
HCSL-Compatible Clock Generator for PCI Express

General Description

The PL60203X is the smallest, high performance, lowest power, 2 differential output clock IC available for HCSL timing applications. PL60203X offers -130dBc at 10kHz offset at 100MHz, with a very low jitter (2ps TIE RMS), making it ideal for HCSL applications requiring small size and low power.

Datasheets and support documentation are available on Micrel's web site at: <u>www.micrel.com</u>.

Block Diagram

Features

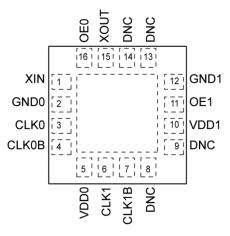
- Input frequency:
 - Fundamental crystal or reference input: 25MHz.
- Output frequency:
 - PL602031: 2 x 25MHz differential outputs.
 - PL602032: 2 x 100MHz differential outputs.
 - PL602033: 2 x 125MHz differential outputs.
 PL602034: 2 x 200MHz differential outputs.
- Very low jitter: 28ps peak-to-peak typical.
- Very low phase noise:
 - 130dBc at 10kHz offset at 100MHz.
- Compliant with PCI-Express Gen1, Gen2, and Gen3.
- Power supply range: 2.25V to 3.63V.
- Operating temperature range: -40°C to +85°C.
- Available in 16-pin QFN, RoHS and PFOS compliant package.

Applications

- Servers
- Storage systems
- Switches and routers
- Gigabit Ethernet
- Set-top boxes/DVRs

Ripple Blocker is a trademark of Micrel, Inc.

Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com


Ordering Information

Part Number ⁽¹⁾	Marking	Shipping	Junction Temperature Range	Package
PL602031UMG	602031	Tube	-40° to +85°C	16-Pin 3mm x 3mm QFN
PL602031UMG TR	602031	Tape and Reel	-40° to +85°C	16-Pin 3mm x 3mm QFN
PL602032UMG	602032	Tube	–40° to +85°C	16-Pin 3mm x 3mm QFN
PL602032UMG TR	602032	Tape and Reel	–40° to +85°C	16-Pin 3mm x 3mm QFN
PL602033UMG	602033	Tube	–40° to +85°C	16-Pin 3mm x 3mm QFN
PL602033UMG TR	602033	Tape and Reel	–40° to +85°C	16-Pin 3mm x 3mm QFN
PL602034UMG	602034	Tube	–40° to +85°C	16-Pin 3mm x 3mm QFN
PL602034UMG TR	602034	Tape and Reel	-40° to +85°C	16-Pin 3mm x 3mm QFN

Note:

1. The devices are RoHS and PFOS compliant.

Pin Configuration

16-Pin QFN (Top View)

Pin Description

Pin Number	Pin Name	Pin Type	Pin Function
1	XIN, FIN	I	Crystal input pin or reference clock input.
2	GND0	I	GND connection for CLK0.
3, 4	CLK0[0:1]	0	Differential clock output pair
5	VDD0	Р	VDD connection for CLK0
6, 7	CLK1[0:1]	0	Differential clock output pair
10	VDD1	Р	VDD connection for CLK1
11	OE1	I	Output enable pin for CLK1. High=Enabled, Low=Disabled. OE1 has a 60KΩ pull-up resistor.
12	GND1	Р	GND connection for CLK1
15	XOUT	0	Crystal output pin
16	OE0	I	Output enable pin for CLK0. High=Enabled, Low=Disabled. OE0 has a 60KΩ pull-up resistor.
8, 9 13, 14	DNC		Do not connect.
	ePad		Center pad for thermal relief. Connect to GND.

Absolute Maximum Ratings⁽²⁾

Supply Voltage (V _{IN})	+4.6V
Lead Temperature (soldering, 10s)	
Storage Temperature (T _S)	150°C
ESD Rating ⁽³⁾	2.0kV

Operating Ratings⁽⁴⁾

Supply Voltage (V _{IN})	–0.5V to +4.6V
Ambient Temperature (T _A)	40°C to +85°C
Package Thermal Resistance ⁽⁵⁾	
QFN Still-air (θ _{JA})	
QFN Junction-to-board (ψ_{JB}) .	

AC Electrical Characteristics⁽⁶⁾

Parameter	Condition	Min.	Тур.	Max.	Units
Crystal input frequency	Fundamental crystal		25		MHz
Input (F _{IN}) frequency			25		MHz
Input (FIN) signal amplitude	Internally AC coupled	0.9		V _{DD}	Vpp
	PL602031		25		MHz
Output frequency	PL602032		100		MHz
Output frequency	PL602033		125		MHz
	PL602034		200		MHz
Output enable time	OE function, $T_A=25^{\circ}$ C, add one clock period to this measurement for a useable clock output.			10	ns
Output disable time	OE function, $T_A=25^{\circ}C$			10	ns
Setting time	At power up ($V_{DD} \ge 2.25V$)			10	ms
VDD sensitivity	Frequency vs. $V_{DD} \pm 10\%$, crystal input only.	-2		2	ppm
Output rise time	20/80%		0.3	0.5	ns
Output fall time	20/80%		0.3	0.5	ns
Duty cycle	At V _{DD} /2	45	50	55	%
Period jitter, peak-to-peak	With capacitive decoupling between V_{DD} and GND at 100MHz; 10,000 samples measured		28		ps
Phase jitter, RMS	For 10kHz to 10MHz integration range		2.1		ps

 V_{DD} = 3.3V ±10% or 2.5V ±10%, T_{A} = -40°C to +85°C, HCSL termination applied.

DC Electrical Characteristics⁽⁶⁾

 V_{DD} = 3.3V ±10% or 2.5V ±10%, T_{A} = -40°C to +85°C, HCSL termination applied.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
I _{DD}	Supply current, dynamic	At 100MHz, no load		50	70	mA
V _{DD}	Operating voltage		2.25		3.63	V
V _{OL}	Output low voltage	HCSL termination,			0.05	V
V _{OH}	Output high voltage	(RS = 150Ω, RT = 49.9Ω) 3.3V (RS = 100Ω, RT = 49.9Ω) 2.5V	0.65	0.75	0.85	V

Crystal Characteristics⁽⁶⁾

 $V_{DD} = 3.3V \pm 10\%$ or 2.5V $\pm 10\%$, $T_A = -40^{\circ}C$ to $+85^{\circ}C$.

Symbol	Parameter	Min.	Тур.	Max.	Units
F _{XIN}	Fundamental crystal resonator		25		MHz
C _{L (XTAL)}	Crystal load rating		18		pF
	Maximum sustainable drive level			500	μW
	Operating drive level		100		μW
C0	Crystal shunt capacitance			6	pF
ESR	Effective series resistance, fundamental			45	Ω

Notes:

- 2. Exceeding the absolute maximum ratings may damage the device.
- 3. Devices are ESD sensitive. Handling precautions are recommended. Human body model, 1.5k in series with 100pF.
- 4. The device is not guaranteed to function outside its operating ratings.
- Package thermal resistance assumes exposed pad is soldered (or equivalent) to the device's most negative potential on the PCB. θ_{JA} and ψ_{JB} values are determined for a 4-layer board in still-air number, unless otherwise stated.
- 6. Specification for packaged product only

PCI Express/HCSL Compatible Layout Guidelines

Figure 1 below demonstrates how to terminate the complementary LVCMOS outputs of PL60203X for use with HCSL inputs.

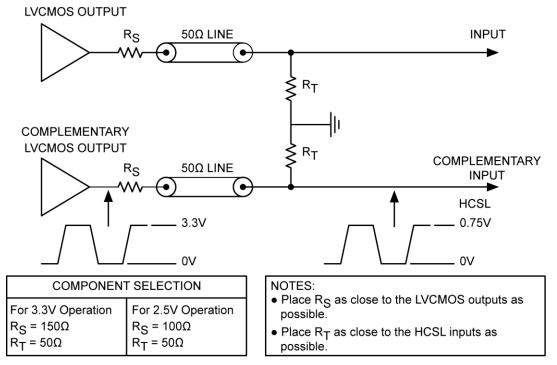


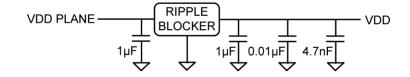
Figure 1. Terminating the complementary LVCMOS outputs for use with HCSL inputs.

Micrel, Inc.

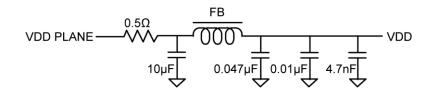
 Keep all the PCB traces to PL60203X as short as possible. Also keep all other traces as far away from PL60203X as possible.

PCB Layout Considerations for Performance Optimization

The following guidelines are designed to assist you with a performance-optimized PCB design:

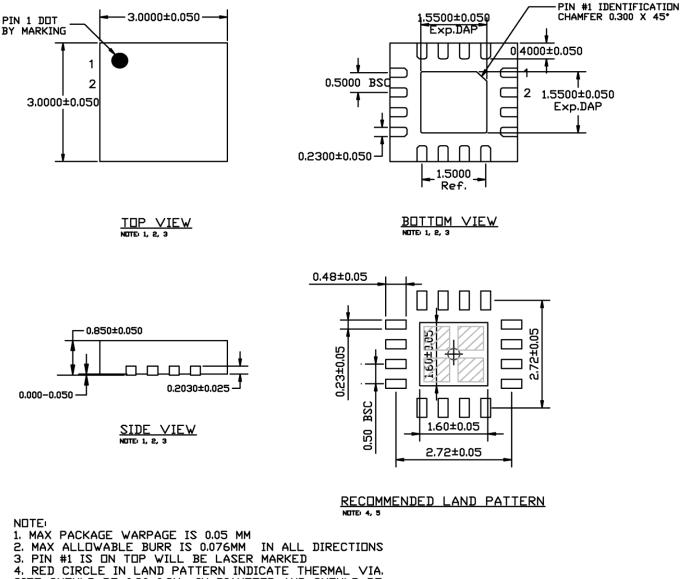

- Place the crystal as close as possible to both crystal pins of the device. This will reduce the cross-talk between the crystal and the other signals.
- Separate crystal pin traces from the other signals on the PCB, but allow ample distance between the two crystal pin traces.
- Place a 0.01µF decoupling capacitor between VDD and GND on the component side of the PCB, close to the VDD pin. It is not recommended to place this component on the backside of the PCB.

Power Supply Filtering Recommendations



When connecting long traces (>1 inch) to a CMOS output, it is important to design the traces as a transmission line, or "stripline", to avoid reflections or ringing. In this case, the CMOS output needs to be matched to the trace impedance. Usually, "striplines" are designed for 50Ω impedance and CMOS outputs usually have an impedance of less than 50Ω, so matching can be achieved by adding a resistor in series with the CMOS output pin to the "stripline" trace.

Preferred filter, using Micrel MIC94300 or MIC94310 Ripple Blocker™:



Alternative, traditional filter, using a ferrite bead:

7

Package Information⁽⁷⁾

3. PIN #1 IS ON TOP WILL BE LASER MARKED 4. RED CIRCLE IN LAND PATTERN INDICATE THERMAL VIA. SIZE SHOULD BE 0.30-0.3M IN DIAMETER AND SHOULD BE CONNECTED TO GND FOR MAX THERMAL PERFORMANCE 5. GREEN RECTANGLES (SHADED AREA) INDICATE SOLDER STENCIL OPENING ON EXPOSED PAD AREA. SIZE SHOULD BE 0.60×0.60 MM IN SIZE, 0.20 MM SPACING.

16-Pin QFN

Note:

7. Package information is correct as of the publication date. For updates and most current information, go to: <u>www.micrel.com</u>.

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB <u>http://www.micrel.com</u>

Micrel makes no representations or warranties with respect to the accuracy or completeness of the information furnished in this data sheet. This information is not intended as a warranty and Micrel does not assume responsibility for its use. Micrel reserves the right to change circuitry, specifications and descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Micrel's terms and conditions of sale for such products, Micrel assumes no liability whatsoever, and Micrel disclaims any express or implied warranty relating to the sale and/or use of Micrel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2013 Micrel, Incorporated.