

N-channel 60 V, 4.4 mΩ standard level MOSFET in D2PAK Rev. 1 — 22 March 2012 Product data of

Product data sheet

#### **Product profile** 1.

#### **1.1 General description**

Standard level N-channel MOSFET in a D2PAK package qualified to 175 °C. This product is designed and qualified for use in a wide range of industrial, communications and domestic equipment.

#### 1.2 Features and benefits

- High efficiency due to low switching and conduction losses
- Suitable for standard level gate drive sources

#### 1.3 Applications

- DC-to-DC converters
- Load switching

- Motor control
- Server power supplies

#### 1.4 Quick reference data

| Table 1.             | Quick reference data                            |                                                                                                          |     |     |      |     |      |
|----------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----|-----|------|-----|------|
| Symbol               | Parameter                                       | Conditions                                                                                               |     | Min | Тур  | Max | Unit |
| V <sub>DS</sub>      | drain-source voltage                            | T <sub>j</sub> ≥ 25 °C; T <sub>j</sub> ≤ 175 °C                                                          |     | -   | -    | 60  | V    |
| I <sub>D</sub>       | drain current                                   | T <sub>mb</sub> = 25 °C; see <u>Figure 1</u>                                                             | [1] | -   | -    | 100 | А    |
| P <sub>tot</sub>     | total power dissipation                         | T <sub>mb</sub> = 25 °C; see <u>Figure 2</u>                                                             |     | -   | -    | 211 | W    |
| Tj                   | junction temperature                            |                                                                                                          |     | -55 | -    | 175 | °C   |
| Static cha           | aracteristics                                   |                                                                                                          |     |     |      |     |      |
| R <sub>DSon</sub>    | drain-source on-state resistance                | $V_{GS}$ = 10 V; I <sub>D</sub> = 25 A; T <sub>j</sub> = 100 °C; see<br>Figure 12; see Figure 13         |     | -   | 5.98 | 7   | mΩ   |
|                      |                                                 | V <sub>GS</sub> = 10 V; I <sub>D</sub> = 25 A; T <sub>j</sub> = 25 °C;<br>see <u>Figure 13</u>           |     | -   | 3.74 | 4.4 | mΩ   |
| Dynamic              | characteristics                                 |                                                                                                          |     |     |      |     |      |
| Q <sub>GD</sub>      | gate-drain charge                               | $V_{GS}$ = 10 V; $I_{D}$ = 25 A; $V_{DS}$ = 30 V;                                                        |     | -   | 14.8 | -   | nC   |
| Q <sub>G(tot)</sub>  | total gate charge                               | see Figure 14; see Figure 15                                                                             |     | -   | 70.8 | -   | nC   |
|                      | e ruggedness                                    |                                                                                                          |     |     |      |     |      |
| E <sub>DS(AL)S</sub> | non-repetitive drain-source<br>avalanche energy | $V_{GS}$ = 10 V; $T_{j(init)}$ = 25 °C; $I_D$ = 100 A;<br>$V_{sup} \le 60$ V; $R_{GS}$ = 50 Ω; unclamped |     | -   | -    | 266 | mJ   |

[1] Continuous current is limited by package.

## nexperia

#### N-channel 60 V, 4.4 mΩ standard level MOSFET in D2PAK

#### 2. Pinning information

| Table 2. | Pinning | information                       |                    |                |
|----------|---------|-----------------------------------|--------------------|----------------|
| Pin      | Symbol  | Description                       | Simplified outline | Graphic symbol |
| 1        | G       | gate                              |                    |                |
| 2        | D       | drain <sup>[1]</sup>              | mb                 |                |
| 3        | S       | source                            |                    |                |
| mb       | D       | mounting base; connected to drain |                    | mbb076 S       |
|          |         |                                   | SOT404 (D2PAK)     |                |

[1] It is not possible to make connection to pin 2

#### 3. Ordering information

# Table 3. Ordering information Type number Package Name Description Version PSMN4R6-60BS D2PAK plastic single-ended surface-mounted package (D2PAK); 3 leads SOT404 (one lead cropped)

#### 4. Marking

| Table 4.   Marking codes |              |
|--------------------------|--------------|
| Type number              | Marking code |
| PSMN4R6-60BS             | PSMN4R6-60BS |

#### 5. Limiting values

#### Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

|                      |                                                 | <b>57</b> ( <b>7</b>                                                                                                                                                                                                         |            |     |      |      |
|----------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----|------|------|
| Symbol               | Parameter                                       | Conditions                                                                                                                                                                                                                   |            | Min | Max  | Unit |
| V <sub>DS</sub>      | drain-source voltage                            | T <sub>j</sub> ≥ 25 °C; T <sub>j</sub> ≤ 175 °C                                                                                                                                                                              |            | -   | 60   | V    |
| V <sub>DGR</sub>     | drain-gate voltage                              | $T_j \ge 25 \text{ °C}; T_j \le 175 \text{ °C}; R_{GS} = 20 \text{ k}\Omega$                                                                                                                                                 |            | -   | 60   | V    |
| V <sub>GS</sub>      | gate-source voltage                             |                                                                                                                                                                                                                              |            | -20 | 20   | V    |
| I <sub>D</sub>       | drain current                                   | T <sub>mb</sub> = 100 °C; see <u>Figure 1</u>                                                                                                                                                                                | <u>[1]</u> | -   | 99.7 | А    |
|                      |                                                 | T <sub>mb</sub> = 25 °C; see <u>Figure 1</u>                                                                                                                                                                                 | <u>[1]</u> | -   | 100  | А    |
| I <sub>DM</sub>      | peak drain current                              | pulsed; t <sub>p</sub> = 10 μs; T <sub>mb</sub> = 25 °C;<br>see <u>Figure 3</u>                                                                                                                                              |            | -   | 565  | А    |
| P <sub>tot</sub>     | total power dissipation                         | T <sub>mb</sub> = 25 °C; see <u>Figure 2</u>                                                                                                                                                                                 |            | -   | 211  | W    |
| T <sub>stg</sub>     | storage temperature                             |                                                                                                                                                                                                                              |            | -55 | 175  | °C   |
| Tj                   | junction temperature                            |                                                                                                                                                                                                                              |            | -55 | 175  | °C   |
| T <sub>sld(M)</sub>  | peak soldering temperature                      |                                                                                                                                                                                                                              |            | -   | 260  | °C   |
| Source-dr            | ain diode                                       |                                                                                                                                                                                                                              |            |     |      |      |
| I <sub>S</sub>       | source current                                  | T <sub>mb</sub> = 25 °C                                                                                                                                                                                                      | [1]        | -   | 100  | А    |
| I <sub>SM</sub>      | peak source current                             | pulsed; $t_p = 10 \ \mu s$ ; $T_{mb} = 25 \ ^\circ C$                                                                                                                                                                        |            | -   | 565  | А    |
| Avalanche            | ruggedness                                      |                                                                                                                                                                                                                              |            |     |      |      |
| E <sub>DS(AL)S</sub> | non-repetitive drain-source<br>avalanche energy | $ \begin{array}{l} V_{GS} = 10 \text{ V};  \text{T}_{j(\text{init})} = 25 ^{\circ}\text{C};  \text{I}_{\text{D}} = 100 \text{ A}; \\ V_{sup} \leq 60 \text{ V};  \text{R}_{GS} = 50  \Omega; \text{ unclamped} \end{array} $ |            | -   | 266  | mJ   |
|                      |                                                 |                                                                                                                                                                                                                              |            |     |      |      |

[1] Continuous current is limited by package.

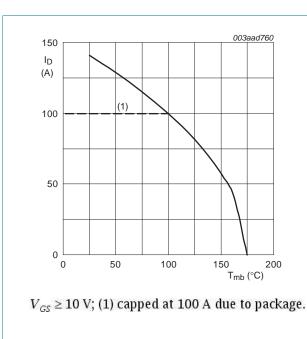
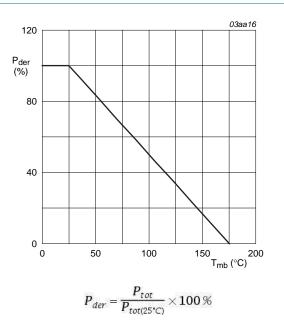
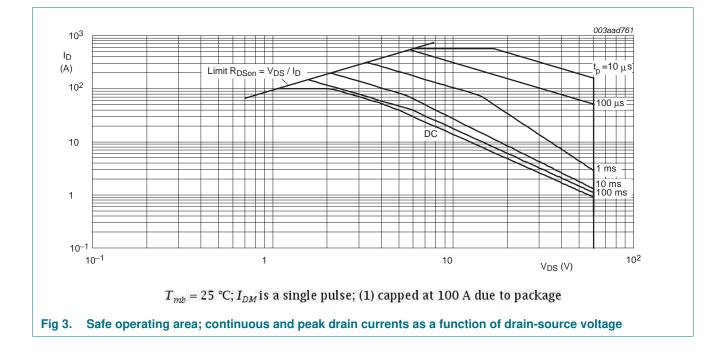
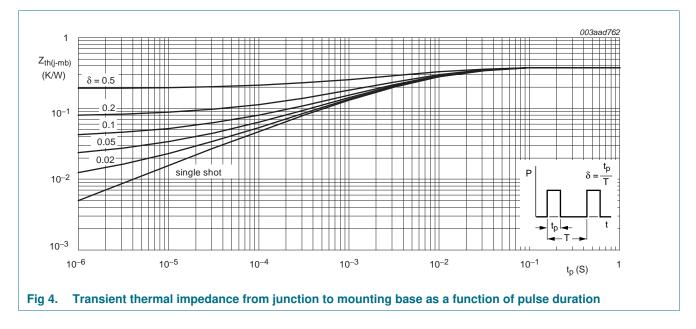





Fig 1. Continuous drain current as a function of mounting base temperature






## PSMN4R6-60BS



#### **Thermal characteristics** 6.

| Table 6.             | I hermal characteristics                          |                                                          |     |      |      |      |
|----------------------|---------------------------------------------------|----------------------------------------------------------|-----|------|------|------|
| Symbol               | Parameter                                         | Conditions                                               | Min | Тур  | Max  | Unit |
| $R_{th(j-mb)}$       | thermal resistance from junction to mounting base | see Figure 4                                             | -   | 0.38 | 0.71 | K/W  |
| R <sub>th(j-a)</sub> | thermal resistance from junction to ambient       | minimum footprint; mounted on<br>a printed circuit board | -   | 50   | -    | K/W  |



#### ...... . . Tabl .

#### 7. Characteristics

| Table 7.                   | Characteristics                   |                                                                                                            |     |      |      |      |
|----------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------|-----|------|------|------|
| Symbol                     | Parameter                         | Conditions                                                                                                 | Min | Тур  | Мах  | Unit |
| Static cha                 | aracteristics                     |                                                                                                            |     |      |      |      |
| V <sub>(BR)DSS</sub>       | drain-source breakdown voltage    | $I_D = 250 \ \mu A; \ V_{GS} = 0 \ V; \ T_j = -55 \ ^\circ C$                                              | 54  | -    | -    | V    |
|                            |                                   | $I_D = 250 \ \mu A; \ V_{GS} = 0 \ V; \ T_j = 25 \ ^\circ C$                                               | 60  | -    | -    | V    |
| $V_{\text{GS(th)}}$        | gate-source threshold voltage     | $I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_j = 25 \text{ °C};$<br>see <u>Figure 10</u> ; see <u>Figure 11</u> | 2   | 3    | 4    | V    |
| V <sub>GSth</sub>          | gate-source threshold voltage     | $I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_j = -55 \text{ °C};$<br>see Figure 11                              | -   | -    | 4.8  | V    |
|                            |                                   | $I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_j = 175 \text{ °C};$<br>see <u>Figure 11</u>                       | 1   | -    | -    | V    |
| I <sub>DSS</sub>           | drain leakage current             | $V_{DS}=60~V;~V_{GS}=0~V;~T_{j}=25~^{\circ}C$                                                              | -   | 0.05 | 10   | μΑ   |
|                            |                                   | $V_{DS} = 60 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 125 \text{ °C}$                                        | -   | -    | 200  | μΑ   |
| I <sub>GSS</sub>           | gate leakage current              | $V_{GS}$ = -20 V; $V_{DS}$ = 0 V; $T_j$ = 25 °C                                                            | -   | 10   | 100  | nA   |
|                            |                                   | $V_{GS} = 20 \text{ V};  V_{DS} = 0 \text{ V};  T_j = 25 ^{\circ}\text{C}$                                 | -   | 10   | 100  | nA   |
| $R_{DSon}$                 | drain-source on-state resistance  | $V_{GS} = 10 \text{ V}; I_D = 25 \text{ A}; T_j = 175 \text{ °C};$<br>see Figure 12; see Figure 13         | -   | 8.6  | 10.1 | mΩ   |
|                            |                                   | $V_{GS}$ = 10 V; $I_D$ = 25 A; $T_j$ = 100 °C;<br>see Figure 12; see Figure 13                             | -   | 5.98 | 7    | mΩ   |
|                            |                                   | $V_{GS}$ = 10 V; I <sub>D</sub> = 25 A; T <sub>j</sub> = 25 °C;<br>see <u>Figure 13</u>                    | -   | 3.74 | 4.4  | mΩ   |
| R <sub>G</sub>             | gate resistance                   | f = 1 MHz                                                                                                  | -   | 0.79 | -    | Ω    |
| Dynamic                    | characteristics                   |                                                                                                            |     |      |      |      |
| Q <sub>G(tot)</sub>        | total gate charge                 | $I_D = 0 \text{ A}; V_{DS} = 0 \text{ V}; V_{GS} = 10 \text{ V}$                                           | -   | 63   | -    | nC   |
|                            |                                   | $I_D = 25 \text{ A}; V_{DS} = 30 \text{ V}; V_{GS} = 10 \text{ V};$                                        | -   | 70.8 | -    | nC   |
| Q <sub>GS</sub>            | gate-source charge                | see <u>Figure 14;</u> see <u>Figure 15</u>                                                                 | -   | 19.5 | -    | nC   |
| Q <sub>GS(th)</sub>        | pre-threshold gate-source charge  |                                                                                                            | -   | 13.5 | -    | nC   |
| $Q_{GS(\text{th-pl})}$     | post-threshold gate-source charge |                                                                                                            | -   | 6    | -    | nC   |
| Q <sub>GD</sub>            | gate-drain charge                 |                                                                                                            | -   | 14.8 | -    | nC   |
| $V_{\text{GS}(\text{pl})}$ | gate-source plateau voltage       | $I_D = 25 \text{ A}; V_{DS} = 30 \text{ V}; \text{ see } \frac{\text{Figure } 14}{\text{Figure } 15};$     | -   | 4.3  | -    | V    |
| C <sub>iss</sub>           | input capacitance                 | $V_{DS} = 30 \text{ V}; V_{GS} = 0 \text{ V}; f = 1 \text{ MHz};$                                          | -   | 4426 | -    | pF   |
| C <sub>oss</sub>           | output capacitance                | $T_j = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 16}{16}$                                           | -   | 567  | -    | pF   |
| C <sub>rss</sub>           | reverse transfer capacitance      |                                                                                                            | -   | 293  | -    | pF   |
| t <sub>d(on)</sub>         | turn-on delay time                | $V_{DS} = 30 \text{ V}; \text{ R}_{L} = 1.2 \Omega; \text{ V}_{GS} = 10 \text{ V};$                        | -   | 26   | -    | ns   |
| t <sub>r</sub>             | rise time                         | $R_{G(ext)} = 4.7 \Omega$                                                                                  | -   | 24   | -    | ns   |
| $t_{d(off)}$               | turn-off delay time               |                                                                                                            | -   | 58   | -    | ns   |
| t <sub>f</sub>             | fall time                         |                                                                                                            | -   | 22   | -    | ns   |

Symbol

## **PSMN4R6-60BS**

Тур

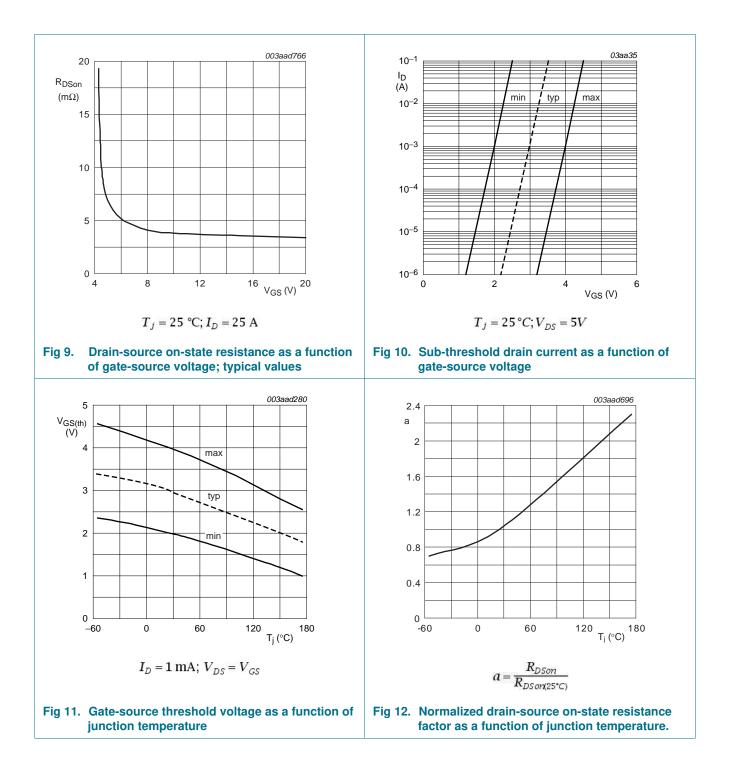
Unit

Max

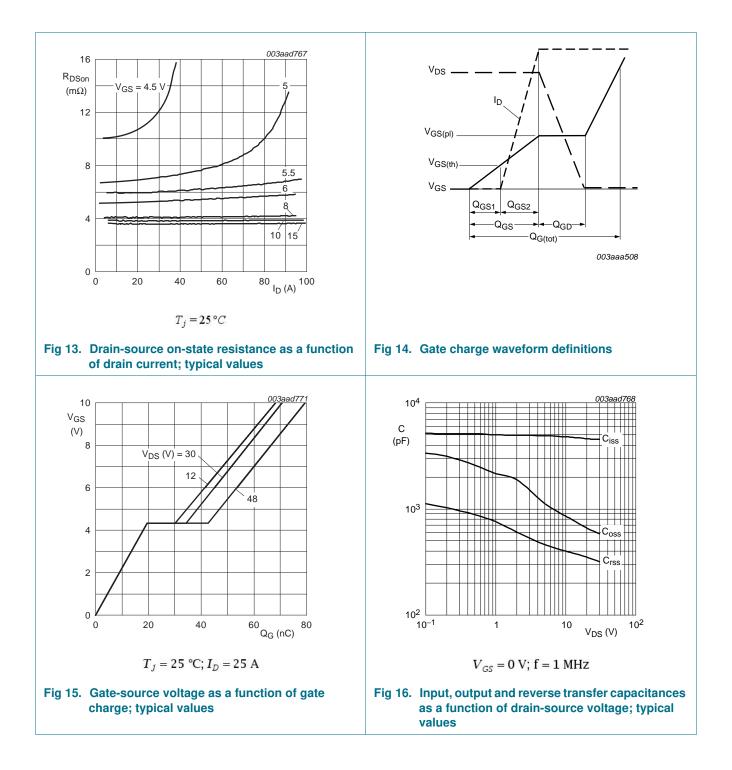
#### N-channel 60 V, 4.4 mΩ standard level MOSFET in D2PAK

Min

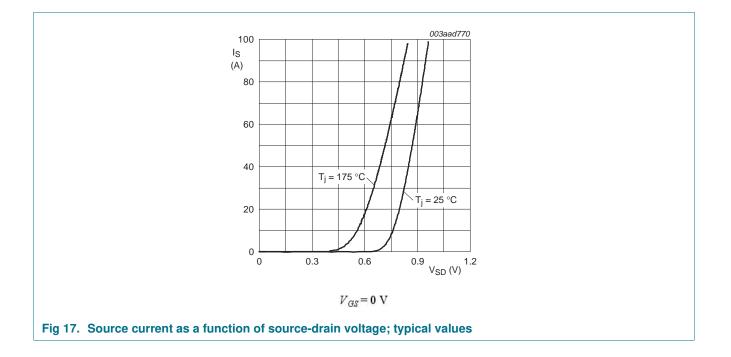
| ource-o                               | drain diode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      |                                                                                                                            |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |       |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------|
| SD                                    | source-drain voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I <sub>S</sub> = 25 A; V <sub>GS</sub> = 0 \<br>see <u>Figure 17</u> | /; T <sub>j</sub> = 25 °C;                                                                                                 | -                                                     | 0.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.1                                | V     |
| r                                     | reverse recovery time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I <sub>S</sub> = 25 A; dI <sub>S</sub> /dt = -                       |                                                                                                                            | -                                                     | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                  | ns    |
| ) <sub>r</sub>                        | recovered charge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $V_{GS} = 0 V; V_{DS} = 30$                                          | ) V                                                                                                                        | -                                                     | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                  | nC    |
| 10                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 003aad763                                                            | 100                                                                                                                        |                                                       | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 003aad769                          |       |
| I <sub>D</sub><br>(A)                 | 15 6 5.5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      | 9fs<br>(S)                                                                                                                 |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |       |
| 8                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                      | 80                                                                                                                         |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |       |
| 6                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                      | 60                                                                                                                         |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |       |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.5                                                                  |                                                                                                                            |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |       |
| 4                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                      | 40                                                                                                                         |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |       |
| 2                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s (V) = 4                                                            | 20                                                                                                                         |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |       |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      |                                                                                                                            |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |       |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      | o 🖾 🖾                                                                                                                      |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | _     |
|                                       | 0 0.5 1 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 VDS (V) 2                                                          | 0 20                                                                                                                       | 40                                                    | 60 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ) 100<br>In (A)                    | 0     |
|                                       | 0 0.5 1 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <sup>5</sup> V <sub>DS</sub> (V) <sup>2</sup>                        | 0 20                                                                                                                       |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ) <sub>ID</sub> (A) <sup>100</sup> | 0     |
|                                       | $T_j = 25 ^{\circ}C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <sup>5</sup> V <sub>DS</sub> (V) <sup>2</sup>                        | 0 20                                                                                                                       | 40<br>= 25 °C; V <sub>L</sub>                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ) 100<br>I <sub>D</sub> (A)        | D     |
| Fig 5.                                | 0 0.5 1 1. $T_j = 25 ^{\circ}C$<br>Output characteristics: drain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | current as a Fig                                                     | 0 20<br><i>T<sub>j</sub></i> :<br>6. Forward tra                                                                           | = 25 °C; $V_E$                                        | $\sigma_{S}=10~{ m V}$ ance as a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |       |
| Fig 5.                                | 0 0.5 1 1. $T_j = 25 ^{\circ}C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | current as a Fig<br>age; typical values                              | 0 20 $T_{j}$ :                                                                                                             | = 25 °C; $V_E$                                        | <sub>os</sub> = 10 V<br>ance as a<br>alues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ı functio                          |       |
| <b>Fig 5.</b><br>10                   | 0 0.5 1 1.<br>$T_j = 25 ^{\circ}C$<br>Output characteristics: drain<br>function of drain-source volta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | current as a Fig                                                     | 0 20<br><i>T<sub>j</sub></i> :<br>6. Forward tra                                                                           | = 25 °C; $V_E$                                        | <sub>os</sub> = 10 V<br>ance as a<br>alues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |       |
| Fig 5.<br>10<br>I <sub>D</sub>        | 0 0.5 1 1.<br>$T_j = 25 ^{\circ}C$<br>Output characteristics: drain<br>function of drain-source volta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | current as a Fig<br>age; typical values                              | 0 20<br><i>T<sub>j</sub></i> :<br>6. Forward train<br>drain current<br>8000<br>C                                           | = 25 °C; $V_E$                                        | <sub>os</sub> = 10 V<br>ance as a<br>alues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 003aad764                          |       |
| <b>Fig 5.</b><br>10                   | 0 0.5 1 1.<br>$T_j = 25 ^{\circ}C$<br>Output characteristics: drain<br>function of drain-source volta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | current as a Fig<br>age; typical values                              | 0 20<br>T <sub>j</sub> =<br>6. Forward train<br>drain current<br>8000<br>C<br>(pF)                                         | = 25 °C; $V_E$                                        | <sub>os</sub> = 10 V<br>ance as a<br>alues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ı functio                          |       |
| Fig 5.<br>10<br>I <sub>D</sub><br>(A) | 0 0.5 1 1.<br>$T_j = 25 ^{\circ}C$<br>Output characteristics: drain<br>function of drain-source volta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | current as a Fig<br>age; typical values                              | 0 20<br><i>T<sub>j</sub></i> :<br>6. Forward train<br>drain current<br>8000<br>C                                           | = 25 °C; $V_E$                                        | <sub>os</sub> = 10 V<br>ance as a<br>alues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 003aad764                          |       |
| Fig 5.<br>10<br>(A)<br>8              | 0 0.5 1 1.<br>$T_j = 25 ^{\circ}C$<br>Output characteristics: drain<br>function of drain-source volta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | current as a Fig<br>age; typical values                              | 0 20<br>T <sub>j</sub> =<br>6. Forward train<br>drain current<br>8000<br>C<br>(pF)                                         | = 25 °C; $V_E$                                        | <sub>os</sub> = 10 V<br>ance as a<br>alues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 003aad764<br>C <sub>iss</sub>      |       |
| Fig 5.<br>10<br>(A)<br>8              | 0 0.5 1 1.<br>$T_j = 25 ^{\circ}C$<br>Output characteristics: drain<br>function of drain-source volta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | current as a Fig<br>age; typical values                              | 0 20<br><i>T<sub>j</sub></i> =<br>6. Forward train<br>drain current<br>8000<br>C<br>(pF)<br>6000                           | = 25 °C; $V_E$                                        | <sub>os</sub> = 10 V<br>ance as a<br>alues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 003aad764                          |       |
| Fig 5.<br>10<br>(A)<br>8              | 0 0.5 1 1.<br>$T_j = 25 ^{\circ}C$<br>Output characteristics: drain<br>function of drain-source volta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | current as a Fig<br>age; typical values                              | 0 20<br>T <sub>j</sub> =<br>6. Forward train<br>drain current<br>8000<br>C<br>(pF)                                         | = 25 °C; $V_E$                                        | <sub>os</sub> = 10 V<br>ance as a<br>alues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 003aad764<br>C <sub>iss</sub>      |       |
| Fig 5.<br>10<br>(A)<br>8              | 0 0.5 1 1.<br>$T_j = 25 ^{\circ}C$<br>Output characteristics: drain<br>function of drain-source volta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | current as a Fig<br>age; typical values                              | 0 20<br><i>T<sub>j</sub></i> =<br>6. Forward train<br>drain current<br>8000<br>C<br>(pF)<br>6000                           | = 25 °C; $V_E$                                        | <sub>os</sub> = 10 V<br>ance as a<br>alues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 003aad764<br>C <sub>iss</sub>      |       |
| Fig 5.<br>10<br>(A)<br>8              | 0 0.5 1 1.<br>$T_j = 25 ^{\circ}C$<br>Output characteristics: drain<br>function of drain-source volta<br>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Current as a age; typical values                                     | 0 20<br><i>T<sub>j</sub></i> =<br>6. Forward train<br>drain current<br>8000<br>C<br>(pF)<br>6000<br>4000                   | = 25 °C; $V_E$                                        | <sub>os</sub> = 10 V<br>ance as a<br>alues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 003aad764<br>C <sub>iss</sub>      |       |
| Fig 5.<br>10<br>(A)<br>8<br>6         | 0 0.5 1 1.<br>$T_j = 25 ^{\circ}C$<br>Output characteristics: drain<br>function of drain-source volta<br>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | current as a Fig<br>age; typical values                              | 0 20<br><i>T<sub>j</sub></i> =<br>6. Forward train<br>drain current<br>8000<br>C<br>(pF)<br>6000                           | = 25 °C; $V_E$                                        | <sub>os</sub> = 10 V<br>ance as a<br>alues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 003aad764<br>C <sub>iss</sub>      |       |
| Fig 5.<br>10<br>(A)<br>8<br>6         | 0 0.5 1 1.<br>$T_j = 25 ^{\circ}C$<br>Output characteristics: drain<br>function of drain-source volta<br>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Current as a age; typical values                                     | 0 20<br><i>T<sub>j</sub></i> =<br>6. Forward train<br>drain current<br>8000<br>C<br>(pF)<br>6000<br>4000                   | = 25 °C; $V_E$                                        | <sub>os</sub> = 10 V<br>ance as a<br>alues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 003aad764<br>C <sub>iss</sub>      |       |
| Fig 5.<br>10<br>(A)<br>8<br>4<br>2    | 0 0.5 1 1.<br>$T_j = 25 ^{\circ}C$<br>Output characteristics: drain<br>function of drain-source volta<br>0 0 1 1 1.<br>0 0 1 0 1.<br>0 0 0 1.<br>0 0 0 0 0 0.<br>0 0 0.<br>0 0 0 0.<br>0 0 0. | Current as a age; typical values                                     | 0 20<br><i>T<sub>j</sub></i> =<br>6. Forward tran<br>drain curren<br>8000<br>C<br>(pF)<br>6000<br>4000<br>2000             | = 25 °C; $V_E$                                        | <sub>os</sub> = 10 V<br>ance as a<br>alues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 003aad764<br>C <sub>iss</sub>      |       |
| Fig 5.<br>10<br>(A)<br>8<br>4<br>2    | 0 0.5 1 1.<br>$T_j = 25 ^{\circ}C$<br>Output characteristics: drain<br>function of drain-source volta<br>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Current as a age; typical values                                     | 0 20<br><i>T<sub>j</sub></i> =<br>6. Forward train<br>drain current<br>8000<br>C<br>(pF)<br>6000<br>4000                   | = 25 °C; $V_E$                                        | estimate as a second se | 003aad764<br>C <sub>iss</sub>      | on of |
| Fig 5.<br>10<br>(A)<br>8<br>4<br>2    | 0 0.5 1 1.<br>$T_j = 25 ^{\circ}C$<br>Output characteristics: drain<br>function of drain-source volta<br>0 T_j = 175 ^{\circ}C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Current as a age; typical values                                     | 0 20<br><i>T<sub>j</sub></i> :<br>6. Forward train<br>drain current<br>8000<br>C<br>(pF)<br>6000<br>4000<br>2000<br>0<br>0 | = 25 °C; V <sub>E</sub><br>nsconduct<br>nt; typical v | estimates a second seco | C <sub>rss</sub>                   | on of |


Conditions

#### Table 7. Characteristics ... continued Parameter

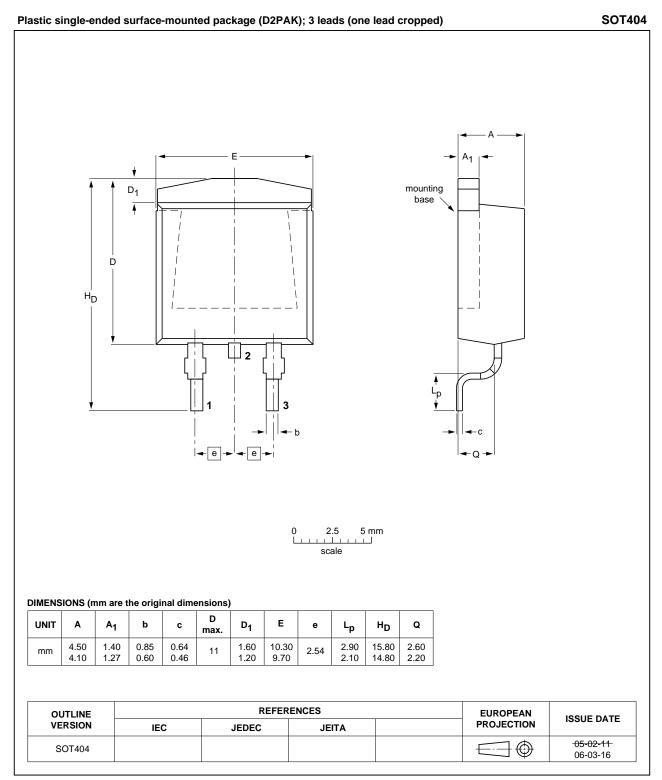

All information provided in this document is subject to legal disclaimers.

PSMN4R6-60BS


## PSMN4R6-60BS



## PSMN4R6-60BS




## PSMN4R6-60BS



#### N-channel 60 V, 4.4 mΩ standard level MOSFET in D2PAK

#### 8. Package outline



#### Fig 18. Package outline SOT404 (D2PAK)

All information provided in this document is subject to legal disclaimers.

PSMN4R6-60BS

#### 9. Revision history

| Table 8. Revision h | nistory      |                    |               |            |
|---------------------|--------------|--------------------|---------------|------------|
| Document ID         | Release date | Data sheet status  | Change notice | Supersedes |
| PSMN4R6-60BS v.1    | 20120322     | Product data sheet | -             | -          |

#### **10. Legal information**

#### **10.1 Data sheet status**

| Document status[1] [2]         | Product status <sup>[3]</sup> | Definition                                                                            |
|--------------------------------|-------------------------------|---------------------------------------------------------------------------------------|
| Objective [short] data sheet   | Development                   | This document contains data from the objective specification for product development. |
| Preliminary [short] data sheet | Qualification                 | This document contains data from the preliminary specification.                       |
| Product [short] data sheet     | Production                    | This document contains the product specification.                                     |

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <u>http://www.nexperia.com</u>.

#### **10.2 Definitions**

**Preview** — The document is a preview version only. The document is still subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

**Draft** — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

**Product specification** — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and

customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

#### **10.3 Disclaimers**

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

**Right to make changes** — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

**Quick reference data** — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

**Applications** — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

All information provided in this document is subject to legal disclaimers.

PSMN4R6-60BS

#### N-channel 60 V, 4.4 m $\Omega$ standard level MOSFET in D2PAK

Terms and conditions of commercial sale — Nexperia

products are sold subject to the general terms and conditions of commercial sale, as published at <a href="http://www.nexperia.com/profile/terms">http://www.nexperia.com/profile/terms</a>, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

**Export control** — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

**Non-automotive qualified products** — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the

#### 11. Contact information

For more information, please visit:http://www.nexperia.com

For sales office addresses, please send an email to:salesaddresses@nexperia.com

product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

**Translations** — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

#### **10.4 Trademarks**

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

#### N-channel 60 V, 4.4 m $\Omega$ standard level MOSFET in D2PAK

#### 12. Contents

| 1    | Product profile1         |
|------|--------------------------|
| 1.1  | General description1     |
| 1.2  | Features and benefits1   |
| 1.3  | Applications1            |
| 1.4  | Quick reference data1    |
| 2    | Pinning information2     |
| 3    | Ordering information2    |
| 4    | Marking2                 |
| 5    | Limiting values          |
| 6    | Thermal characteristics5 |
| 7    | Characteristics6         |
| 8    | Package outline11        |
| 9    | Revision history12       |
| 10   | Legal information13      |
| 10.1 | Data sheet status        |
| 10.2 | Definitions              |
| 10.3 | Disclaimers              |
| 10.4 | Trademarks14             |
| 11   | Contact information14    |