

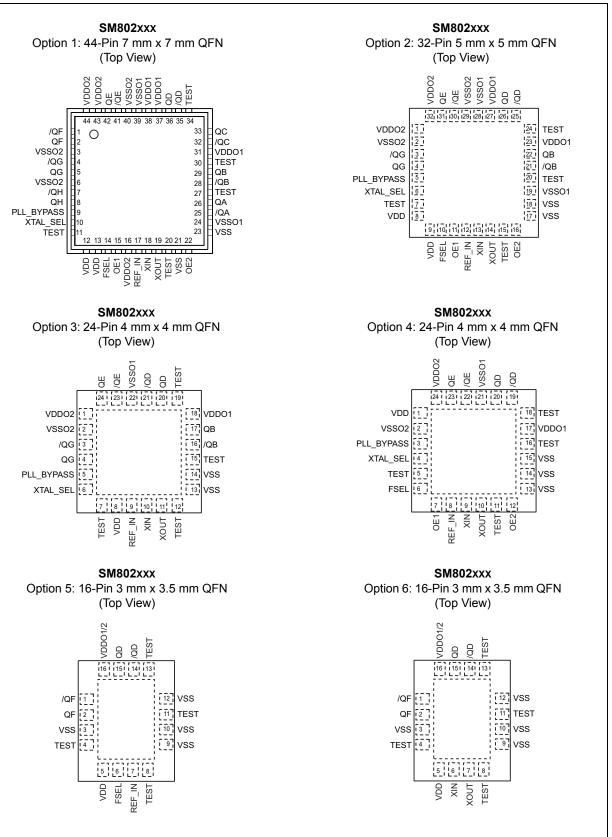
Flexible Ultra-Low Jitter Clock Synthesizer

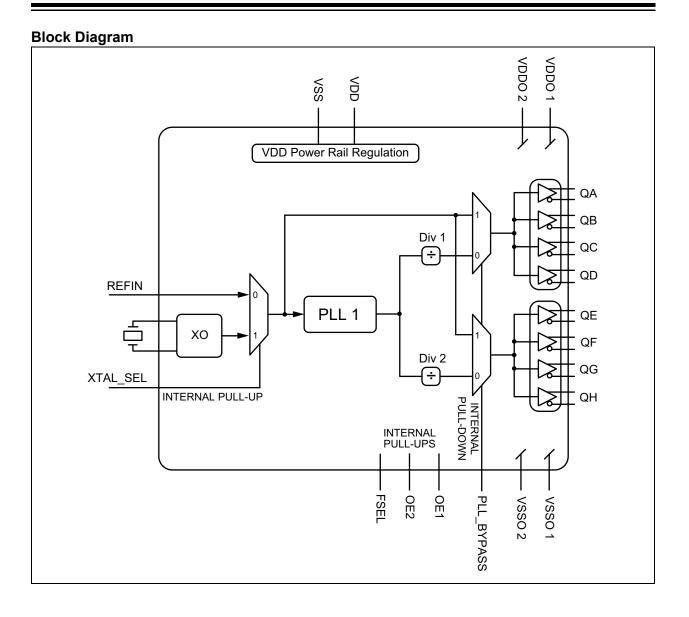
Features

- 115 fs at 156.25 MHz (1.875 MHz to 20 MHz)
- 265 fs at 156.25 MHz (12 kHz to 20 MHz)
- On-Chip Power Supply Regulation for Excellent Board-Level Power Supply Noise Immunity
- Generates up to 8 Combinations of Differential or 16 Single-Ended Clock Outputs
 - LVPECL, LVDS, HCSL, LVCMOS (SE or Diff)
- Selectable Input:
 - Crystal: 11.4 MHz to 27 MHz
 - Reference Input: 11.4 MHz to 80 MHz
- No External Crystal Oscillator Capacitors Required
- 2.5V or 3.3V Operating Power Supply
- · Available in Industrial Temperature Range
- Available in Green, RoHS, and PFOS Compliant QFN Packages:
 - 44-pin, 7 mm × 7 mm
 - 32-pin, 5 mm × 5 mm
 - 24-pin, 4 mm × 4 mm
 - 16-pin, 3 mm × 3.5 mm

Applications

- 1/10/40/100 Gigabit Ethernet (GbE)
- · SONET/SDH
- PCI Express
- CPRI/OBSAI Wireless Base Station
- · Fibre Channel
- SAS/SATA
- DIMM


General Description


The SM802xxx series is a member of the ClockWorks[®] family of devices from Microchip and provide an extremely low-noise timing solution for applications such as (1-100) Gigabit Ethernet, SONET, wireless base station, satellite communication, Fibre Channel, SAS/SATA, and PCIe. It is based upon a unique PLL architecture that provides less than 250 fs phase jitter.

The devices operate from a 2.5V or 3.3V power supply and synthesize up to 8 different combinations (LVPECL, LVDS, HCSL) of differential or 16 single-ended output clocks. The devices accept an external reference clock or crystal input.

The SM802xxx series is fully programmable and a web tool is available to configure a part for samples at the ClockWorks Configurator tool.

Package Types

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Supply Voltage (V _{DD} , V _{DDO1/2})	+4.6V
Input Voltage (V _{IN})	$-0.5V$ to $V_{} + 0.5V$

Operating Ratings ††

Supply Voltage (V _{DD}	, V _{DDO1/2})	+2.375V to +3.465V
---------------------------------	-------------------------	--------------------

† Notice: Exceeding the absolute maximum ratings may damage the device.

++ Notice: The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.

DC ELECTRICAL CHARACTERISTICS (Note 1)

Electrical Characteristics: $V_{DD} = V_{DDO1/2} = 3.3V \pm 5\%$ or 2.5V $\pm 5\%$; $V_{DD} = 3.3V \pm 5\%$, $V_{DDO1/2} = 3.3V \pm 5\%$ or 2.5V $\pm 5\%$; $T_A = -40^{\circ}$ C to $+85^{\circ}$ C.

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions
	eyev			maxi	•	
3.3V Operating Voltage	V _{DD,}	3.135	3.3	3.465		
2.5V Operating Voltage	V _{DDO1/2}	2.375	2.5	2.625	V	$V_{DDO1} = V_{DDO2}$
Total Supply Current, V _{DD} + V _{DDO}		_	275	345		8 LVPECL, 312.5 MHz (44-pin QFN) Outputs open
	I _{DD}	_	150	185	mA	4 HCSL (PCIe), 100 MHz (32-pin or 24-pin QFN) Outputs 50Ω to V _{SS}
		_	70	90		2 LVCMOS, 125 MHz (16-pin QFN) Outputs open

Note 1: The circuit is designed to meet the AC and DC specifications shown in the Electrical Characteristics tables after thermal equilibrium has been established.

LVCMOS INPUTS (OE1, OE2, PLL_BYPASS, XTAL_SEL, FSEL) DC ELECTRICAL CHARACTERISTICS (Note 1)

Electrical Characteristics: V_{DD} = 3.3V ±5% or 2.5V ±5%; T_A = -40°C to +85°C.										
Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions				
Input High Voltage	V _{IH}	2	—	V _{DD} + 0.3	V	_				
Input Low Voltage	V _{IL}	-0.3	_	0.8	V	—				
Input High Current	IIH	_	_	150	μA	V _{DD} = V _{IN} = 3.465V				
Input Low Current	I _{IL}	-150	—		μA	V _{DD} = 3.465V, V _{IN} = 0V				

Note 1: The circuit is designed to meet the AC and DC specifications shown in the Electrical Characteristics tables after thermal equilibrium has been established.

LVDS OUTPUT DC ELECTRICAL CHARACTERISTICS (Note 1)

Electrical Characteristics: $V_{DD} = V_{DDO1/2} = 3.3V \pm 5\%$ or 2.5V $\pm 5\%$; $V_{DD} = 3.3V \pm 5\%$, $V_{DDO1/2} = 3.3V \pm 5\%$ or 2.5V $\pm 5\%$; $T_A = -40^{\circ}$ C to $+85^{\circ}$ C. $R_L = 100\Omega$ across Q1 and /Q1.

• N	L					
Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions
Differential Output Voltage	V _{OD}	275	350	475	mV	Figure 5-8
V _{OD} Magnitude Change	ΔV_{OD}			40	mV	—
Offset Voltage	V _{OS}	1.15	1.25	1.50	V	
V _{OS} Magnitude Change	ΔV_{OS}			50	mV	

Note 1: The circuit is designed to meet the AC and DC specifications shown in the Electrical Characteristics tables after thermal equilibrium has been established.

HCSL OUTPUT DC ELECTRICAL CHARACTERISTICS (Note 1)

Electrical Characteristics: $V_{DD} = V_{DDO1/2} = 3.3V \pm 5\%$ or 2.5V $\pm 5\%$; $V_{DD} = 3.3V \pm 5\%$, $V_{DDO1/2} = 3.3V \pm 5\%$ or 2.5V $\pm 5\%$; $T_A = -40^{\circ}$ C to $+85^{\circ}$ C. $R_I = 50\Omega$ to V_{SS} .

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions
Output High Voltage	V _{OH}	660	700	850	mV	—
Output Low Voltage	V _{OL}	-150	0	27	mV	_
Output Voltage Swing	V _{SWING}	250	350	550	mV	_

Note 1: The circuit is designed to meet the AC and DC specifications shown in the Electrical Characteristics tables after thermal equilibrium has been established.

LVPECL OUTPUT DC ELECTRICAL CHARACTERISTICS (Note 1)

Electrical Characteristics: $V_{DD} = V_{DDO1/2} = 3.3V \pm 5\%$ or 2.5V $\pm 5\%$; $V_{DD} = 3.3V \pm 5\%$, $V_{DDO1/2} = 3.3V \pm 5\%$ or 2.5V $\pm 5\%$; $T_A = -40^{\circ}$ C to $+85^{\circ}$ C. $R_L = 50\Omega$ to $V_{DDO} - 2V$.

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions
Output High Voltage	V _{OH}	V _{DDO} - 1.145	V _{DDO} - 0.97	V _{DDO} - 0.845	V	_
Output Low Voltage	V _{OL}	V _{DDO} - 1.945	V _{DDO} - 1.77	V _{DDO} - 1.645	V	_
Output Voltage Swing	V _{SWING}	0.6	0.8	1.0	V	

Note 1: The circuit is designed to meet the AC and DC specifications shown in the Electrical Characteristics tables after thermal equilibrium has been established.

LVCMOS OUTPUT DC ELECTRICAL CHARACTERISTICS (Note 1)

Electrical Characteristics: $V_{DD} = V_{DDO1/2} = 3.3V \pm 5\%$ or 2.5V $\pm 5\%$; $V_{DD} = 3.3V \pm 5\%$, $V_{DDO1/2} = 3.3V \pm 5\%$ or 2.5V $\pm 5\%$; $T_A = -40^{\circ}$ C to $+85^{\circ}$ C. $R_L = 50\Omega$ to $V_{DDO}/2$.

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions
Output High Voltage	V _{OH}	V _{DDO} - 0.7		_	V	Figure 5-9
Output Low Voltage	V _{OL}	_		0.6	V	Figure 5-9

Note 1: The circuit is designed to meet the AC and DC specifications shown in the Electrical Characteristics tables after thermal equilibrium has been established.

REF_IN DC ELECTRICAL CHARACTERISTICS (Note 1)

Electrical Characteristics: V_{DD} = 3.3V ±5% or 2.5V ±5%; T_A = -40°C to +85°C.											
Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions					
Input High Voltage	V _{IH}	1.1	—	V _{DD} + 0.3	V	_					
Input Low Voltage	V _{IL}	-0.3	_	0.6	V	—					
Input Current	I _{IN}	-5		5	μA	$XTAL_SEL = V_{IL}, V_{IN} = 0V \text{ to } V_{DD}$					
— 20 — μA XTAL_SEL = V _{IH} , V _{IN} = V _{DD}											
Note 1: The circuit is designed to meet the AC and DC specifications shown in the Electrical Characteristics tables after thermal equilibrium has been established.											

CRYSTAL CHARACTERISTICS

Electrical Characteristics: V_{DD} = 3.3V ±5% or 2.5V ±5%; T_A = -40°C to +85°C.										
Parameter	Min.	Тур.	Max.	Units	Conditions					
Mode of Oscillation		imental, p resonant		—	10 pF load capacitance					
Frequency	11.4		27	MHz	—					
Equivalent Series Resistance (ESR)	—		30	Ω	—					
Shunt Capacitance, C0	<u> </u>			pF	—					
Correlation Drive Level		10	100	μW	—					

LVPECL AC ELECTRICAL CHARACTERISTICS (Note 1, Note 2, Note 3, Note 4)

Electrical Characteristics: $V_{DDA} = V_{DD} = 3.3V \pm 5\%$ or 2.5V $\pm 5\%$, $V_{DDO} = 2.5V$ or 3.3V $\pm 5\%$, $T_A = -40^{\circ}C$ to $+85^{\circ}C$, unless otherwise noted.

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions
Output Frequency	F _{OUT}	11	—	840	MHz	—
LVPECL Output Rise/Fall Time	t _r /t _f	80	175	350	ps	20% - 80%
Output Duty Cycle	ODC	48	50	52	%	< 350 MHz
		45	50	55	%	≥ 350 MHz
Output-to-Output Skew	T _{SKEW}	_	_	45	ps	Note 5
PLL Lock Time	Т _{LOCK}	_	_	20	ms	—
RMS Phase Jitter @ 156.25 MHz	T _{jit(Ø)}	—	265	—	fs	Integration Range (12 kHz to 20 MHz)
		—	115	—	fs	Integration Range (1.875 MHz to 20 MHz)

Note 1: The circuit is designed to meet the AC and DC specifications shown in the Electrical Characteristics tables after thermal equilibrium has been established.

- 2: See Figure 5-6 through Figure 5-9 for load test circuit examples.
- 3: All phase noise measurements were taken with an Agilent 5052B phase noise system.
- 4: Output load is 50Ω to $V_{DD} 2V$.
- **5:** Defined as skew between outputs at the same supply voltage and with equal load conditions; Measured at the output differential crossing points.

LVDS AC ELECTRICAL CHARACTERISTICS (Note 1, Note 2, Note 3, Note 4)

Electrical Characteristics: $V_{DDA} = V_{DD} = 3.3V \pm 5\%$ or 2.5V $\pm 5\%$, $V_{DDO} = 2.5V$ or 3.3V $\pm 5\%$, $T_A = -40^{\circ}$ C to $+85^{\circ}$ C, unless otherwise noted.

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions
Output Frequency	F _{OUT}	11.4	_	840	MHz	—
LVDS Output Rise/Fall Time	t _r /t _f	100	160	400	ps	20% - 80%
Output Duty Cycle	ODC	48	50	52	%	< 350 MHz
		45	50	55	%	≥ 350 MHz
Output-to-Output Skew	T _{SKEW}	—	_	45	ps	Note 5
PLL Lock Time	T _{LOCK}	_		20	ms	—
RMS Phase Jitter @ 156.25 MHz	T _{jit(Ø)}	—	110	—	fs	Integration Range (1.875 MHz to 20 MHz)

Note 1: The circuit is designed to meet the AC and DC specifications shown in the Electrical Characteristics tables after thermal equilibrium has been established.

- 2: See Figure 5-6 through Figure 5-9 for load test circuit examples.
- 3: All phase noise measurements were taken with an Agilent 5052B phase noise system.
- **4:** Outputs terminated 100Ω between Q and /Q. All unused outputs must be terminated.
- Defined as skew between outputs at the same supply voltage and with equal load conditions; Measured at the output differential crossing points.

HCSL AC ELECTRICAL CHARACTERISTICS (Note 1, Note 2, Note 3, Note 4) Electrical Characteristics: V_{DDA} = V_{DD} = 3.3V ±5% or 2.5V ±5%, V_{DDO} = 2.5V or 3.3V ±5%, T_A = -40°C to +85°C, unless otherwise noted.

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions
Output Frequency	F _{OUT}	11.4	—	840	MHz	—
Output Rise/Fall Time	t _r /t _f	150	300	450	ps	20% - 80%
Output Duty Cycle	ODC	48	50	52	%	< 350 MHz
		45	50	55	%	≥ 350 MHz
Output-to-Output Skew	T _{SKEW}	_	_	50	ps	Note 5
PLL Lock Time	T _{LOCK}	—	_	20	ms	—
RMS Phase Jitter @ 100 MHz	T _{jit(Ø)}	—	265	_	fs	Integration Range (12 kHz to 20 MHz)
		—	115	—	fs	Integration Range (1.875 MHz to 20 MHz)

Note 1: The circuit is designed to meet the AC and DC specifications shown in the Electrical Characteristics tables after thermal equilibrium has been established.

- 2: See Figure 5-6 through Figure 5-9 for load test circuit examples.
- 3: All phase noise measurements were taken with an Agilent 5052B phase noise system.
- 4: Output load is 50Ω to V_{DD} / 2.
- 5: Defined as skew between outputs at the same supply voltage and with equal load conditions; Measured at the output differential crossing points.

LVCMOS AC ELECTRICAL CHARACTERISTICS (Note 1, Note 2, Note 3, Note 4)

Electrical Characteristics: $V_{DDA} = V_{DD} = 3.3V \pm 5\%$ or 2.5V $\pm 5\%$, $V_{DDO} = 2.5V$ or 3.3V $\pm 5\%$, $T_A = -40^{\circ}$ C to $+85^{\circ}$ C, unless otherwise noted.

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions
Output Frequency	F _{OUT}	11.4	—	250	MHz	—
REF_IN Frequency	F _{REF}	11	_	80	MHz	—
Output Rise/Fall Time	t _r /t _f	100		500	ps	20% - 80%
Output Duty Cycle	ODC	45	50	55	%	—
Output-to-Output Skew	T _{SKEW}	_	_	60	ps	Note 5
PLL Lock Time	T _{LOCK}	_	_	20	ms	—
RMS Phase Jitter @ 125 MHz	T _{jit(Ø)}	—	115	—	fs	Integration Range (1.875 MHz to 20 MHz)

Note 1: The circuit is designed to meet the AC and DC specifications shown in the Electrical Characteristics tables after thermal equilibrium has been established.

2: See Figure 5-6 through Figure 5-9 for load test circuit examples.

3: All phase noise measurements were taken with an Agilent 5052B phase noise system.

4: Output load is 50Ω to V_{DD} / 2.

5: Defined as skew between outputs at the same supply voltage and with equal load conditions; Measured at the output differential crossing points.

TEMPERATURE SPECIFICATIONS

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
Temperature Ranges						
Ambient Temperature Range	Τ _Α	-40	_	+85	°C	—
Lead Temperature	_	—	_	+260	°C	Soldering, 20s
Case Temperature	_	—	_	+115	°C	—
Storage Temperature Range	Τ _S	-65	—	+150	°C	—
Package Thermal Resistances (Note 1)					
Junction Thermal Resistance, 7 x 7 QFN-44Ld	θ_{JA}	_	24	_	°C/W	—
Junction Thermal Resistance, 5 x 5 QFN-32Ld	θ_{JA}	_	34	_	°C/W	—
Junction Thermal Resistance, 4 x 4 QFN-24Ld	θ_{JA}	_	50	_	°C/W	_
Junction Thermal Resistance, 3 x 3.5 QFN-16Ld	θ_{JA}	_	60	_	°C/W	—

Note 1: Package thermal resistance assumes the exposed pad is soldered (or equivalent) to the device's most negative potential on the PCB.

2.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1.

TABLE 2-1: PIN FUNCTION TABLE

F	Pin Num	bers by	Packag	e Optior	า					
#1 44-pin	#2 32-pin	#3 24-pin	#4 24-pin	#5 16-pin	#6 16-pin	Pin Name	Pin Type	Pin Level	Pin Function	
18	13	10	9	-	6	XIN			Crystal connections.	
19	14	11	10		7	XOUT	I,O (SE)	_	Crystal connections.	
17	12	9	8	7		REF_IN	I, (SE)	LVCMOS	Reference clock input.	
14	10		6	6		FSEL	I, (SE)	LVCMOS	Frequency Select, divides output frequencies by 2. 0 = FREQ, 1 = FREQ/2, 45 kΩ pull-up	
10	6	6	4	_	_	XTAL SEL	I, (SE)	LVCMOS	XTAL Select, selects between XTAL and REF_IN 0 = REF_IN, 1 = XTAL, 45 kΩ pull-up	
9	5	5	3	_		PLL BYPASS	I, (SE)	LVCMOS	Bypasses the PLL and switches the XTAL or REF_IN frequency to all outputs 0 = PLL mode, $1 = Bypass$ mode, $45 \text{ k}\Omega$ pull-down	
25	—		_			/QA	0	Various		
26	—		_	_	—	QA	0	various	Clock Outputs from Bank 1	
28	21	16				/QB	0	Various		
29	22	17				QB	0	various	Each output can be programmed to its own logic	
32	—			_		/QC	0	Various	type: LVPECL, LVDS, HCSL, or	
33	—	—				QC	Ŭ	vanous	LVCMOS (Note 1)	
35	25	20	19	14	14	/QD	0	Various		
36	26	21	20	15	15	QD	Ŭ	vanous		
41	30	23	22		—	/QE	0	Various		
42	31	24	23			QE	Ŭ	vanous		
1	—	—	—	1	1	/QF	0	Various	Clock Outputs from Bank 2	
2	—	—		2	2	QF	Ŭ	Valious	Each output can be programmed to its own logic	
4	3	3	—	—	—	/QG	0	Various	type: LVPECL, LVDS, HCSL, or	
5	4	4		_		QG	Ŭ	Valiouo	LVCMOS (Note 1)	
7				_	_	/QH	0	Various		
8	—	—	—	_	—	QH	Ű	Valiouo		
31	23	18	17	16	16				Power Supply for the outputs on	
37	27		—	—	—	V _{DDO1}	PWR	—	Bank 1.	
38		—	_	—	—					
16	1	1	24	16	16				Power Supply for the outputs on	
43	32	—		—	—	V_{DDO2}	PWR	—	Bank 2.	
44		—	_	—	—					
24	19	22	21	—	—	V _{SSO1}	PWR	_	Power Supply Ground for the	
39	28	—	—	—	—	3301			outputs on Bank 1.	

F	Pin Num	bers by	Packag	e Optio	1	Pin	Dia		
#1 44-pin	#2 32-pin	#3 24-pin	#4 24-pin	#5 16-pin	#6 16-pin	Pin Name	Pin Type	Pin Level	Pin Function
3	2	2	2						
6	29	—		—	—	V _{SSO2}	PWR	—	Power Supply Ground for the outputs on Bank 2.
40		—		_	_				
11	7	7	5	4	4				
20	15	12	11	8	8				Used for production test.
27	20	15	16	11	11	TEST	—	—	Do not connect anything to
30	24	19	18	13	13				these pins.
34	—	—		—	—				
12	8	8	1	5	5	V	PWR		
13	9	—	_	—	-	V_{DD}		_	Core power supply.
21	17	13	13	3	3				
23	18	14	14	9	9	M	PWR		Core power supply ground.
—		—	15	10	10	V _{SS}		_	Core power supply ground.
—		—		12	12				
_	_	_	-	_	Ι	EPAD	_	_	The exposed pad must be connected to the V _{SS} ground plane.
15	11	—	7	—	—	OE1	I, (SE)	LVCMOS	Output Enable 1, OUT1–8 disables to tri-state, 0 = Disabled, 1 = Enabled, 45 kΩ pull-up
22	16	_	12	_	_	OE2	I, (SE)	LVCMOS	Output Enable 2, OUT9–16 disables to tri-state, 0 = Disabled, 1 = Enabled, 45 kΩ pull-up

TABLE 2-1: PIN	FUNCTION TABLE	(CONTINUED)
----------------	----------------	-------------

Note 1: In the case of LVCMOS, an output pair can provide two single-ended LVCMOS outputs.

TABLE 2-2: TRUTH TABLE

Control Pin	Internal Resistor (Note 1)	0 Level (Low)	1 Level (High)
OE1	Pull-Up	Outputs QA~QD disabled to Hi Z (Tri-State)	Outputs QA~QD enabled
OE2	Pull-Up	Outputs QE~QH disabled to Hi Z (Tri-State)	Outputs QE~QH enabled
XTAL_SEL	Pull-Up	External reference clock input is selected	Crystal is selected
FSEL; (Note 2)	Pull-Up	Output = Target Frequency x2 or /2	Output = Target Frequency
PLL_BYPASS	Pull-Down	PLL frequency is connected to outputs	PLL is bypassed, Crystal or Ref-in is connected to outputs

Note 1: The internal resistor sets the default logic level on the control pin when the pin is left open. Pull up will set default logic 1 and pull down will set default logic 0. When the pin is not available on a specific configuration, the level will be the default logic level.

2: The FSEL pin behavior can be programmed between two types:

- At FSEL=0 (low), the output frequency changes to multiply by 2.

- At FSEL=0 (low), the output frequency changes to divide by 2.

The FSEL function affects all outputs the same way, all outputs change when the FSEL pin level changes.

3.0 PHASE NOISE PLOTS

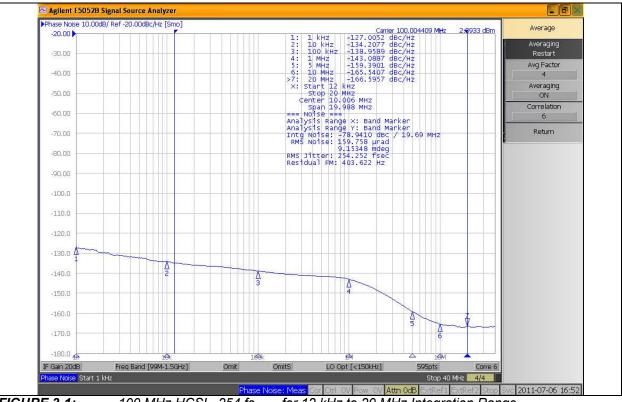


FIGURE 3-1: 100 MHz HCSL, 254 fs_{RMS} for 12 kHz to 20 MHz Integration Range.

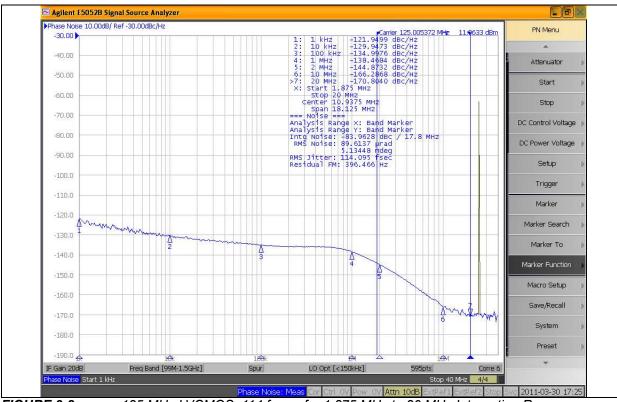
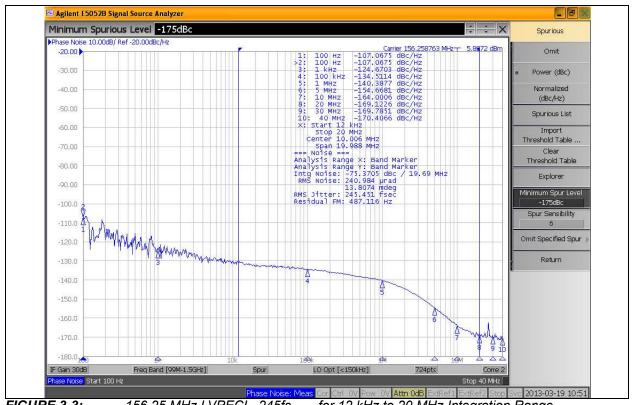
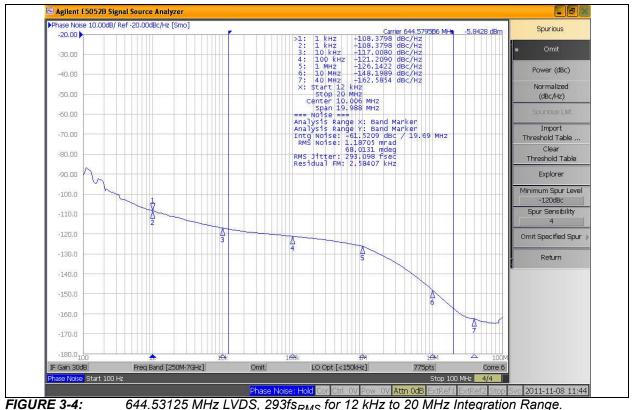




FIGURE 3-2: 125 MHz LVCMOS, 114 fs_{RMS} for 1.875 MHz to 20 MHz Integration Range.

156.25 MHz LVPECL, 245fs_{RMS} for 12 kHz to 20 MHz Integration Range. FIGURE 3-3:

644.53125 MHz LVDS, 293fs_{RMS} for 12 kHz to 20 MHz Integration Range.

4.0 APPLICATION INFORMATION

4.1 Input Reference

When operating with a crystal input reference, do not apply a switching signal to REF_IN.

4.2 Crystal Layout

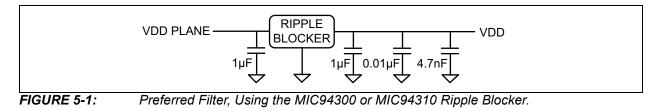
Keep the layers under the crystal as open as possible and do not place switching signals or noisy supplies under the crystal. Crystal load capacitance is built inside the die, so no external capacitance is needed. See the Microchip application note ANTC207 for further details.

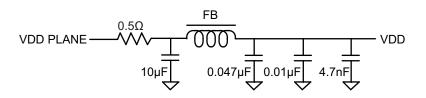
4.3 Power Supply Decoupling

Place the smallest value decoupling capacitor (4.7 nF above) between the V_{DD} and V_{SS} pins, as close as possible to those pins and at the same side of the PCB as the IC. The shorter the physical path from V_{DD} to capacitor and back from capacitor to V_{SS}, the more effective the decoupling. Use one 4.7 nF capacitor for each V_{DD} pin on the SM802xxx.

The impedance value of the ferrite bead (FB) needs to be between 80Ω and 240Ω with a saturation current \geq 150 mA.

The V_{DDO1} and V_{DDO2} pins connect directly to the V_{DD} plane. All V_{DD} pins on the SM802xxx connect to V_{DD} after the power supply filter.

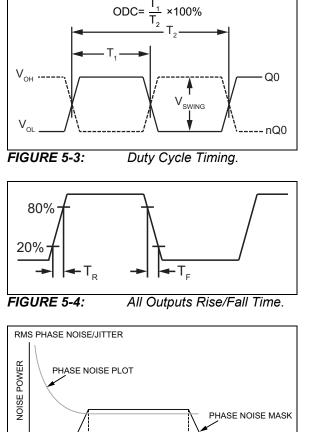

4.4 Output Traces


Design the traces for the output signals according to the output logic requirements. If LVCMOS is unterminated, add a 30Ω resistor in series with the output, as close as possible to the output pin, and start a 50Ω trace on the other side of the resistor.

For differential traces, you can either use a differential design or two separate 50Ω traces. For EMI reasons, it is better to use a differential design.

LVDS can be AC-coupled or DC-coupled to its termination.

5.0 POWER SUPPLY FILTERING RECOMMENDATIONS



Alternative, Traditional Filter, Using a Ferrite Bead.

FIGURE 5-2:

 $\begin{tabular}{l} f_1 \\ \textbf{OFFSET FREQUENCY} \end{tabular} \begin{tabular}{l} r_2 \\ \end{tabular} \end{tabula$

RMS Phase/Noise/Jitter.

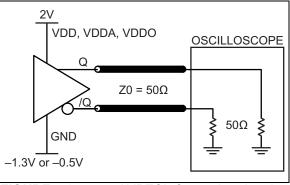


FIGURE 5-6: LVPECL Output Load and Test Circuit.

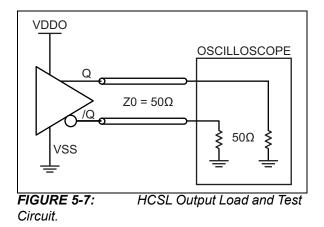


FIGURE 5-5:

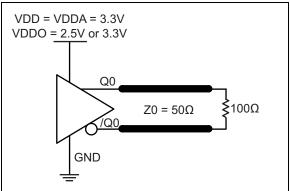
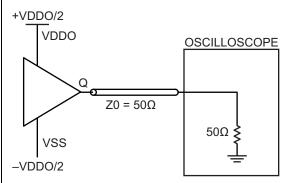
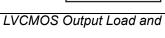
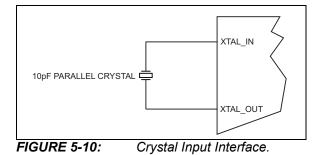
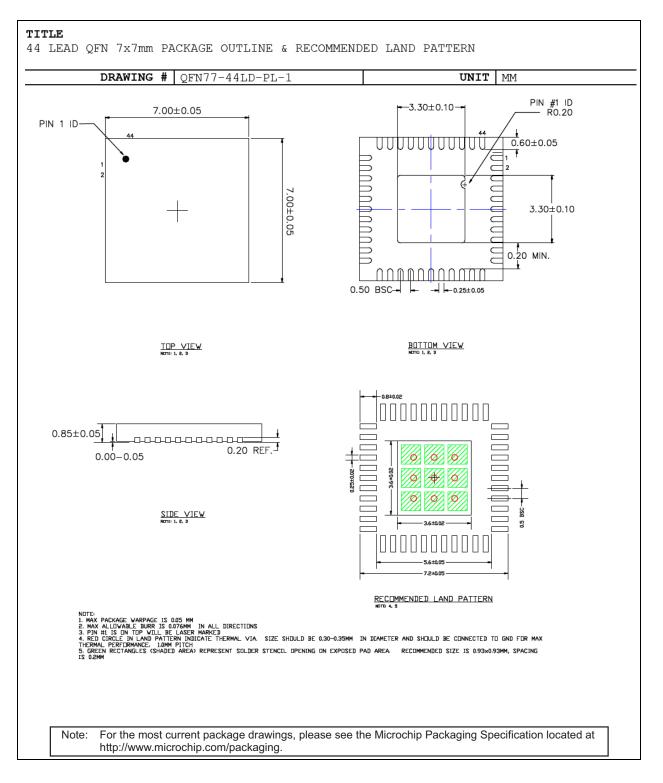
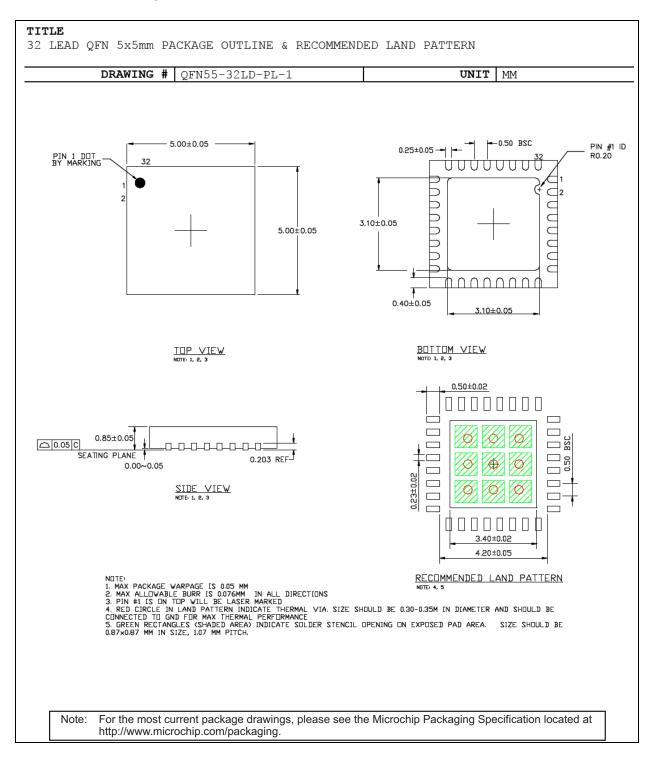
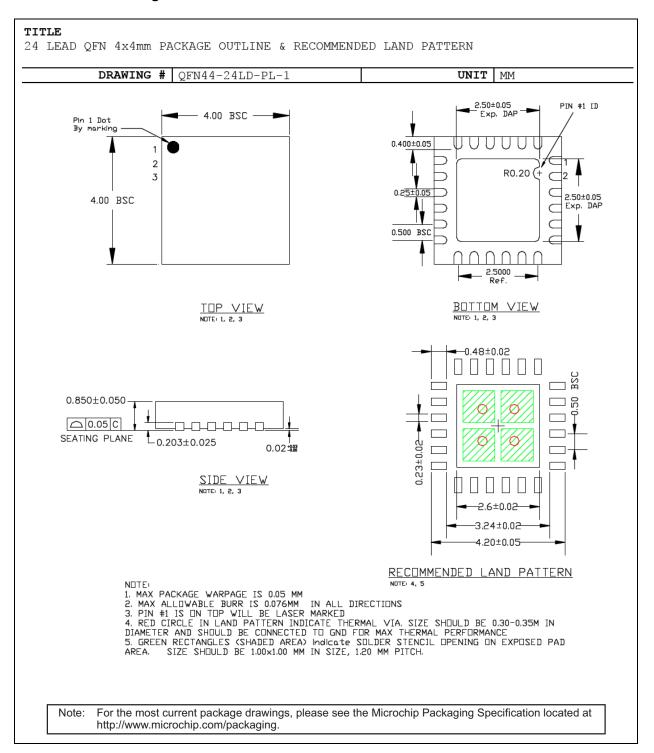


FIGURE 5-8: LVDS Output Load and Test Circuit.

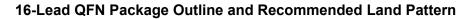




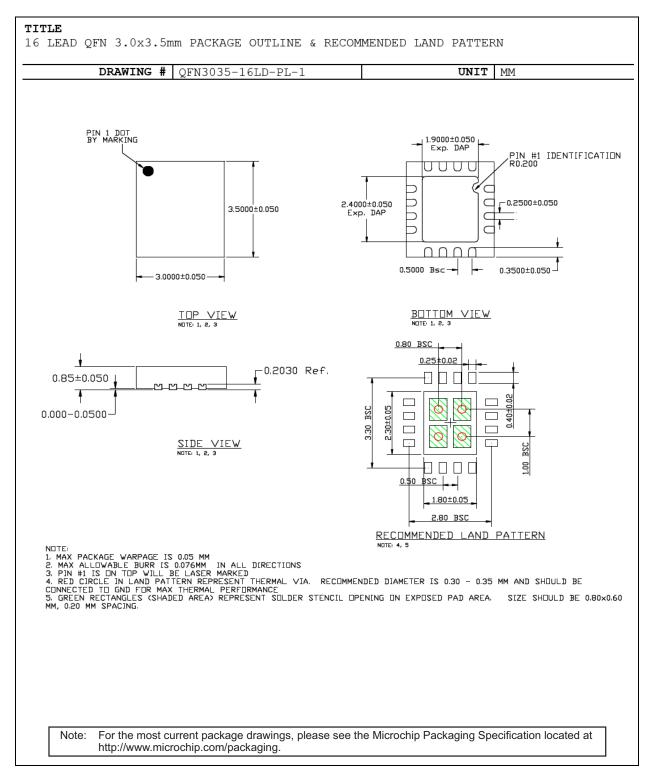

FIGURE 5-9: Test Circuit.




6.0 PACKAGING INFORMATION

44-Lead QFN Package Outline and Recommended Land Pattern




32-Lead QFN Package Outline and Recommended Land Pattern

24-Lead QFN Package Outline and Recommended Land Pattern

APPENDIX A: REVISION HISTORY

Revision A (March 2019)

- Converted Micrel document SM802xxx to Microchip data sheet DS20006176A.
- Minor text changes throughout.
- Updated the Crystal and Reference Input frequency ranges in the Features section and in Crystal Characteristics table.
- Updated ESR value in Crystal Characteristics table.
- Updated the 12 kHz to 20 MHz Phase Jitter to 265 fs in the Features and in LVPECL AC Electrical Characteristics (Note 1, Note 2, Note 3, Note 4).
- Updated Output Frequency minimum and typical Phase Jitter in LVDS AC Electrical Characteristics (Note 1, Note 2, Note 3, Note 4), HCSL AC Electrical Characteristics (Note 1, Note 2, Note 3, Note 4), and LVCMOS AC Electrical Characteristics (Note 1, Note 2, Note 3, Note 4).
- Corrected the impedance values for using a ferrite bead in Power Supply Decoupling section.

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

	v	v	v	v	Examples:			
PART NO. Device		X ackage Ter Type	X - │ nperature P	Special rocessing	a) SM802xxxUN	Sy Of	nthesizer, 2.5 otion, QFN Pa	ow Jitter Clock 5V/3.3V Voltage ckage, –40°C to ure Range, Tray
Device: Voltage Optior	SM802xxx:	Flexible Ultra-Lo	ow Jitter Clock S	ynthesizer	b) SM802xxxUM	Sy Of	nthesizer, 2.5 otion, QFN Pa	ow Jitter Clock 5V/3.3V Voltage ckage, –40°C to ure Range, Tape 8
Package Type:	: M = 4 Options Table	4-, 32-, 24-, or 16 (Note 1).	6-QFN; see the I	Package		Re	el	
Temperature:	G = -	-40°C to +85°C (I	NiPdAu Lead Fre	ee)				
Special Processing:	TR = ⁻	Tray Tape and Reel						
Package Or	otions Table (<mark>N</mark> o							
Package O Package Option	ptions Table (No QFN Package	# of Outputs	XTAL	REF_IN	XTAL_SEL	FSEL	OE1 OE2	PLL BYPASS
Package	QFN	# of	XTAL Yes	REF_IN Yes	XTAL_SEL Yes	FSEL Yes		
Package Option	QFN Package	# of Outputs		-	-		OE2	BYPASS
Package Option #1	QFN Package 44-Pin 7x7	# of Outputs 8 Diff.	Yes	Yes	- Yes	Yes	OE2 Yes	BYPASS Yes
Package Option #1 #2	QFN Package 44-Pin 7x7 32-Pin 5x5	# of Outputs 8 Diff. 4 Diff.	Yes Yes	Yes Yes	Yes Yes	Yes	OE2 Yes Yes	BYPASS Yes Yes
Package Option #1 #2 #3	QFN Package 44-Pin 7x7 32-Pin 5x5 24-Pin 4x4	# of Outputs 8 Diff. 4 Diff. 4 Diff.	Yes Yes Yes	Yes Yes Yes	Yes Yes Yes	Yes Yes No	OE2 Yes Yes No	BYPASS Yes Yes Yes

NOTES:

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A. Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM, net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2019, Microchip Technology Incorporated, All Rights Reserved. ISBN: 978-1-5224-4300-1

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000 China - Chengdu

Tel: 86-28-8665-5511 China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138

Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631 India - Pune

Tel: 91-20-4121-0141 Japan - Osaka

Tel: 81-6-6152-7160

Tel: 81-3-6880- 3770

Tel: 82-53-744-4301

Tel: 82-2-554-7200

Tel: 60-3-7651-7906

Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung

Tel: 886-2-2508-8600

Thailand - Bangkok

Tel: 84-28-5448-2100

Netherlands - Drunen Tel: 31-416-690399

EUROPE

Austria - Wels

Tel: 43-7242-2244-39

Tel: 45-4450-2828

Fax: 45-4485-2829

Tel: 358-9-4520-820

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Garching

Tel: 49-2129-3766400

Germany - Heilbronn

Germany - Karlsruhe

Tel: 49-721-625370

Germany - Munich

Tel: 49-89-627-144-0

Fax: 49-89-627-144-44

Germany - Rosenheim

Tel: 49-8031-354-560

Israel - Ra'anana

Italy - Milan

Italy - Padova

Tel: 972-9-744-7705

Tel: 39-0331-742611

Fax: 39-0331-466781

Tel: 39-049-7625286

Tel: 49-7131-67-3636

Tel: 49-8931-9700

Germany - Haan

Finland - Espoo

France - Paris

Fax: 43-7242-2244-393

Denmark - Copenhagen

Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

Japan - Tokyo

Korea - Daegu

Korea - Seoul

Malaysia - Kuala Lumpur

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila

Tel: 886-7-213-7830

Taiwan - Taipei

Tel: 66-2-694-1351

Vietnam - Ho Chi Minh

China - Zhuhai