DAC-Q56DD-4Q56-XM-C
DELL 400GBASE-CU QSFP-DD 400G to 4xQSFP56 100G DAC
PASSIVE TWINAX, UP TO 2.5M

DAC-Q56DD-4Q56-XM-C

Dell® Compatible and TAA Compliant 400GBase-CU QSFP-DD 400G to 4xQSFP56 100G PAM-4 Direct Attach Cable (Passive Twinax, Up to 2.5m)

Features

- Compliant with QSFP-DD MSA Specification Rev 3.4
- SFF-8679 electrical interface compliant
- SFF-8636 management interface support
- Compatible with IEEE 802.3bj, IEEE 802.3by, IEEE 802.3cd
- Supports aggregate data rates of 100 and 400Gbps
- I2C for EEPROM communication
- Pull-to-release slide latch design
- 28AWG through 32AWG cable
- Excellent EMI/EMC performance 360-degree cable shield termination
- Advantage dual side pre-solder automated assembly technologies
- Low loss, stronger mechanical features, more flexible
- ROHS-6 Compliant

Applications

- Switches, Servers and Routers
- Data Center Networks
- Storage Area Networks
- High Performance Computing
- Telecommunications and wireless infrastructure

Product Description

This is a Dell® compatible TAA compliant 400GBase-CU QSFP-DD 400G to 4xQSFP56 100G PAM-4 direct attach cable that operates over passive copper with a maximum reach up to 2.5m (8.2ft). It has been programmed, uniquely serialized, and data-traffic and application tested to ensure it is 100% compliant and functional. This direct attach cable is TAA (Trade Agreements Act) compliant, and is built to comply with MSA (Multi-Source Agreement) standards. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

ProLabs' direct attach cables are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. – made or designated country end products."

Order Information

Part Number	Description
DAC-Q56DD-4Q56-1M-C	Dell® DAC-Q56DD-4Q56-1M Compatible and TAA Compliant 400GBase-CU QSFP-DD 400G to
	4xQSFP56 100G PAM-4 Direct Attach Cable (Passive Twinax, 1m)
DAC-Q56DD-4Q56-2M-C	Dell® DAC-Q56DD-4Q56-2M Compatible and TAA Compliant 400GBase-CU QSFP-DD 400G to
	4xQSFP56 100G PAM-4 Direct Attach Cable (Passive Twinax, 2m)
DAC-Q56DD-4Q56-2-5M-C	Dell® DAC-Q56DD-4Q56-2-5M Compatible and TAA Compliant 400GBase-CU QSFP-DD 400G
	to 4xQSFP56 100G PAM-4 Direct Attach Cable (Passive Twinax, 2.5m)

Regulatory Compliance

Certification	Standard
Laser Eye Safety	IEC: 60825-1, 3 rd Edition FDA: CFR-21 Sections 1040.10 and 1040.11
Product Safety	TUV: EN62368-1 UL/CSA 60950-1
EMC/EMI	FCC: Part 15 sb.B EN: 55032/55024

Mechanical Characteristics

Length	Wire Gauge	Cable OD	Cable Jacket Material	Flammability Rating
1m	32 AWG	3.8mm	PVC	VW-1
2m	28AWG	4.93mm	PVC	VW-1
2.5m	28AWG	4.93mm	PVC	VW-1

Electrical Characteristics

Parameter	Specification
Impedance	100 ohm
Data Rate	56Gbps per lane (PAM-4)
Voltage	3.3V DC
Current (signal application only)	0.75A
Operating Temperature	-10°C to 55°C
Storage Temperature	-10°C to 55°C
High Speed Compliant	IEEE 802.3cd

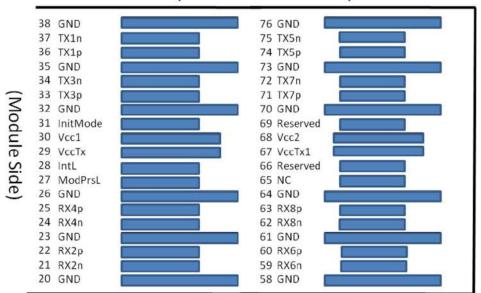
QSFP-DD to 4xQSFP Wiring Schematic

P1 (QSFI	P-DD)		P2	(QSFP)
GND				GND
TX1+	36	↔	17	RX1+
T X 1 -	37	↔	18	RX1-
GND				GND
TX2+	3	↔	22	RX2+
T X 2 -	2	↔	21	RX2-
GND				GND
CHD		1	Τ	CHD
GND				GND
RX1+	17	↔	36	TX1+
RX1-	18	↔	37	TX1-
GND				GND
RX2+	22	↔	3	TX2+
RX2-	21	↔	2	TX2-
GND				GND
P1 (QSFI	P-DD)		P3	(QSFP)
P1 (QSF)	P-DD)		P3	GND
	P-DD)	<->	P3	T
GND		♦⇒		GND
GND TX3+	33		17	GND RX1+
GND TX3+ TX3-	33		17	GND RX1+ RX1-
GND TX3+ TX3- GND	33 34	↔	17	GND RX1+ RX1- GND
GND TX3+ TX3- GND TX4+	33 34 6	↔	17 18	GND RX1+ RX1- GND RX2+
GND TX3+ TX3- GND TX4+ TX4-	33 34 6	↔	17 18	GND RX1+ RX1- GND RX2+ RX2-
GND TX3+ TX3- GND TX4+ TX4-	33 34 6	↔	17 18	GND RX1+ RX1- GND RX2+ RX2-
GND TX3+ TX3- GND TX4+ TX4- GND	33 34 6	↔	17 18	GND RX1+ RX1- GND RX2+ RX2- GND
GND TX3+ TX3- GND TX4+ TX4- GND GND	33 34 6 5	→ → → →	17 18 22 21	GND RX1+ RX1- GND RX2+ RX2- GND
GND TX3+ TX3- GND TX4+ TX4- GND GND GND RX3+	33 34 6 5	→ → → →	17 18 22 21	GND RX1+ RX1- GND RX2+ RX2- GND GND TX1+
GND TX3+ TX3- GND TX4+ TX4- GND GND GND RX3+	33 34 6 5	→ → → →	17 18 22 21	GND RX1+ RX1- GND RX2+ RX2- GND GND TX1+ TX1-
GND TX3+ TX3- GND TX4+ TX4- GND GND RX3+ RX3- GND	33 34 6 5		17 18 22 21 21 36 37	GND RX1+ RX1- GND RX2+ RX2- GND GND TX1+ TX1- GND

P1 (QSFP-DD)			P4	(QSFP)
GND				GND
TX5+	74	<→>	17	RX1+
TX5-	75	↔	18	RX1-
GND				GND
TX6+	41	↔	22	RX2+
TX6-	40	d—Þ	21	RX2-
GND				GND
GND				GND
RX5+	55	♦	36	TX1+
RX5-	56	↔	37	TX1-
GND				GND
R X 6+	60	↔	3	TX2+
R X 6 -	59	↔	2	TX2-
GND				GND
P1 (QSFP	-DD)		P5	(QSFP)
GND				GND
TX7+	71	⋖─⊳	17	R X 1+
TX7-	72	↔	18	RX1-
GND				GND
+8XT	44	↔	22	RX2+
-8xT	43	4 →Þ	21	RX2-
GND				GND
GND				GND
RX7+	52	↔	36	TX1+
R X 7 -	53	⋖─⊳	37	TX1-
GND				GND
RX8+	63	↔	3	TX2+
R X 8 -	62	♦→	2	TX2-

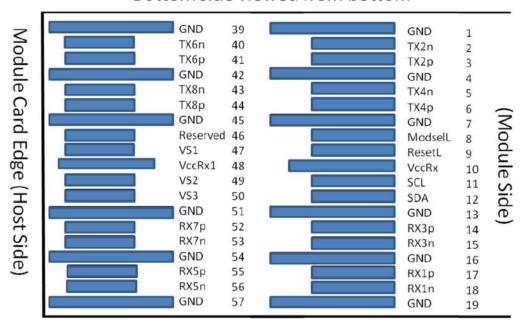
QSFP-DD Pin Descriptions

PIN	Logic	Symbol	Description	Notes
1		GND	Ground	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input	
4		GND	Ground	1
5	CML-I	Tx4n	Transmitter Inverted Data Input	
6	CML-I	Tx4p	Transmitter Non-Inverted Data Input	
7		GND	Ground	1
8	LVTTL-I	ModSelL	Module Select	
9	LVTTL-I	ResetL	Module Reset	
10		VccRx	+3.3V Power Supply Receiver	2
11	LVCMOS-I/O	SCL	2-wire serial interface clock	
12	LVCMOS-I/O	SDA	2-wire serial interface data	
13		GND	Ground	1
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	
15	CML-O	Rx3n	Receiver Inverted Data Output	
16		GND	Ground	1
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	
18	CML-O	Rx1n	Receiver Inverted Data Output	
19		GND	Ground	1
20		GND	Ground	1
21	CML-O	Rx2n	Receiver Inverted Data Output	
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	
23		GND	Ground	1
24	CML-O	Rx4n	Receiver Inverted Data Output	
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	
26		GND	Ground	1
27	LVTTL-O	ModPrsL	Module Present	
28	LVTTL-O	IntL	Interrupt	
29		VccTx	+3.3V Power Supply Transmitter	2
30		Vccl	+3.3V Power Supply	2
31	LVTTL-I	InitMode	Initialization mode; In legacy QSFP applications, the InitMode pad is called LPMODE	
32		GND	Ground	1
33	CML-I	Тх3р	Transmitter Non-Inverted Data Input	
34	CML-I	Tx3n	Transmitter Inverted Data Input	
35		GND	Ground	1
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	
37	CML-I	Tx1n	Transmitter Inverted Data Input	
38		GND	Ground	1


PIN		Symbol	Description	Notes
39		GND	Ground	1
40	CML-I	Tx6n	Transmitter Inverted Data Input	
41	CML-I	Тх6р	Transmitter Non-Inverted Data Input	
42		GND	Ground	1
43	CML-I	Tx8n	Transmitter Inverted Data Input	
44	CML-I	Тх8р	Transmitter Non-Inverted Data Input	
45		GND	Ground	1
46		Reserved	For future use	3
47		VSI	Module Vendor Specific 1	3
48		VccRx1	3.3V Power Supply	2
49		VS2	Module Vendor Specific 2	3
50		VS3	Module Vendor Specific 3	3
51		GND	Ground	1
52	CML-O	Rx7p	Receiver Non-Inverted Data Output	
53	CML-O	Rx7n	Receiver Inverted Data Output	
54		GND	Ground	1
55	CML-O	Rx5p	Receiver Non-Inverted Data Output	
56	CML-O	Rx5n	Receiver Inverted Data Output	
57		GND	Ground	1
58		GND	Ground	1
59	CML-O	Rx6n	Receiver Inverted Data Output	
60	CML-O	Rx6p	Receiver Non-Inverted Data Output	
61		GND	Ground	1
62	CML-O	Rx8n	Receiver Inverted Data Output	
63	CML-O	Rx8p	Receiver Non-Inverted Data Output	
64		GND	Ground	1
65		NC	No Connect	3
66		Reserved	For future use	3
67		VccTx1	3.3V Power Supply	2
68		Vcc2	3.3V Power Supply	2
69		Reserved	For future use	3
70		GND	Ground	1
71	CML-I	Тх7р	Transmitter Non-Inverted Data Input	
72	CML-I	Tx7n	Transmitter Inverted Data Input	
73		GND	Ground	1
74	CML-I	Тх5р	Transmitter Non-Inverted Data Input	
75	CML-I	Tx5n	Transmitter Inverted Data Input	
76		GND	Ground	1

Notes:

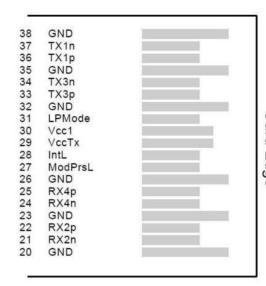
- 1. QSFP-DD uses common ground (GND)for all signals and supply (power). All are common within the QSFP-DD module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal-common ground plane.
- 2. VccRx, VccRx1, Vcc1, Vcc2, VccTx and VccTx1 shall be applied concurrently. Requirements defined for the host side of the Host Card Edge Connector are listed in Table 6. VccRx, VccRx1, Vcc1, Vcc2, VccTx and VccTx1 may be internally connected within the module in any combination. The connector Vcc pins are each rated for a maximum current of 1000 mA.
- **3.** All Vendor Specific, Reserved and No Connect pins may be terminated with 50 ohms to ground on the host. Pad 65 (No Connect) shall be left unconnected within the module. Vendor specific and Reserved pads shall have an impedance to GND that is greater than 10 kOhms and less than 100 pF.
- **4.** Plug Sequence specifies the mating sequence of the host connector and module. The sequence is 1A, 2A, 3A, 1B, 2B, 3B. (see Figure 2 for pad locations) Contact sequence A will make, then break contact with additional QSFP-DD pads. Sequence 1A, 1B will then occur simultaneously, followed by 2A, 2B, followed by 3A,3B.


QSFP-DD Electrical Pin-out Details

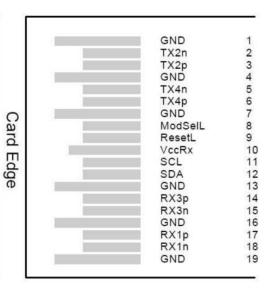
Top side viewed from top

Module Card Edge (Host Side)

Bottom side viewed from bottom

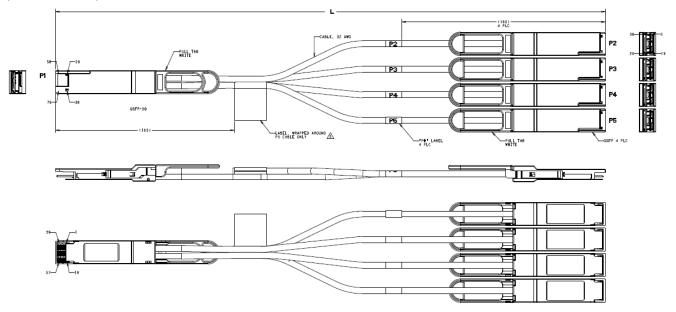

QSFP56 Pin Definitions

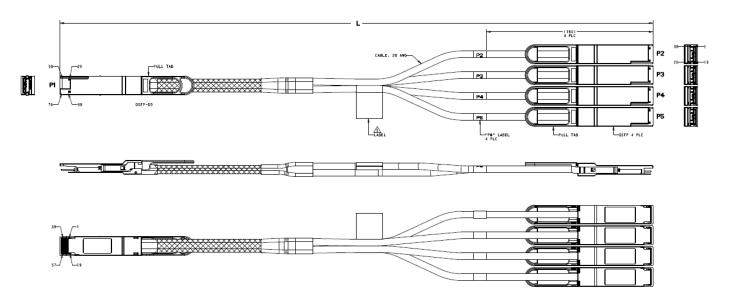
Pin	Logic	Symbol	Name/Descriptions	Ref.
1		GND	Module Ground	1
2	CML-I	Tx2-	Transmitter inverted data input	
3	CML-I	Tx2+	Transmitter non-inverted data input	
4		GND	Module Ground	1
5	CML-I	Tx4-	Transmitter inverted data input	
6	CML-I	Tx4+	Transmitter non-inverted data input	
7		GND	Module Ground	1
8	LVTTL-I	MODSEIL	Module Select	2
9	LVTTL-I	ResetL	Module Reset	2
10		VCCRx	+3.3v Receiver Power Supply	
11	LVCMOS-I	SCL	2-wire Serial interface clock	2
12	LVCMOS-I/O	SDA	2-wire Serial interface data	2
13		GND	Module Ground	1
14	CML-O	RX3+	Receiver non-inverted data output	
15	CML-O	RX3-	Receiver inverted data output	
16		GND	Module Ground	1
17	CML-O	RX1+	Receiver non-inverted data output	
18	CML-O	RX1-	Receiver inverted data output	
19		GND	Module Ground	1
20		GND	Module Ground	1
21	CML-O	RX2-	Receiver inverted data output	
22	CML-O	RX2+	Receiver non-inverted data output	
23		GND	Module Ground	1
24	CML-O	RX4-	Receiver inverted data output	
25	CML-O	RX4+	Receiver non-inverted data output	
26		GND	Module Ground	1
27	LVTTL-O	ModPrsL	Module Present, internal pulled down to GND	
28	LVTTL-O	IntL	Interrupt output should be pulled up on host board	2
29		VCCTx	+3.3v Transmitter Power Supply	
30		VCC1	+3.3v Power Supply	
31	LVTTL-I	LPMode	Low Power Mode	2
32		GND	Module Ground	1
33	CML-I	Tx3+	Transmitter non-inverted data input	
34	CML-I	Tx3-	Transmitter inverted data input	
35		GND	Module Ground	1
36	CML-I	Tx1+	Transmitter non-inverted data input	
37	CML-I	Tx1-	Transmitter inverted data input	
38		GND	Module Ground	1


Notes:

- 1. Module circuit ground is isolated from module chassis ground with in the module.
- 2. Open collector; should be pulled up with 4.7k-10k ohms on host board to a voltage between 3.15V and 3.6V.

QSFP56 Electrical Pin-out Details


Top Side Viewed from Top


Bottom Side Viewed from Bottom

Mechanical Specifications

QSFP-DD to 4xQSFP 1m

QSFP-DD to 4xQSFP 2m, 2.5m

About ProLabs

Our experience comes as standard; for over 15 years ProLabs has delivered optical connectivity solutions that give our customers freedom and choice through our ability to provide seamless interoperability. At the heart of our company is the ability to provide state-of-the-art optical transport and connectivity solutions that are compatible with over 90 optical switching and transport platforms.

Complete Portfolio of Network Solutions

ProLabs is focused on innovations in optical transport and connectivity. The combination of our knowledge of optics and networking equipment enables ProLabs to be your single source for optical transport and connectivity solutions from 100Mb to 400G while providing innovative solutions that increase network efficiency. We provide the optical connectivity expertise that is compatible with and enhances your switching and transport equipment.

Trusted Partner

Customer service is our number one value. ProLabs has invested in people, labs and manufacturing capacity to ensure that you get immediate answers to your questions and compatible product when needed. With Engineering and Manufacturing offices in the U.K. and U.S. augmented by field offices throughout the U.S., U.K. and Asia, ProLabs is able to be our customers best advocate 24 hours a day.

Contact Information

ProLabs US

Email: sales@prolabs.com Telephone: 952-852-0252

ProLabs UK

Email: salessupport@prolabs.com
Telephone: +44 1285 719 600