

MICROCIRCUIT DATA SHEET

CN54F240-X REV 0A0

Original Creation Date: 06/25/97 Last Update Date: 07/08/97 Last Major Revision Date: 06/25/97

OCTAL BUFFERS/LINE DRIVERS WITH TRI-STATE OUTPUTS

General Description

The F240 is an octal buffer and line driver designed to be employed as a memory and address driver, clock driver and bus oriented transmitter/receiver which provides improved PC and board density.

Industry Part Number

NS Part Numbers

54F240DC

54F240

Prime Die

M240

Processing	Subgrp	Description	Temp ($^{\circ}$ C)
Quality Conformance Inspection	1 2 3 4 5 6 7 8 8 8 9 10 11	Static tests at Static tests at Dynamic tests at Dynamic tests at Dynamic tests at Functional tests at Functional tests at Switching tests at Switching tests at	$ \begin{array}{r} +25 \\ +70 \\ 0 \\ +25 \\ +70 \\ 0 \\ +25 \\ +70 \\ 0 \\ +25 \\ +70 \\ 0 \\ +25 \\ +70 \\ 0 \end{array} $

Features

- Guaranteed 4000V minimum ESD protection
- TRI-STATE outputs drive bus lines or buffer memory address registers
- Outputs sink 64 mA (48 mA mil)
- 12 mA source current
- Input clamp diodes limit high-speed termination effects

(Absolute Maximum Ratings)

Storage Temperature	-65 C to +150 C
Ambient Temperature under Bias	
Junction Temperature under Bias	-55 C to +125 C
-	-55 C to +175 C
Vcc Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	
	-0.5V to +7.0V
Input Current (Note 2)	
Voltage Applied to Output in HIGH State (with Vcc=OV)	-30mA to +5.0mA
Standard Output TRI-STATE Output	-0.5V to Vcc -0.5V to +5.5V
Current Applied to Output in LOW State (Max)	twice the rated Iol(mA)
ESD Last Passing Voltage (Min)	4000V

Note 1: Absolute maximum ratings are those values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied. Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature Commercial 0 C to +70 C Supply Voltage Commercial +4.5V to +5.5V

Electrical Characteristics

DC PARAMETERS

(The following conditions apply to all the following parameters, unless otherwise specified.) DC: VCC 4.5V to 5.5V, Temp range: OC to +70C

SYMBOL	PARAMETER	CONDITIONS		PIN- NAME	MIN	мах	UNIT	SUB- GROUPS
VIH	Input HIGH Voltage	Recognized as a HIGH Signal	1	INPUTS	2.0		V	1, 2, 3
VIL	Input LOW Voltage Recognized as a LOW Signal 1		1	INPUTS		0.8	V	1, 2, 3
VCD	Input Clamp Diode Voltage	VCC=4.5V, IIN=-18mA	2, 3	INPUTS		-1.2	V	1, 2, 3
VOH	Output HIGH Voltage	VCC=4.5V, IOH=-3.0mA	2, 3	OUTPUTS	2.5		V	1, 2, 3
		VCC=4.75V, IOH=-3.0mA	2, 3	OUTPUTS	2.7		V	1, 2, 3
		VCC=4.5V, IOH=-15.0mA	2, 3	OUTPUTS	2.0		V	1, 2, 3
VOL	Output LOW Voltage	VCC=4.5V, IOL=64mA	2, 3	OUTPUTS		0.5	V	1, 2, 3
IIH	Input HIGH Current	VCC=5.5V, VIN=2.7V	2, 3	INPUTS		5.0	uA	1, 2, 3
IBVI	Input HIGH VCC=5.5V, VIN=7.0V 2, 3 IN Current Breakdown Test		INPUTS		7.0	uA	1, 2, 3	
ICEX	Output HIGH Leakage Current	VCC=5.5V, VOUT = VCC	2, 3	OUTPUTS		100	uA	1, 2, 3
VID	Input Leakage Test	VCC = 0.0V, IID = 1.9uA, All other pins grounded	2, 3	INPUTS	4.75		V	1, 2, 3
IOD	Output Leakage Circuit Current	VCC = 0.0V, VIOD = 150mV, All other pins grounded	2, 3	OUTPUTS		4.75	uA	1, 2, 3
IIL	Input LOW Current	VCC=5.5V, VIN=0.5V ($\overline{\text{OE}}$ 1, $\overline{\text{OE}}$ 2,OE2,Dn)	2, 3	INPUTS		-0.6	mA	1, 2, 3
IOZH	Output Leakage Current	VCC=5.5V, VOUT=2.7V	2, 3	OUTPUTS		50	uA	1, 2, 3
IOZL	Output Leakage Current	VCC=5.5V, VOUT=0.5V	2, 3	OUTPUTS		-50	uA	1, 2, 3
IOS	Output Short Circuit Current	VCC=5.5V, VOUT = 0V	2, 3	OUTPUTS	-100	-150	mA	1, 2, 3
IZZ	Bus Drainage Test	VCC=0.0V, VOUT=5.25V	2, 3	OUTPUTS		500	uA	1, 2, 3
ICCH	Power Supply Current	VCC=5.5V, VO = HIGH	2, 3	VCC		29	mA	1, 2, 3
ICCL	Power Supply Current	VCC=5.5V, VO = LOW	2, 3	VCC		75	mA	1, 2, 3
ICCZ	Z Power Supply VCC=5.5V, VO = HIGH Z Current		2, 3	VCC		63	mA	1, 2, 3

Electrical Characteristics

AC PARAMETERS

(The following conditions apply to all the following parameters, unless otherwise specified.) AC: CL=50pf, RL=500 OHMS, TR=2.5ns, TF=2.5ns SEE AC FIGS. Temp Range: OC to +70C

PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
Propagation Delay	VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C	2, 3	In to On/On	3.0	7.0	ns	9
		2, 3	In to On/On	3.0	8.0	ns	10, 11
Propagation Delay	VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C	2, 3	In to On/On	2.0	4.7	ns	9
		2, 3	In to On/On	2.0	5.7	ns	10, 11
Output Enable Time	VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C	2, 3	\overline{OE}/OE to \overline{On}/On	2.0	4.7	ns	9
		2, 3	\overline{OE}/OE to \overline{On}/On	2.0	5.7	ns	10, 11
Output Enable Time	VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C	2, 3	OE/OE to On/On	4.0	9.0	ns	9
		2, 3	\overline{OE}/OE to \overline{On}/On	4.0	10.0	ns	10, 11
Disable Enable Time	VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C	2, 3	OE/OE to On/On	2.0	5.3	nS	9
		2, 3	<u>OE</u> /OE to On/On	2.0	6.3	nS	10, 11
	Propagation Delay Propagation Delay Propagation Delay Output Enable Time Output Enable Time	Propagation DelayVCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70CPropagation DelayVCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70COutput Enable TimeVCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C	Propagation Delay VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C 2, 3 Propagation Delay VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C 2, 3 Output Enable Time VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C 2, 3 Output Enable Time VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C 2, 3 Output Enable Time VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C 2, 3 Disable Enable Time VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C 2, 3	PARAMETERCONDITIONSNOTESNAMEPropagation DelayVCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C2, 3In to $\overline{On/On}$ Propagation DelayVCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C2, 3In to $\overline{On/On}$ Output Enable TimeVCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C2, 3 \overline{OE}/OE to $\overline{On/On}$ Output Enable TimeVCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C2, 3 \overline{OE}/OE to $\overline{On/On}$ Output Enable TimeVCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C2, 3 \overline{OE}/OE to $\overline{On/On}$ Output Enable TimeVCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C2, 3 \overline{OE}/OE to $\overline{On/On}$ Disable Enable TimeVCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C2, 3 \overline{OE}/OE to $\overline{On/On}$ Disable Enable TimeVCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C2, 3 \overline{OE}/OE to $\overline{On/On}$ Disable Enable TimeVCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C2, 3 \overline{OE}/OE to $\overline{On/On}$	PARAMETER CONDITIONS NOTES NAME MIN Propagation Delay VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C 2, 3 In to \overline{On}/On 3.0 Propagation Delay VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C 2, 3 In to \overline{On}/On 2.0 Output Enable VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C 2, 3 \overline{OE}/OE 2.0 Output Enable VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C 2, 3 \overline{OE}/OE 2.0 Output Enable VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C 2, 3 \overline{OE}/OE 2.0 Output Enable VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C 2, 3 \overline{OE}/OE 4.0 Disable Enable VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C 2, 3 \overline{OE}/OE 4.0 Disable Enable VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C 2, 3 \overline{OE}/OE 2.0 Disable Enable VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C 2, 3 \overline{OE}/OE 2.0 Disable Enable VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C 2, 3 \overline{OE}/OE 2.0	PARAMETER CONDITIONS NOTES NAME MIN MAX Propagation Delay VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C 2, 3 In to On/On 3.0 7.0 Propagation Delay VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C 2, 3 In to On/On 3.0 8.0 Propagation Delay VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C 2, 3 In to On/On 2.0 4.7 Output Enable VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C 2, 3 OE/OE On/On 2.0 4.7 Output Enable VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C 2, 3 OE/OE On/On 2.0 5.7 Output Enable Time VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C 2, 3 OE/OE On/On 2.0 5.7 Output Enable Time VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C 2, 3 OE/OE On/On 4.0 10.0 Disable Enable Time VCC=+5.0V @ +25C, VCC=4.5V & 5.5V @ 0/+70C 2, 3 OE/OE On/On 2.0 5.3 OISON 2, 3 OE/OE On/On 2.0 5.3 5.3	$\frac{PARAMETER}{Propagation Delay} = \frac{VCC=+5.0V @ +25C, \\ VCC=4.5V & 5.5V @ 0/+70C \\ \hline \begin{tabular}{ c c c c } 2,3 & In to \\ \overline{On/On} & 3.0 & 7.0 & ns \\ \hline \begin{tabular}{ c c c c } 2,3 & In to \\ \overline{On/On} & 3.0 & 3.0 & 0.0 & ns \\ \hline \begin{tabular}{ c c c } 2,3 & In to \\ \overline{On/On} & 2.0 & 4.7 & ns \\ \hline \begin{tabular}{ c c c } 2,3 & In to \\ \overline{On/On} & 2.0 & 5.7 & ns \\ \hline \begin{tabular}{ c c } 2,3 & In to \\ \overline{On/On} & 2.0 & 5.7 & ns \\ \hline \begin{tabular}{ c c } 2,3 & In to \\ \overline{On/On} & 2.0 & 5.7 & ns \\ \hline \begin{tabular}{ c c } 2,3 & In to \\ \overline{On/On} & 2.0 & 5.7 & ns \\ \hline \begin{tabular}{ c c } 2,3 & In to \\ \overline{On/On} & 2.0 & 5.7 & ns \\ \hline \begin{tabular}{ c c } 2,3 & In to \\ \overline{On/On} & 2.0 & 5.7 & ns \\ \hline \begin{tabular}{ c c } 2,3 & In to \\ \overline{On/On} & 2.0 & 5.7 & ns \\ \hline \begin{tabular}{ c c } 2,3 & In to \\ \overline{On/On} & 2.0 & 5.7 & ns \\ \hline \begin{tabular}{ c c } 2,3 & In to \\ \overline{On/On} & 2.0 & In to \\ \hline \begin{tabular}{ c c } 2,3 & In to \\ \hline \begin{tabular}{ c c } 2,0 & In to \\ \hline \begin{tabular}{ c c } 2,3 & In to \\ \hline \begin{tabular}{ c c } 2,0 & In to \\ \hline \begin{tabular}{ c c } 2,3 & In to \\ \hline \begin{tabular}{ c c } 2,0 & In to \\ \hline \begin{tabular}{ c c } 2,3 & In to \\ \hline \begin{tabular}{ c c } 2,0 & In to \\ \hline \begin{tabular}{ c c } 2,3 & In to \\ \hline \begin{tabular}{ c c } 2,3 & In to \\ \hline \begin{tabular}{ c c } 2,0 & In to \\ \hline \begin{tabular}{ c } 2,3 & In to \\ \hline \begin{tabular}{ c } 2,3 & In to \\ \hline \begin{tabular}{ c } 2,3 & In to \\ \hline \begin{tabular}{ c } 2,3 & In to \\ \hline \begin{tabular}{ c } 2,3 & In to \\ \hline \begin{tabular}{ c } 2,3 & In to \\ \hline \begin{tabular}{ c } 2,3 & In to \\ \hline \begin{tabular}{ c } 2,0 & In to \\ \hline \begin{tabular}{ c } 2,3 & In to \\ \hline \begin{tabular}{ c } 2,3 & In to \\ \hline \begin{tabular}{ c } 2,0 & In to \\ \hline \begin{tabular}{ c } 2,3 & In to \\ \hline \begin{tabular}{ c } 2,0 & In to \\ \hline \begin{tabular}{ c } 2,1 & In to \\ \hline \begin{tabular}{ c } 2,1 & In to \\ \hline \begin{tabular}{ c } 2,1 & In to \\ \hline \begin{tabular}{ c } 2,1 & In to \\ \hline \begin{tabular}{ c } 2,1 & In to \\ \hline \bed{tabular} 2,1 & In to \\ \hline \begin{tabular}$

Note 1: Note 2: Note 3:

Guaranteed by applying specific input condition and testing VOL & VOH. Screen tested 100% on each device at +75C temperature only, subgroups A2 & A10. Sample tested (Method 5005, Table 1) on each MFG. lot at +75C temperature only,

subgroups A2 & A10.

Revision History

Rev	ECN #	Rel Date	Originator	Changes
0A0	M0001724	07/08/97		Legal issue with Fairchild, due to the Fairchild/National split, is forcing the change from CN74F which is 'Fairchilds' product code to CN54F which is 'Nationals' product code.