor board, including

acceleration, rotation, magnetic heading, and temperature. The data are sent via a

USB connection to a connected host PC for display using a terminal program.

• Sensor Data Visualizer (inertial_visualizer)

This application also obtains sensor data from an inertial sensor board. The data

are formatted into special packets and sent via a USB connection to a connected

host PC for display using the special Atmel Data Visualizer application. See the

AVR4017 � Atmel Data Visualizer application note, for more information.

• Inertial Sensor Wakeup Demonstration (wake_demo)

This application demonstrates the use of the sensor event handing mechanism to

wake up the system from a low-power sleep mode when a sensor event occurs.

The event can be either a motion-threshold detection using an accelerometer or a

new data event from a gyroscope.

• Compass Sensor Calibration (compass_calibration)

This application demonstrates a basic, manual calibration sequence for

compass/magnetometer devices.

• Pressure Sensor Demonstration (pressure_demo)

This simple application obtains atmospheric pressure and temperature data from a

pressure sensor board. The data are sent via a USB connection to a connected

host PC for display using a terminal program.

4.1.1 Building an example application

The example sensor applications are selected and built in the same way as other

ASF applications within AVR Studio. The following steps summarize how to create a

new project based on the Inertial Sensor Demonstration project, which uses

accelerometer, gyroscope, and compass devices.

1. In the AVR Studio 5 menus, select:
File > New > New Project�

2. In the New Example Project window, select Technology in the left-hand panel.

http://www.atmel.com/dyn/resources/prod_documents/doc4017.pdf�

8 Atmel AVR4016
8367B-AVR-06/11

3. Click on Sensors in the list of technology areas to display the sensor application
choices.

4. Select the example project you wish to build. For this example, click on the
Inertial Sensor Demonstration project for your Atmel Xplained processor board
(for example, Inertial Sensor Demonstration � UC3-A3 Xplained �
AT32UC3A3256). Click OK.

5. A Software License Agreement window will appear containing the license
agreement for using the software contained in the Sensors Xplained library. If you
agree to the terms of the license, click on the "I accept the license agreement"
box and select Finish.

6. The example project files will appear within your Atmel AVR Studio windows. If
the default sensors board for the project is the one you are using, you may now
build and download the application normally. If you need to change the selection
of the sensor board, see below.

NOTE Most Atmel Sensors Xplained example applications, including the inertial sensor
application summarized here, require a USB serial I/O connection to a virtual
communication port on the host machine. Install the appropriate drivers on the host
machine according to board setup instructions. The default application serial I/O
configuration will transmit at 115,200 bits per second using 8-bit data, no parity, and
one stop bit.

4.1.2 Changing the default sensor board

Each Sensors Xplained project has a default sensor board component defined.

However, the sensor board selection can be changed based on the actual hardware

you are using.

To display or change the current sensor board selection, use the following procedure

within AVR Studio:

1. In the Solution Explorer pane, select the project name.
2. In the AVR Studio 5 menus, select:

Project > Select Drivers from ASF�
3. The current sensor board selection will be in the Selected Modules list in the

right-hand pane. (For example, for the Sensors Xplained Inertial 1 board, there
will be an entry for "Sensors � ATAVRSBIN1 Sensor Board (Component).")

4. To change the sensor board:

• Select the current sensor board component in the Selected Modules pane,
and then click on Remove from selection

• In the left-hand Available Modules pane, find and select the new sensor
board you want to use, and then click on Add to selection

• Click on Finish
5. You may now build and download your project normally.

4.2 Adding sensors to an existing application

The Common Sensors Service can be added to any application with only minor

modifications by using the AVR Studio project facility. The steps in this section

describe the overall procedure for a typical application that was originally created

using the appropriate user application template for the processor board you are using.

First, you must add the sensor support modules into your application using the

following sequence:

1. In the Solution Explorer pane, select the project name.
2. In the AVR Studio 5 menus, select:

Project > Select Drivers from ASF�

Atmel AVR4016

 9

8367B-AVR-06/11

3. To add the basic sensor service, find and select Sensors � Sensor Device
Stack in the left-hand Available Modules pane, then click on Add to selection.

4. To add support for the sensor board you are using, find and select the new
sensor board you want to use in the left-hand Available Modules pane, and then
click on Add to selection.

• For example, to add support for the Atmel Sensors Xplained Inertial 1 board,
select Sensors � ATAVRSBIN1 Sensor Board (Component)

5. Click on Finish.

You must also modify your application to initialize the sensor service. To do so, make

the following change in your application's main.c file:

Replace the following call:

board_init();

with:

sensor_platform_init();

Once these modifications have been made, you can proceed to add the regular

Sensors Xplained API function calls to your application. You will first need to initialize

one or more sensor devices using sensor_attach(). Then you can perform control

operations and read data using the interfaces and procedures described in Chapter 6,

page 11, and Chapter 7, page 14.

4.3 Attaching a sensor board

Figure 4-1 shows how a Sensors Xplained sensor board attaches to an Xplained

processor board. Note the white alignment indicators surrounding the mounting holes

on both boards.

Figure 4-1. Attachment to UC3-L0 Xplained evaluation board.

10 Atmel AVR4016
8367B-AVR-06/11

5 Initialization

5.1 Configuration

As described above, the common/services/sensors/module_config directory

contains various configuration files used by the example Atmel Sensors Xplained

application projects. These are recommended settings for use with the Sensors

Xplained functions, but they may be changed based on your application�s

requirements or other Atmel AVR Software Framework (ASF) dependencies.

When building an example application from Atmel AVR Studio 5 that uses the sensor

interfaces, the appropriate configuration files will automatically be included in your

application project and appear in your project's config directory.

If you are adding sensor support to an existing or custom application using the project

facility, you may need to modify the initial settings in various configuration files

(located in the config directory within your project) to match the settings found in the

corresponding files in common/services/sensors/module_config.

5.2 Initializing sensors

The sensor_attach() function is used by your application to initialize a sensor and

make it available for subsequent use. Your application simply specifies the type of

sensor that is required and provides a descriptor structure that will be initialized. The

sensor descriptor will then be used during later function calls to identify the sensor.

See the example code sequences in Chapter 7, page 14 for usage of the

sensor_attach() function.

Atmel AVR4016

 11

8367B-AVR-06/11

6 Control interfaces

The Atmel Sensors Xplained software supports both control and measurement

operations for sensors in a device-independent manner whenever possible. This

section describes various sensor control interfaces that allow your application to

modify the behavior of the sensor device.

6.1 Sensor range

Sensor devices often provide multiple measurement ranges, which allow the device�s

available output resolution to be matched to the level of the physical conditions being

measured. The sensitivity of the device is changed so that the full-scale output range

of the device corresponds to different actual input level ranges. Therefore, the �raw�

output value from the device for a given input level will change based on the range

settings.

The Sensors Xplained sensor library functions automatically adjust their output

scaling when the device�s range is changed, and so the scaled numeric values that

are returned to your application will be the same, subject to the limitations of the

device resolution.

The sensor_set_range() function can be used to change the sensor range

dynamically during execution of your application. The function takes the following

form:

sensor_set_range (&device, range);

where device is the device descriptor of the device, and range is the range to be

used. The range value is expressed in the same units used for normal, scaled output

from the device (for example, milli-g for an accelerometer or Pascal for a pressure

sensor). The range value is the number of measurement units from zero to full scale

(positive or negative). For example, to set the range of an accelerometer device to

cover -2000 to +2000 milli-g, the value of range would be 2000.

The value specified for range must match the settings that are valid for the device, or

else an error is indicated (SENSOR_ERR_PARAMS).

See the individual driver descriptions in Chapter 9, page 27 for more information on

valid range settings, default values, etc.

6.2 Sampling bandwidth

Sensor devices generally provide several different sampling frequencies or

bandwidths. These different settings allow control over the tradeoff between

measurement time and the stability (noise level) of the readings. Shorter

measurement periods (higher sampling frequencies) reduce the time and power

required to obtain each measurement, but the measured values will show higher

variability, which appears as �noise� in the output values.

The sensor_set_bandwidth() function can be used to change the sensor sampling

bandwidth dynamically during execution of your application. The function takes the

following form:

sensor_set_bandwidth (&device, bandwidth);

where device is the device descriptor of the device, and bandwidth is the frequency

to be used, in Hz.

12 Atmel AVR4016
8367B-AVR-06/11

The value specified for bandwidth must match the settings that are valid for the

device, or else an error is indicated (SENSOR_ERR_PARAMS).

See the individual driver descriptions in Chapter 9, page 27 for more information on

the valid bandwidth frequencies, default settings, etc.

6.3 Thresholds

Some sensor devices provide programmable thresholds that can be used to establish

a measurement level for detection of certain events. A typical example is an

accelerometer device which allows a motion detection threshold to be set � when the

sensor detects motion exceeding the threshold value, an externally visible event is

generated.

The sensor_set_threshold() function can be used to set these thresholds for

devices which have such capabilities. The function takes the following form:

sensor_set_threshold (&device, type, value);

where device is the device descriptor of the device, type is the type of threshold

being set, and value is the new threshold value. The value parameter is expressed in

the same units normally used for reading scaled data from the sensor (for example,

milli-g for an accelerometer device).

As an example, to set a motion detection threshold for an accelerometer device to

500 milli-g (0.5g), use the following:

sensor_set_threshold (&accel_dev, SENSOR_THRESHOLD_MOTION, 500);

Threshold detection is usually used together with sensor events. See Chapter 8, page

22 for more information on generating and using sensor events.

6.4 Calibration

Typically, sensors require some level of per-device calibration in order to provide

accurate measurements. Often, the only required calibration is performed during the

manufacturing of the device (factory calibration), and the calibration values are stored

internally in the device. In other cases, it is necessary to calibrate the device in its

actual deployed state. For example, compass/magnetometer devices typically are

sensitive to the magnetic fields present in the final product (board, case, electrical

connections), and these must be offset in order to obtain accurate readings.

When a sensor requires explicit calibration in its deployed environment, the resulting

calibration values are often stored in nonvolatile memory within the microcontroller.

The sensor_calibrate() function allows your application to initiate and execute a

calibration sequence for a sensor. The calibration sequence is specific to the sensor

device. The sensor_calibrate() function takes a step number as an input

parameter to support devices that require multi-step calibration sequences (for

example, a series of measurements between which the user must physically

manipulate the device).

See the individual driver descriptions in Chapter 9, page 27 for more information on

calibration requirements and procedures.

Atmel AVR4016

 13

8367B-AVR-06/11

6.5 Self test

Sensor devices often provide a self-test feature to provide a physical and/or electrical

test of the sensor�s operation. These tests are generally very device specific, as is the

interpretation of the results.

The sensor_selftest() function provides a mechanism for invoking a sensor�s self-

test functions from your application. The function return value indicates the summary

Pass or Fail result from the device test, along with a specific code indicating the

failure type (if any).

The sensor_selftest() function also allows data values from the self test to be

passed back to the caller in a generic manner � the specific returned data are specific

to the device and its driver.

See the individual driver descriptions in Chapter 9, page 27 for more information on

available self tests.

14 Atmel AVR4016
8367B-AVR-06/11

7 Reading sensor data

7.1 Overview

7.1.1 Sensor read interfaces

The Atmel Sensors Xplained software provides a set of high-level functions to obtain

data from sensor devices and return the measurements in an easy-to-use form. Each

type of sensor has a corresponding read function to get data from the device.

Table 7-1 contains a summary of the sensor read functions for each sensor type.

Table 7-1. Sensor read function summary.

Sensor type Sensors Xplained function Sensor_data_t field(s) Measurement units

All sensor_device_id() device.id

device.version

Accelerometer (X, Y, Z) sensor_get_acceleration() axis.x

axis.y

axis.z

Milli-g

sensor_get_heading() heading.direction

heading.inclination

heading.strength

Direction: Degrees from
magnetic north (0° to 360°)
Inclination: Degrees from
horizontal (-90° to +90°)

Field strength: Microtesla

(µT)

(Note: One gauss (G) = 100µT)

Compass/Magnetometer

sensor_get_field() axis.x

axis.y

axis.z

Microtesla (µT)

Gyroscope (X, Y, Z) sensor_get_rotation() axis.x

axis.y

axis.z

Degrees of rotation per
second (°/s)

Pressure sensor_get_pressure() pressure.value Pascal (Pa)

Temperature sensor_get_temperature() temperature.value Degrees Celsius (°C)

NOTE The code sequence examples found later in this section reference sensor.h

explicitly. If you are using an automatically generated asf.h file that includes

sensor.h, you may simply include asf.h instead.

7.1.2 Sensor data structure � sensor_data_t

All API functions that return sensor data readings do so using the sensor_data_t

data structure. When the sensor read function returns, this structure will contain the

measurement values from the device, as well as a high-granularity timestamp.

The sensor_data_t structure uses a C union to define �aliases� of the data fields to

provide more meaningful names for use in your application. See Table 7-1 for the

recommended field name references for specific functions.

Atmel AVR4016

 15

8367B-AVR-06/11

The sensor_data_t structure also contains a special field which is set by your

application to specify whether the sensor read function should return scaled units or

raw readings. This field should be set before calling the sensor read function.

The final field in the sensor_data_t structure is a high-resolution timestamp value

that provides an elapsed time value, expressed in microseconds (µs). This field is

updated during each sensor reading using an internal Atmel AVR system clock.

7.1.3 Measurement units

The Atmel Sensors Xplained API functions provide sensor results in real-world

(usually scientific or SI) units. These values are automatically scaled based on the

current device settings. And so if the output range setting for a device is changed, for

example, the scaled output will remain the same (subject to limitations of the device�s

precision in each range).

Many sensor readings are provided directly by the device, but require scaling or other

conversion to SI units. Other results (for example, magnetic heading) are calculated

by the Sensors Xplained functions based on lower-level sensor readings.

See Table 7-1 for the measurement units used for each type of sensor reading.

7.1.4 Reading �raw� values

Although it is normally preferable to obtain scaled values for sensor data, it is also

possible to read the internal �raw� values from the sensor. Raw values may be useful

for system setup or calibration, or for special operations that are specific to the sensor

being used.

To read raw values from a sensor device, set the scaled field in the sensor_data_t

data structure to false before calling the sensor�s read function (for example,

sensor_get_acceleration() or sensor_get_pressure()).

When raw values are returned, they are not modified by the read function, and so the

actual values will vary, depending on the range setting for the device. However,

calibration offsets (such as those used for compass/magnetometer sensors) will be

applied to the returned values.

7.1.5 Timestamps

The timestamp field in the sensor_data_t structure is automatically filled with a

microsecond (µs) value from the AVR controller�s real-time clock when the sensor is

read. These timestamps can be used to determine the relative timing of multiple

sensor readings.

When the sensor read function returns, the timestamp can be read from the

sensor_data_t structure�s timestamp field.

7.2 Device ID and version

Most sensor devices provide an identifier value that can be read to determine the

sensor model. In many cases, the device version can also be read. The

sensor_device_id() function is a special routine that reads these values from the

sensor device and returns them in a sensor_data_t structure, similar to the way that

the actual sensor readings are returned. The function takes the following form:

sensor_device_id (&device, &id_data);

16 Atmel AVR4016
8367B-AVR-06/11

where device is the device descriptor of the sensor and id_data is a sensor_data_t

structure to receive the ID and version data.

When the sensor_device_id() function returns, the device ID value can be read

from the sensor_data_t structure's device.id field. The device version can be

read from the device.version field. If either value is not provided by the sensor

device, the corresponding field will be set to 0.

7.3 Acceleration

Accelerometer sensors measure linear acceleration force, typically along three axes

(X, Y, and Z). The sensor_get_acceleration() function reads the sensor and

returns the measured acceleration. The function takes the following form:

sensor_get_acceleration (&device, &accel_data);

where device is the device descriptor of the accelerometer and accel_data is a

sensor_data_t structure to receive the acceleration data.

Scaled acceleration measurements are expressed in milli-g. When the function

returns, the values can be read from the accel_data structure using the �axis� fields

(axis.x, axis.y, axis.z).

7.3.1 Example code sequence

7.3.1.1 Definitions and declarations

#include "sensor.h"

sensor_t accel_dev; // device descriptor

sensor_data_t accel_data; // acceleration data from device

7.3.1.2 Sensor initialization

sensor_attach (&accel_dev, SENSOR_TYPE_ACCELEROMETER, 0, 0);

7.3.1.3 Sensor read

accel_data.scaled = true; // read values in milli-g

sensor_get_acceleration (&accel_dev, &accel_data);

7.3.1.4 Use data in application

int32_t app_x_value = accel_data.axis.x;

int32_t app_y_value = accel_data.axis.y;

int32_t app_z_value = accel_data.axis.z;

uint32_t app_read_time = accel_data.timestamp;

7.4 Rotation

Gyroscope sensors measure rotation rates, typically along three axes (X, Y, and Z).

The sensor_get_rotation() function reads the sensor and returns the measured

rotation rate. The function takes the following form:

sensor_get_rotation (&device, &gyro_data);

where device is the device descriptor of the gyroscope and gyro_data is a

sensor_data_t structure to receive the rotation data.

Atmel AVR4016

 17

8367B-AVR-06/11

Scaled rotation rate measurements are expressed in degrees per second. When the

function returns, the values can be read from the gyro_data structure using the �axis�

fields (axis.x, axis.y, axis.z).

7.4.1 Example code sequence

7.4.1.1 Definitions and declarations

#include "sensor.h"

sensor_t gyro_dev; // device descriptor

sensor_data_t gyro_data; // rotation data from device

7.4.1.2 Sensor initialization

sensor_attach (&gyro_dev, SENSOR_TYPE_GYROSCOPE, 0, 0);

7.4.1.3 Sensor read

gyro_data.scaled = true; // read values in degrees per second

sensor_get_rotation (&gyro_dev, &gyro_data);

7.4.1.4 Use data in application

int32_t app_x_value = gyro_data.axis.x;

int32_t app_y_value = gyro_data.axis.y;

int32_t app_z_value = gyro_data.axis.z;

uint32_t app_read_time = gyro_data.timestamp;

7.5 Compass heading

The most common use of a magnetic compass sensor is to obtain a direction heading

relative to magnetic north for use in orientation and navigation applications. The

Atmel Sensors Xplained API provides the sensor_get_heading() function to read

the device and calculate such a heading value. The function takes the following form:

sensor_get_heading (&device, &compass_data);

where device is the device descriptor of the compass and compass_data is a

sensor_data_t structure to receive the heading data.

The function returns three data values within the sensor_data_t structure using the

"heading" fields:

The first value is the direction value, expressed in degrees (0 to 360, clockwise) from

magnetic north. The direction value is the angle between the positive Y-axis of the

device and the measured horizontal direction of the magnetic vector. The value can

be read from the compass_data.heading.direction field.

The second value is the inclination angle expressed in degrees (-90 to +90) relative to

horizontal. The inclination notation follows conventional usage in which positive

values indication a downward (into the earth) angle and negative values indicate an

upward angle. The inclination value can be read from the

compass_data.heading.inclination field.

The third value is the net magnetic field strength (intensity) expressed in microteslas

(µT). The value can be read from the compass_data.heading.strength field. This is

a single net field strength value � to obtain separate readings of the field strength for

18 Atmel AVR4016
8367B-AVR-06/11

each directional axis (X, Y, and Z), use the sensor_get_field() function, discussed

below.

NOTE Magnetic compass sensors generally require a calibration procedure to correct for the
local magnetic fields present in an actual device deployment. Without this calibration,
the heading information will not be accurate. See the compass_calibration example
application for an example of a manual calibration procedure.

7.5.1 Example code sequence

7.5.1.1 Definitions and declarations

#include "sensor.h"

sensor_t compass_dev; // device descriptor

sensor_data_t compass_data; // heading data from device

7.5.1.2 Sensor initialization

sensor_attach (&compass_dev, SENSOR_TYPE_COMPASS, 0, 0);

7.5.1.3 Sensor read

compass_data.scaled = true; // read values in degrees and uTesla

sensor_get_field (&compass_dev, &compass_data);

7.5.1.4 Use data in application

int32_t app_direction = compass_data.heading.direction;

// 0 to 360 deg

int32_t app_inclination = compass_data.heading.inclination;

// -90 to +90 deg

int32_t app_field_strength = compass_data.heading.strength;

// uTesla

uint32_t app_read_time = compass_data.timestamp

7.6 Magnetic field strength

In addition to reading a compass heading, a magnetic compass sensor can be used

to obtain multi-axis measurements of the local magnetic field strength (intensity). The

function takes the following form:

sensor_get_field (&device, &mag_data);

where device is the device descriptor of the compass and mag_data is a

sensor_data_t structure to receive the magnetic field strength data.

Scaled magnetic field strength measurements are expressed in microteslas (µT).

When the function returns, the values can be read from the mag_data structure using

the �axis� fields (axis.x, axis.y, axis.z).

NOTE Magnetic compass sensors generally require a calibration procedure to correct for the
local magnetic fields present in an actual device deployment. Without this calibration,
the field strength information will not accurately reflect the external environment of the
sensor. See the compass_calibration example application for an example of a manual
calibration procedure.

Atmel AVR4016

 19

8367B-AVR-06/11

7.6.1 Example code sequence

7.6.1.1 Definitions and declarations

#include "sensor.h"

sensor_t compass_dev; // device descriptor

sensor_data_t mag_data; // magnetic data from device

7.6.1.2 Sensor initialization

sensor_attach (&compass_dev, SENSOR_TYPE_COMPASS, 0, 0);

7.6.1.3 Sensor read

mag_data.scaled = true; // read values in uTesla

sensor_get_field (&compass_dev, &mag_data);

7.6.1.4 Use data in application

int32_t app_x_value = mag_data.axis.x;

int32_t app_y_value = mag_data.axis.y;

int32_t app_z_value = mag_data.axis.z;

uint32_t app_read_time = mag_data.timestamp

7.7 Atmospheric pressure

Atmospheric pressure is measured using a barometric pressure sensor. The

sensor_get_pressure() function reads the sensor and returns the measured

pressure. The function takes the following form:

sensor_get_pressure (&device, &press_data);

where device is the device descriptor of the pressure sensor and press_data is a

sensor_data_t structure to receive the pressure data.

Scaled pressure measurements are expressed in Pascal. When the function returns,

the value can be read from the pressure_data structure using the pressure.value

field.

7.7.1 Example code sequence

7.7.1.1 Definitions and declarations

#include "sensor.h"

sensor_t press_dev; // device descriptor

sensor_data_t press_data; // pressure data from device

7.7.1.2 Sensor initialization

sensor_attach (&press_dev, SENSOR_TYPE_BAROMETER, 0, 0);

7.7.1.3 Sensor read

pressure_data.scaled = true; // read values in pascals

sensor_get_pressure (&press_dev, &press_data);

20 Atmel AVR4016
8367B-AVR-06/11

7.7.1.4 Use data in application

int32_t app_pressure = press_data.pressure.value;

uint32_t app_read_time = press_data.timestamp;

7.8 Temperature

Unlike most other types of measurement, temperature readings may come from either

a dedicated temperature sensor or from a device that has a different primary sensor

function but can provide temperature data as a secondary output value.

Dedicated temperature sensors generally provide stable, high-accuracy readings. The

secondary temperature data from other types of sensor devices are typically used

internally for temperature compensation of the primary measurement, and these

temperature readings often have fairly loose accuracy specifications.

The sensor_get_temperature() function allows access to temperature data from

any sensors that support such measurements. No special device initialization is

required to enable temperature measurement as a secondary function. The function

takes the following form:

sensor_get_temperature (&device, &temp_data);

where device is the device descriptor of the sensor device to use for the temperature

measurement and temp_data is a sensor_data_t structure to receive the

temperature data.

Temperature data can be obtained from multiple sensor devices in a single

application, if desired. Simply specify a different device descriptor when calling

sensor_get_temperature().

Scaled temperature measurements are expressed in degrees Celsius. When the

function returns, the value can be read from the temp_data structure using the

temperature.value field.

7.8.1 Example code sequence

This example shows how a temperature reading is obtained from both a dedicated

temperature sensor and a gyroscope sensor. An equivalent sequence can be used to

read the temperature from a different type of sensor that supports temperature

measurement.

7.8.1.1 Definitions and declarations

#include "sensor.h"

sensor_t temp_dev; // device descriptor

sensor_data_t temp_data; // temperature data from device

7.8.1.2 Sensor initialization

To initialize a dedicated temperature sensor, use the following:

sensor_attach (&temp_dev, SENSOR_TYPE_TEMPERATURE, 0, 0);

Sensor initialization only needs to be done once per sensor device, even if it will be

used for both temperature and another (primary) sensing function.

NOTE The specified type is for the primary function of the sensor (not the secondary
temperature function).

Atmel AVR4016

 21

8367B-AVR-06/11

For example, a single call to the following initialization function for a gyroscope device

(which also supports temperature sensing) is all that is required to enable both

rotation and temperature measurement:

sensor_attach (&gyro_dev, SENSOR_TYPE_GYROSCOPE, 0, 0);

The same descriptor (gyro_dev) would then be used during subsequent calls to

either sensor_get_rotation() or sensor_get_temperature().

7.8.1.3 Sensor read

temp_data.scaled = true; // read values in degrees Celsius

sensor_get_temperature (&temp_dev, &temp_data); // temp sensor data

sensor_get_temperature (&gyro_dev, &temp_data); // gyro temp data

7.8.1.4 Use data in application

int32_t app_temperature = temp_data.temperature.value;

uint32_t app_read_time = temp_data.timestamp;

22 Atmel AVR4016
8367B-AVR-06/11

8 Handling sensor events

In addition to reporting measurements on demand, most sensor devices provide

some mechanism to continuously monitor their physical surroundings and generate

an externally visible event when certain criteria are met or internal conditions occur.

The Atmel Sensors Xplained software provides support for handling these

asynchronous events in a consistent manner across different sensor devices.

A sensor device announces an event by changing the level of a specific output pin.

Each sensor device output pin is connected to an input pin on the Atmel AVR

microcontroller. These connections are part of the hardware configuration information

that the Sensors Xplained configuration automatically establishes for the specific

sensor board and processor board combination. The AVR microcontroller input pin is

then used to generate an interrupt when the level changes. The event support in the

Sensors Xplained software allows your application to set up and enable an

appropriate handler generically, without requiring specific references to the actual pin

or interrupt source that is being used.

Once it has been set up and enabled, the event handler routine in your application will

be called whenever the specified sensor event occurs. Your handler routine can then

perform any appropriate action, such as changing the overall state of the application,

processing new sensor data, providing an indication to the user, etc.

8.1 Adding an event handler

A sensor event handler is added by using the sensor_add_event() function. This

function takes a single input parameter, the address of a sensor_event_desc_t

event descriptor structure.

The sensor_event_desc_t structure contains various fields that specify the event

handling behavior, including:

• the sensor_t descriptor of the sensor which will generate the event

• the type(s) of event to detect � to use a common handler for multiple events,

specify the logical OR of multiple event types

• the address of the handler routine

• an argument to the handler routine (typically, the address of the sensor_data_t

structure)

• whether sensor data from the event should be in scaled units or raw values

• whether the event is initially enabled or disabled

8.2 The event handler routine

The event handler routine is created as part of your application. This handler will be

called when the corresponding sensor event occurs, after the sensor device driver

has performed any necessary internal event servicing.

An event handler takes the following form:

void handler_name (volatile void * in);

The handler routine takes a single input parameter, a void *. This parameter is

actually the address of the sensor_event_desc_t structure that was used when

adding the event to the system. Within the sensor_event_desc_t structure, the data

Atmel AVR4016

 23

8367B-AVR-06/11

field contains a sensor_data_t structure, which holds the actual sensor data

obtained during the event.

An event handler can be defined to be called only when a single, specific event

occurs, or a common handler can be defined which is called when any one of a set of

events occurs. To determine the actual event which initiated the call to the handler,

examine the event field within the sensor_event_desc_t structure, which will contain

a sensor_event_t type code indicating the event.

NOTE Your event handler routine will be called as part of the interrupt processing,
asynchronously from the normal execution of your application. Because the handler
executes at interrupt level, other interrupts will be masked (prevented from being
serviced) while your handler is running. Therefore, you should structure your handler
and application to require a minimum of processing in the handler itself, and perform
subsequent work in your regular application code. This can be done by having the
handler set flags or state variables, which are checked during the regular cyclic
execution of your main program, to initiate additional actions to be taken.

8.3 Enabling and disabling events

After an event has been added, it can be dynamically enabled by calling the

sensor_enable_event() function, or it can be disabled by calling the

sensor_disable_event() function. The event handler routine remains defined even

if the event is disabled, but the sensor device settings are changed so that the event

interrupt will not be generated.

8.4 Events with no handler routine

Normally, you will define a handler routine to be called when a specified sensor event

occurs so that it may process the sensor data or take other special action. However, it

is possible to add and enable a sensor event without providing your own handler

routine. This might be done when the simple act of the sensor generating an event

interrupt provides the required effect. For example, if the microcontroller is placed into

a low-power sleep mode, a motion detection interrupt from an accelerometer might be

used to wake up the system, with no further processing required.

To set up event handling without providing your own handler, call the

sensor_add_event() function as usual, but set the handler field to 0 (NULL).

8.5 Event types

There are many types of sensor events that might be generated, depending on the

specific sensor device. See the device driver descriptions in Chapter 9, page 27 for

more information on the events that can be generated by each individual sensor.

Possible event types include:

• SENSOR_EVENT_NEW_DATA � new sensor data are available

• SENSOR_EVENT_MOTION � device motion has been detected, often used with

a programmable threshold for motion detection

• SENSOR_EVENT_LOW_G � low gravity (that is, free fall) detected

• SENSOR_EVENT_HIGH_G � high gravity (acceleration) detected

• SENSOR_EVENT_TAP � physical tap(s) on device detected

• SENSOR_EVENT_TILT � device tilt detected

24 Atmel AVR4016
8367B-AVR-06/11

8.6 Example code sequences

8.6.1 Motion detection event

The following example shows how to set up and use a motion detection event

generated from an accelerometer sensor. The overall sequence will be similar for

other sensor or event types.

8.6.1.1 Definitions and declarations

#include "sensor.h"

sensor_t accel_dev; // device descriptor

sensor_event_desc_t accel_event; // event descriptor

sensor_data_t accel_data; // data from event handler

8.6.1.2 Sensor and event initialization

sensor_attach (&accel_dev, SENSOR_TYPE_ACCELEROMETER, 0, 0);

accel_event = {

 .sensor = &accel_dev, // use accelerometer

 .event = SENSOR_EVENT_MOTION, // motion detect event

 .data.scaled = true, // return scaled data

 .handler = accel_handler, // address of handler

 .arg = &accel_data, // where to put data

 .enabled = true // enable event

};

sensor_add_event (&accel_event); // add event

8.6.1.3 Sensor event handler routine

void accel_handler (volatile void * in)

{

 // Set pointer to input descriptor address

sensor_event_desc_t * const event = (sensor_event_desc_t *) in;

 // Copy data � note 'arg' = address of 'accel_data' structure

*((sensor_data_t *)(event->arg)) = event->data;

 /* do other stuff (set a flag for application, etc.) */

}

8.6.2 Tap detection event

The following example shows how to set up and use a tap detection event generated

from an accelerometer sensor. The initialization is somewhat different from other

events because the tap detection involves a number of configurable timing and

intensity threshold parameters. The sensor_set_tap() function is used to set the

various parameters that affect tap detection.

Atmel AVR4016

 25

8367B-AVR-06/11

Not all accelerometer devices can generate tap detection events. See the individual

device driver descriptions in Chapter 9, page 27 to determine if

SENSOR_EVENT_TAP is one of the supported event types.

8.6.2.1 Definitions and declarations

#include "sensor.h"

sensor_t accel_dev; // device descriptor

sensor_event_desc_t tap_event; // event descriptor

sensor_data_t tap_data; // data from event handler

sensor_tap_params_t tap_params; // tap detecion parameters

8.6.2.2 Sensor and event initialization

sensor_attach (&accel_dev, SENSOR_TYPE_ACCELEROMETER, 0, 0);

tap_params = {

 .count = 2, // detect up to 2 taps

 .axes = (SENSOR_TAP_AXIS_X | SENSOR_TAP_AXIS_Y |

SENSOR_TAP_AXIS_Z), // detect taps on all 3 axes

 .threshold_min = 0, // use default min intensity

 .threshold_max = 0, // use default max intensity

 .total_time = 400, // tap detect duration 400msec

 .tap_time_min = 5, // each tap must be >= 5msec

 .tap_time_max = 50, // each tap must be <= 50msec

 .between_time = 300, // gap between taps <= 300msec

 .ignore_time = 100 // gap between taps >= 100msec

};

sensor_set_tap (&accel_dev, &tap_params); // set tap parameters

tap_event = {

 .sensor = &accel_dev, // use accelerometer

 .event = SENSOR_EVENT_TAP, // tap detect event

 .data.scaled = true, // return scaled data

 .handler = tap_handler, // address of handler

 .arg = &tap_data, // where to put data

 .enabled = true // enable event

};

sensor_add_event (&accel_event); // add event

26 Atmel AVR4016
8367B-AVR-06/11

8.6.2.3 Sensor event handler routine

void tap_handler (volatile void * in)

{

 // Set pointer to input descriptor address

sensor_event_desc_t * const event = (sensor_event_desc_t *) in;

 // Copy data � note 'arg' = address of 'tap_data' structure

*((sensor_data_t *)(event->arg)) = event->data;

 // Check number of taps detected

if (event->data.tap.count == 1) { // single tap

 /* do actions for single tap detect */

 } else if (event->data.tap.count == 2) // double tap

 /* do actions for double tap detect */

 }

 // Check axis on which tap was detected

switch (event->data.tap.axis) {

 case SENSOR_TAP_AXIS_X:

 /* do actions for X axis tap detect */

 break;

 case SENSOR_TAP_AXIS_Y:

 /* do actions for Y axis tap detect */

 break;

 case SENSOR_TAP_AXIS_Z:

 /* do actions for Y axis tap detect */

 break;

 }

 // Check direction of tap (on above axis)

switch (event->data.tap.direction) {

 case SENSOR_TAP_DIRECTION_POS:

 /* do actions for positive direction tap detect */

 break;

 case SENSOR_TAP_DIRECTION_NEG:

 /* do actions for negative direction tap detect */

 break;

 }

}

Atmel AVR4016

 27

8367B-AVR-06/11

9 Sensor device drivers

The Atmel Sensors Xplained software is designed to provide a high-level set of

interfaces that remain consistent across different sensor devices. However, different

hardware devices ultimately do provide different features and settings, and so some

control interfaces are dependent on the specific device driver.

This chapter summarizes the driver-dependent capabilities for each supported device.

9.1 AKM AK8975 compass/magnetometer

9.1.1 Range

The AK8957 device does not provide different measurement ranges, and so no

modification is possible.

9.1.2 Sampling frequency/bandwidth

The AK8957 device does not provide different sampling frequencies, and so no

modification is possible.

9.1.3 Calibration

Like most compass/magnetometers, the AK8975 requires calibration to provide

accurate measurements. The Sensors Xplained software includes a basic, manual

calibration method that can be used to correct for constant magnetic offsets in your

system (due to nearby metallic components, etc.). This calibration method requires

the device to be repositioned between multiple steps of the calibration process.

See the compass_calibration application for an example of using a three-step manual

calibration sequence. This application requires the user to alternately move the board

to a specific position (laying flat, turned 180°, or inverted) and press a button on the

processor board. After three such measurements, the three axes of the compass can

be corrected.

9.1.4 Self test

The AK8975 device provides a basic self test, which applies a known bias to the

sensor device and confirms that the resulting sensor readings are within an expected

range. Use the sensor_selftest() function with the SENSOR_TEST_DEFAULT

type code. If the sensor is operating correctly, the function will return true. If the test

fails, the function will return false.

9.1.5 Events

The AK8975 device can generate the following event:

• SENSOR_EVENT_NEW_DATA

28 Atmel AVR4016
8367B-AVR-06/11

9.2 Bosch BMA150 accelerometer

9.2.1 Range

The BMA150 device provides the following range settings, expressed in milli-g:

• 2000 (±2g)

• 4000 (±4g)

• 8000 (±8g)

The default setting is 4000 milli-g (±4g).

9.2.2 Sampling frequency/bandwidth

The BMA150 device provides the following sampling frequency settings, expressed in

hertz (Hz):

• 25

• 50

• 100

• 190

• 375

• 750

• 1500

The default setting is 1500Hz.

9.2.3 Calibration

The BMA150 device does not require calibration.

9.2.4 Self test

The BMA150 device provides a basic self test, which applies a known bias to the

sensor device and confirms that the resulting sensor readings are within an expected

range. Use the sensor_selftest() function with the SENSOR_TEST_DEFAULT

type code. If the sensor is operating correctly, the function will return true. If the test

fails, the function will return false.

9.2.5 Events

The BMA150 device can generate the following events:

• SENSOR_EVENT_MOTION

• SENSOR_EVENT_HIGH_G

• SENSOR_EVENT_LOW_G

• SENSOR_EVENT_NEW_DATA

9.3 Bosch BMP085 pressure sensor

9.3.1 Range

The BMP085 device does not provide different measurement ranges, and so no

modification is possible.

Atmel AVR4016

 29

8367B-AVR-06/11

9.3.2 Sampling frequency/bandwidth

The BMP085 device does not provide different sampling frequencies, and so no

modification is possible.

9.3.3 Calibration

The BMP085 device does not require calibration.

9.3.4 Self test

The BMP085 device does not provide a self-test function.

9.3.5 Events

The BMP085 device can generate the following event:

• SENSOR_EVENT_NEW_DATA

9.4 Honeywell HMC5883L compass/magnetometer

9.4.1 Range

The HMC5883L device provides the following range settings, expressed in

microteslas (µT):

• 90 (±0.9 gauss)

• 130 (±1.3 gauss)

• 190 (±1.9 gauss)

• 250 (±2.5 gauss)

• 400 (±4.0 gauss)

• 470 (±4.7 gauss)

• 560 (±5.6 gauss)

• 810 (±8.1 gauss)

The default setting is 130µT (±1.3 gauss).

9.4.2 Sampling frequency/bandwidth

The HMC5883L device provides the following sampling frequency settings, expressed

in hertz (Hz):

• 1 (0.75 actual)

• 2 (1.5 actual)

• 3

• 8 (7.5 actual)

• 15

• 30

• 75

The default setting is 15Hz.

9.4.3 Calibration

Like most compass/magnetometers, the HMC5883L requires calibration to provide

accurate measurements. The Atmel Sensors Xplained software includes a basic,

30 Atmel AVR4016
8367B-AVR-06/11

manual calibration method that can be used to correct for constant magnetic offsets in

your system (due to nearby metallic components, etc.). This calibration method

requires the device to be repositioned between multiple steps of the calibration

process.

See the compass_calibration application for an example of using a three-step manual

calibration sequence. This application requires the user to alternately move the board

to a specific position (laying flat, turned 180°, or inverted) and press a button on the

processor board. After three such measurements, the three axes of the compass can

be corrected.

9.4.4 Self test

The HMC5883L device provides a basic self test, which applies a known bias to the

sensor device and confirms that the resulting sensor readings are within an expected

range. Use the sensor_selftest() function with the SENSOR_TEST_DEFAULT

type code. If the sensor is operating correctly, the function will return true. If the test

fails, the function will return false.

9.4.5 Events

The HMC5883L device can generate the following event:

• SENSOR_EVENT_NEW_DATA

9.5 Invensense IMU-3000 gyroscope/motion processor

9.5.1 Range

The IMU-3000 device provides the following range settings, expressed in ± degrees

per second (°/s):

• 250

• 500

• 1000

• 2000

The default setting is ±2000°/s.

9.5.2 Sampling frequency/bandwidth

The IMU-3000 device provides the following sampling frequency settings, expressed

in hert (Hz):

• 5

• 10

• 20

• 42

• 98

• 188

• 256

• 2100

The default setting is 256Hz.

Atmel AVR4016

 31

8367B-AVR-06/11

9.5.3 Calibration

The IMU-3000 device does not require calibration.

9.5.4 Self test

The IMU-3000 device does not provide a self-test function.

9.5.5 Events

The IMU3000 device can generate the following event:

• SENSOR_EVENT_NEW_DATA

9.6 Invensense ITG-3200 gyroscope

9.6.1 Range

The ITG-3200 device provides only one operating range: ±2000°/s.

9.6.2 Sampling frequency/bandwidth

The ITG-3200 device provides the following sampling frequency settings, expressed

in hertz (Hz):

• 5

• 10

• 20

• 42

• 98

• 188

• 256

• 2100

The default setting is 256Hz.

9.6.3 Calibration

The ITG-3200 device does not require calibration.

9.6.4 Self test

The ITG-3200 device does not provide a self-test function.

9.6.5 Events

The ITG3200 device can generate the following event:

• SENSOR_EVENT_NEW_DATA

32 Atmel AVR4016
8367B-AVR-06/11

9.7 Kionix KXTF9 accelerometer

NOTE The Kionix KXTF9 driver also supports the Kionix model KXTI9 accelerometer.

9.7.1 Range

The KXTF9 device provides the following range settings, expressed in milli-g:

• 2000 (±2g)

• 4000 (±4g)

• 8000 (±8g)

The default setting is 4000 milli-g (±4g).

9.7.2 Sampling frequency/bandwidth

The KXTF9 device provides the following sampling frequency settings, expressed in

hertz (Hz):

• 13 (12.5Hz actual)

• 25

• 50

• 100

• 200

• 400

• 800

The default setting is 200Hz.

9.7.3 Calibration

The KXTF9 device does not require calibration.

9.7.4 Self test

The KXTF9 device does not provide a self-test function.

9.7.5 Events

The KXTF9 device can generate the following events:

• SENSOR_EVENT_MOTION

• SENSOR_EVENT_NEW_DATA

• SENSOR_EVENT_TAP

• SENSOR_EVENT_TILT

Atmel AVR4016

 33

8367B-AVR-06/11

10 Document revision history

10.1 Revision A, 01/11

Initial version for preliminary/beta release.

10.2 Revision B, 06/11

Updated for software version 1.1 (for release with Atmel AVR Studio 5 and ASF 2.5).

34 Atmel AVR4016
8367B-AVR-06/11

11 Table of contents

Features... 1

1 Introduction .. 1

2 Overview... 2

2.1 Common sensors service.. 2
2.1.1 Sensors Xplained API modules ... 2
2.1.2 The sensor.h header file.. 2
2.1.3 The Sensors Xplained module_config directory .. 3
2.1.4 Sensors Xplained drivers directory.. 3
2.1.5 Sensors Xplained driver libraries... 3

2.2 Sensors Xplained target boards.. 4

3 Requirements ... 6

4 Creating an application ... 7

4.1 Example Sensors Xplained applications ... 7
4.1.1 Building an example application .. 7
4.1.2 Changing the default sensor board ... 8

4.2 Adding sensors to an existing application ... 8

4.3 Attaching a sensor board .. 9

5 Initialization .. 10

5.1 Configuration ... 10

5.2 Initializing sensors ... 10

6 Control interfaces .. 11

6.1 Sensor range... 11

6.2 Sampling bandwidth .. 11

6.3 Thresholds... 12

6.4 Calibration ... 12

6.5 Self test.. 13

7 Reading sensor data.. 14

7.1 Overview.. 14
7.1.1 Sensor read interfaces .. 14
7.1.2 Sensor data structure � sensor_data_t.. 14
7.1.3 Measurement units .. 15
7.1.4 Reading �raw� values... 15
7.1.5 Timestamps... 15

7.2 Device ID and version ... 15

7.3 Acceleration... 16
7.3.1 Example code sequence ... 16

7.4 Rotation ... 16
7.4.1 Example code sequence ... 17

7.5 Compass heading ... 17

Atmel AVR4016

 35

8367B-AVR-06/11

7.5.1 Example code sequence ... 18

7.6 Magnetic field strength .. 18
7.6.1 Example code sequence ... 19

7.7 Atmospheric pressure ... 19
7.7.1 Example code sequence ... 19

7.8 Temperature .. 20
7.8.1 Example code sequence ... 20

8 Handling sensor events... 22

8.1 Adding an event handler ... 22

8.2 The event handler routine ... 22

8.3 Enabling and disabling events... 23

8.4 Events with no handler routine.. 23

8.5 Event types.. 23

8.6 Example code sequences ... 24
8.6.1 Motion detection event .. 24
8.6.2 Tap detection event ... 24

9 Sensor device drivers.. 27

9.1 AKM AK8975 compass/magnetometer ... 27
9.1.1 Range.. 27
9.1.2 Sampling frequency/bandwidth ... 27
9.1.3 Calibration ... 27
9.1.4 Self test ... 27
9.1.5 Events ... 27

9.2 Bosch BMA150 accelerometer.. 28
9.2.1 Range.. 28
9.2.2 Sampling frequency/bandwidth ... 28
9.2.3 Calibration ... 28
9.2.4 Self test ... 28
9.2.5 Events ... 28

9.3 Bosch BMP085 pressure sensor... 28
9.3.1 Range.. 28
9.3.2 Sampling frequency/bandwidth ... 29
9.3.3 Calibration ... 29
9.3.4 Self test ... 29
9.3.5 Events ... 29

9.4 Honeywell HMC5883L compass/magnetometer... 29
9.4.1 Range.. 29
9.4.2 Sampling frequency/bandwidth ... 29
9.4.3 Calibration ... 29
9.4.4 Self test ... 30
9.4.5 Events ... 30

9.5 Invensense IMU-3000 gyroscope/motion processor... 30
9.5.1 Range.. 30
9.5.2 Sampling frequency/bandwidth ... 30
9.5.3 Calibration ... 31

36 Atmel AVR4016
8367B-AVR-06/11

9.5.4 Self test ... 31
9.5.5 Events ... 31

9.6 Invensense ITG-3200 gyroscope .. 31
9.6.1 Range.. 31
9.6.2 Sampling frequency/bandwidth ... 31
9.6.3 Calibration ... 31
9.6.4 Self test ... 31
9.6.5 Events ... 31

9.7 Kionix KXTF9 accelerometer... 32
9.7.1 Range.. 32
9.7.2 Sampling frequency/bandwidth ... 32
9.7.3 Calibration ... 32
9.7.4 Self test ... 32
9.7.5 Events ... 32

10 Document revision history.. 33

10.1 Revision A, 01/11 .. 33

10.2 Revision B, 06/11 .. 33

11 Table of contents ... 34

8367B-AVR-06/11

 Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: (+1)(408) 441-0311
Fax: (+1)(408) 487-2600
www.atmel.com

 Atmel Asia Limited
Unit 01-5 & 16, 19F
BEA Tower, Milennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
HONG KONG
Tel: (+852) 2245-6100
Fax: (+852) 2722-1369

 Atmel Munich GmbH
Business Campus
Parkring 4
D-85748 Garching b. Munich
GERMANY
Tel: (+49) 89-31970-0
Fax: (+49) 89-3194621

 Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chou-ku, Tokyo 104-0033
JAPAN
Tel: (+81) 3523-3551
Fax: (+81) 3523-7581

 © 2011 Atmel Corporation. All rights reserved.

Atmel
®
, Atmel logo and combinations thereof, AVR

®
, AVR

®
 logo, AVR Studio

®
, XMEGA

®
, and others are registered trademarks or

trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to
any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL
TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS
ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE
LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION,
DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO
USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or
warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and
product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically
provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or
warranted for use as components in applications intended to support or sustain life.

http://www2.atmel.com/�

	1 Introduction
	2 Overview
	2.1 Common sensors service
	2.2 Sensors Xplained target boards

	3 Requirements
	4 Creating an application
	4.1 Example Sensors Xplained applications
	4.2 Adding sensors to an existing application
	4.3 Attaching a sensor board

	5 Initialization
	5.1 Configuration
	5.2 Initializing sensors

	6 Control interfaces
	6.1 Sensor range
	6.2 Sampling bandwidth
	6.3 Thresholds
	6.4 Calibration
	6.5 Self test

	7 Reading sensor data
	7.1 Overview
	7.2 Device ID and version
	7.3 Acceleration
	7.4 Rotation
	7.5 Compass heading
	7.6 Magnetic field strength
	7.7 Atmospheric pressure
	7.8 Temperature

	8 Handling sensor events
	8.1 Adding an event handler
	8.2 The event handler routine
	8.3 Enabling and disabling events
	8.4 Events with no handler routine
	8.5 Event types
	8.6 Example code sequences

	9 Sensor device drivers
	9.1 AKM AK8975 compass/magnetometer
	9.2 Bosch BMA150 accelerometer
	9.3 Bosch BMP085 pressure sensor
	9.4 Honeywell HMC5883L compass/magnetometer
	9.5 Invensense IMU-3000 gyroscope/motion processor
	9.6 Invensense ITG-3200 gyroscope
	9.7 Kionix KXTF9 accelerometer

	10 Document revision history
	10.1 Revision A, 01/11
	10.2 Revision B, 06/11

	11 Table of contents

