
International

 V_{CES} = 1200V $I_{C(Nominal)}$ = 100A $T_{J(max)}$ = 175°C $V_{CE(on)}$ typ = 1.6V @ I_{C} = 100A

Applications

- Medium Power Drives
- UPS
- HEV Inverter
- Welding
- Induction Heating

INSULATED GATE BIPOLAR TRANSISTOR

IRG7CH75UEF-R

G	С	Е
Gate	Collector	Emitter

Features –	→ Benefits
Low $V_{CE(ON)}$ and switching Losses	High efficiency in a wide range of applications and switching frequencies
Square RBSOA and Maximum Junction Temperature 175°C	Improved Reliability due to rugged hard switching performance and higher power capability
Positive V _{CE (ON)} Temperature Coefficient	Excellent current sharing in parallel operation
Integrated Gate Resistor	Easier Paralleling with Integrated Gate Resistor

Pass part number		Standa	rd Pack		
Base part number	Package Type	Form	Quantity	Orderable part number	
IRG7CH75UEF-R	Die on film	Wafer	1	IRG7CH75UEF-R	

Mechanical Parameter

Die Size	10.4 x 10.4	mm ²		
Minimum Street Width	75	μm		
Emiter Pad Size (Included Gate Pad)	See Die Drawing			
Gate Pad Size	1.0 x 1.7	mm ²		
Area Total / Active	108.2/81.3			
Thickness	120	μm		
Wafer Size	200	mm		
Notch Position	0	Degrees		
Maximum-Possible Chips per Wafer	236 pcs			
Passivation Front side	Silicon Nitride			
Front Metal	Al, Si (4µm)			
Backside Metal	AI- Ti - Ni- Ag (1kA°-1kA°-4kA°-6kA°)			
Die Bond	Electrically conductive epoxy or solder			
Reject Ink Dot Size	0.25 mm diameter minimum			

1

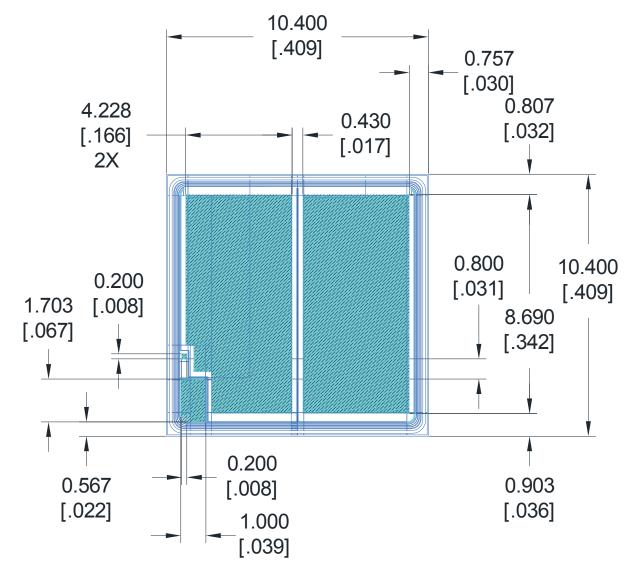
Maximum Ratings

	Parameter	Max.	Units
V _{CE}	Collector-Emitter Voltage, TJ=25°C	1200	V
l _c	DC Collector Current	0	A
I _{LM}	Clamped Inductive Load Current 2	400	Α
V _{GE}	Gate Emitter Voltage	± 30	V
T _J , T _{STG}	Operating Junction and Storage Temperature	-40 to +175	°C

Static Characteristics (Tested on wafers) . T_J=25°C

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage	1200				V _{GE} = 0V, I _C = 100µA ③
V _{CE(sat)}	Collector-to-Emitter Saturated Voltage			2.0	V	V _{GE} = 15V, I _C = 100A, T _J = 25°C
$V_{GE(th)}$	Gate-Emitter Threshold Voltage	3.0		6.0		$I_{C} = 5.0 \text{mA}$, $V_{GE} = V_{CE}$
I _{CES}	Zero Gate Voltage Collector Current		1.0	25	μA	V _{CE} = 1200V, V _{GE} = 0V
I _{GES}	Gate Emitter Leakage Current			± 400	nA	$V_{CE} = 0V, V_{GE} = \pm 30V$
R _{G INTERNAL}	Internal Gate Resistance	1.9	2.5	3.1	Ω	

Electrical Characteristics (Not subject to production test- Verified by design/characterization)


	Parameter	Min.	Тур.	Max.	Units	Conditions
. /			1.6			V_{GE} = 15V, I _C = 100A , T _J = 25°C ④
V _{CE(sat)}	Collector-to-Emitter Saturated Voltage		2.0		V	V _{GE} = 15V, I _C = 100A , T _J = 175°C④
						T _J = 175°C, I _C = 400A
RBSOA	BSOA Reverse Bias Safe Operating Area		FULL SQUARE			V _{CC} = 960V, Vp ≤1200V
						Rg = 5 Ω , V _{GE} = +20V to 0V
C _{iss}	Input Capacitance		12500			V _{GE} = 0V
C _{oss}	Output Capacitance		460		pF	V _{CE} = 30V
C _{rss}	Reverse Transfer Capacitance		320			f = 1.0MHz
Qg	Total Gate Charge (turn-on)	—	770			I _C = 100A
Q _{ge}	Gate-to-Emitter Charge (turn-on)	_	90	_	nC	V _{GE} = 15V
Q _{gc}	Gate-to-Collector Charge (turn-on)	_	330	_		V _{CC} = 600V

Switching Characteristics (Inductive Load-Not subject to production test-Verified by design/characterization)

	Parameter	Min.	Тур.	Max.	Units	Conditions (5)
t _{d(on)}	Turn-On delay time	—	120	_		I _C = 100A, V _{CC} = 600V
t _r	Rise time	—	100			R _G = 5Ω, V _{GE} =15V, L=100μH
t _{d(off)}	Turn-Off delay time	_	890			T _J = 25°C
t _f	Fall time	—	80		-	
t _{d(on)}	Turn-On delay time	_	80	_	ns	I _C = 100A, V _{CC} = 600V
t _r	Rise time	_	110			R _G = 5Ω, V _{GE} =15V, L= 100μH
t _{d(off)}	Turn-Off delay time		1060	_]	T _J = 175°C
t _f	Fall time	_	140			

Die Drawing

NOTES:

- 1. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 2. CONTROLLING DIMENSION: INCHES
- 3. DIE WIDTH AND LENGTH TOLERANCE: -0.0508 [.002]
- 4. DIE THICKNESS = 0.120 [.0047]

REFERENCE: IRG7CH75UB-R

Notes:

① The current in the application is limited by T_{JMax} and the thermal properties of the assembly. ② $V_{CC} = 80\%$ (V_{CES}), $V_{GE} = 20V$, $L = 100\mu$ H, $R_G = 5\Omega$. ③ Refer to AN-1086 for guidelines for measuring $V_{(BR)CES}$ safely ④ Die Level Characterization ⑤ Values influenced by parasitic L and C in measurement

Additional Testing and Screening

For Customers requiring product supplied as Known Good Die (KGD) or requiring specific die level testing, please contact your local IR Sales.

Shipping

Sawn Wafer on Film. Please contact your local IR sales office for non-standard shipping options

Handling

- Product must be handled only at ESD safe workstations. Standard ESD precautions and safe work environments are as defined in MIL-HDBK-263.
- Product must be handled only in a class 10,000 or better-designated clean room environment.
- Singulated die are not to be handled with tweezers. A vacuum wand with a non-metallic ESD protected tip should be used.

Wafer/Die Storage

- Proper storage conditions are necessary to prevent product contamination and/or degradation after shipment.
- Note: To reduce the risk of contamination or degradation, it is recommended that product not being used in the assembly process be returned to their original containers and resealed with a vacuum seal process.
- Sawn wafers on a film frame are intended for immediate use and have a limited shelf life.

Further Information

For further information please contact your local IR Sales office or email your enquiry to http://die.irf.com

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit <u>http://www.irf.com/whoto-call/</u>