

MICRO-OPTICS

INFRARED SOURCES

MASS FLOW DEVICES

LASER GAS DETECTION

Axetris AG

Schwarzenbergstrasse 10 CH-6056 Kaegiswil

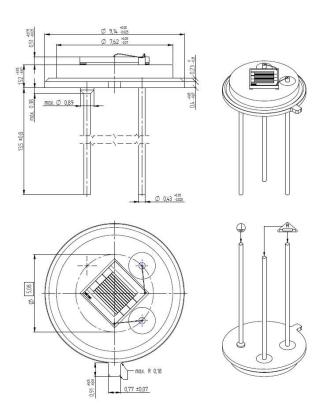
phone +41 41 662 76 76 fax +41 41 662 75 25

axetris@axetris.com www.axetris.com

EMIRS200_AT01T EMIRS200_AT02V

Thermal MEMS based infrared source

For direct electrical fast modulation


TO39 header

■ Infrared Source

Axetris infrared (IR) sources are micro-machined, electrically modulated thermal infrared emitters featuring true blackbody radiation characteristics, low power consumption, high emissivity and a long lifetime. The appropriate design is based on a resistive heating element deposited onto a thin dielectric membrane which is suspended on a micro-machined silicon structure.

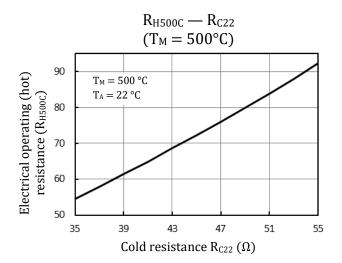
Infrared Gas Detection Applications

- Measurement principles: non-dispersive infrared spectroscopy (NDIR), photoacoustic infrared spectroscopy (PAS) or attenuated-total-reflectance FTIR spectroscopy (ATR)
- Target gases: CO, CO₂, VOC, NO_X, NH₃, SO_X, SF₆, hydrocarbons, humidity, anesthetic agents, refrigerants, breath alcohols
- Medical: Capnography, anesthesia gas monitoring, respiration monitoring, pulmonary diagnostics, blood gas analysis
- Industrial Applications: Combustible and toxic gas detection, refrigerant monitoring, flame detection, fruit ripening monitoring, SF₆ monitoring, semiconductor fabrication
- **Automotive:** CO₂ automotive refrigerant monitoring, alcohol detection & interlock, cabin air quality
- Environmental: Heating, ventilating and air conditioning (HVAC), indoor air quality and VOC monitoring, air quality monitoring

■ Features

- · Large modulation depth at high frequencies
- Broad band emission
- Low power consumption
- Long lifetime
- True black body radiation (2 to 14 μm)
- Very fast electrical modulation (no chopper wheel needed)
- Suitable for portable and very small applications
- Rugged MEMS design

■ Absolute Maximum Ratings (T_A = 22°C)


Parameter	Symbol	Rating	Unit
Heater membrane temperature ¹	T_{M}	500	°C
Optical output power (hemispherical spectral) $(T_M = 500^{\circ}C)$	P ₀₀	43	mW
Optical output power between 4 μ m and 5 μ m ($T_M = 500$ °C)	P _{s4-5}	5.6	mW
Optical output power between 6 μ m and 8 μ m ($T_M = 500$ °C)	P _{s6-8}	7.6	mW
Optical output power between 8 μ m and 10 μ m ($T_M = 500$ °C)	P _{s8-10}	4.6	mW
Optical output power between 10 μ m and 13 μ m ($T_M = 500$ °C)	P _{s10-13}	3.9	mW
Electrical cold resistance (at $T_M = T_A = 22$ °C)	R _{C22}	35 to 55	Ω
Electrical operating (hot) resistance ² (at $T_M = 500$ °C with $f = \ge 5$ Hz and $t_{on} \ge 8$ ms)	R _{H500C}	1.883 * RC22 - 12.02	Ω
Package temperature	T_{P}	80	°C
Storage temperature	T_S	-20 to +85	°C
Ambient temperature ³ (operation)	T_A	-40 to +125	°C
Heater area	A _H	2.1 x 1.8	mm ²
Frequency ⁴	f	5 to 50	Hz

Note: Emission power in this table is defined by hemispherical radiation. Stress beyond those listed under "absolute maximum ratings" may cause permanent damage to the device.

Note: Diagram R_{H500C} — $R_{C22} \mid (T_M = 500^{\circ}C)$

How to ensure that the maximum temperature for T_{M} is not exceeded:

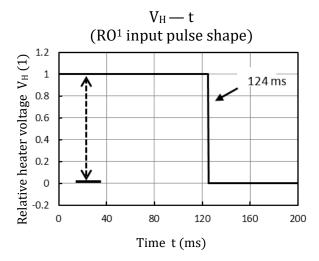
- 1. Determine electrical cold resistance R_{C} of the EMIRS device at TA=22 $^{\circ}\text{C}$
- 2. Ensure that anytime R_H does not exceed the representative limit as shown in this diagram with respect to these conditions:
 - a. $f \ge 5 \text{ Hz}$
 - b. on-time (pulse duration) $\geq 8 \text{ ms}$

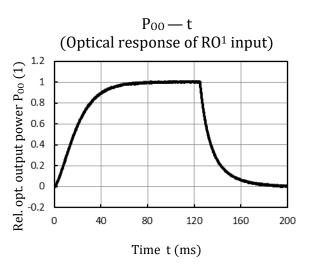
Electrical operating (hot) resistance R_H versus electrical cold resistance R_{C22} at $T_A = 22^{\circ}C$

 $^{^{\}rm 1}$ Temperatures above 500°C will impact drift and lifetime of the devices.

² See Diagram $R_H - R_C \mid (T_M = 500 \degree C)$

³ The environmental and package temperature might impact the lifetime and characteristic of the devices.

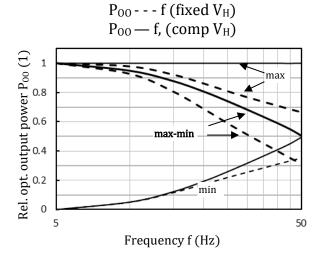

 $^{^{\}rm 4}$ Lower cut-off frequency of 5 Hz for designed thermodynamic state.


■ Ratings at Reference Operation (RO¹ T_A = 22°C)

Parameter	Symbol	Rating	Unit
Heater membrane temperature	T _M	< 500	°C
Duty cycle of rectangular V _H pulse	D	62	%
Frequency of rect. pulse shape ²	f_{ref}	5	Hz
On time constant of integral emissive power P ₀₀	$ au_{on}$	18	ms
Off time constant of integral emissive power P_{00}	$ au_{ m off}$	8	ms
Package temperature at T _A = 22°C	T_P	40 to 85	°C

Note: First order on-time model using τ_{on} : First order off-time model using τ_{off} :

Relative rectangular heater voltage (V_H) pulse with a relative pulse width of 124 ms at 5 Hz (time description of reference operation RO^1)


Optical response time (relative optical output power P_{00}) of a rectangular voltage pulse (RO¹ conditions)

¹ Reference Operation: combines lower cut-off frequency of 5 Hz and maximum modulation depth (max-min signal)

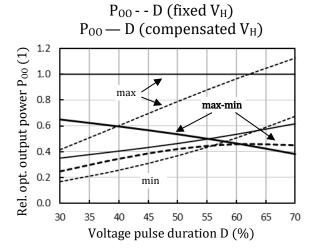
 $^{^{\}rm 2}$ Recommended frequencies from 5 Hz to 50 Hz

■ Typical Timing Characteristics Frequency (D = 62%)

Relative (to RO) max, min, max-min values of optical output power (P_{00}) versus frequency f with fixed and compensated V_{H}

Relative (to RO) electrical drive values heater voltage V_{H} and power P_{H} versus frequency f for compensation

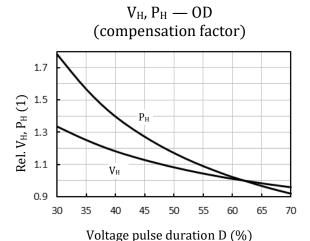
Note: Diagrams a, b $\underline{\text{Relative}}$ P₀₀, V_H, P_H to reference operation (RO) f=5 Hz, rect. pulse D=62%


 $\underline{\text{max:}}$ maximum value of P_{00} response shape $\underline{\text{min:}}$ minimum value of P_{00} response shape $\underline{\text{max-min:}}$ amplitude calculation of P_{00} resp. shape

 $\underline{\text{Fixed}}\ V_{\text{H}}$: same voltage for all frequencies.

 $\frac{Compensated}{voltage} \ V_H: \ for \ every \ frequency \ value, \ the \ voltage \ is \ adjusted \ to \ achieve \ the \ same \ maximum \ of \ P_{00} \ response \ shape \ as \ for \ 5 \ Hz.$

■ Typical Timing Characteristics Pulse Duration D¹ (f = 50 Hz)

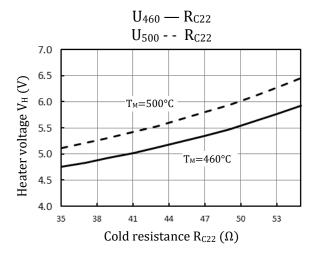

Relative (to D=62%) max, min, max-min values of optical output power (P_{00}) versus duty cycle D with fixed and compensated $V_{\rm H}$

Note: Diagrams a, b <u>Relative</u> P_{00} , V_H , P_H to reference operation (RO) f=50 Hz, rect. voltage pulse

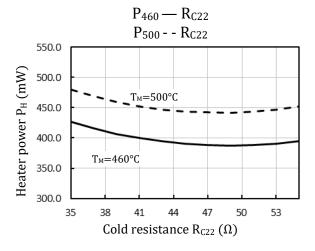
 $\underline{\text{max:}}$ maximum value of P_{00} response shape $\underline{\text{min:}}$ minimum value of P_{00} response shape $\underline{\text{max-min:}}$ amplitude calculation of P_{00} resp. shape

Fixed V_H: same voltage for all frequencies.

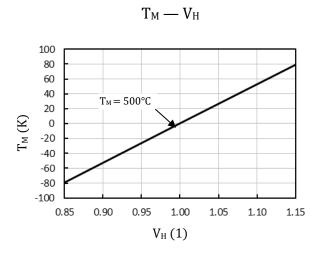
<u>Compensated</u> V_H : for every frequency value, the voltage is adjusted to achieve the same maximum of P_{00} response shape as for D=62%.

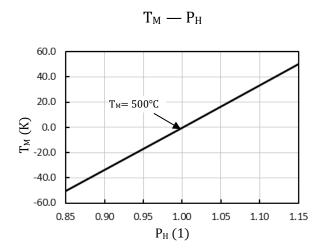

Relative (to RO) electrical drive values heater voltage V_H and power P_H versus duty cycle D for compensation

 $^{^1}$ Effective D shorter than 30% and voltage or power compensation at high frequencies (e.g. 20% @ 50 Hz) might impact the lifetime and characteristic of the devices because of additional stress in material layers.



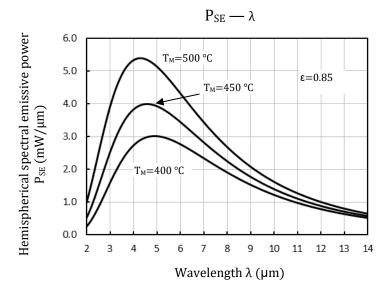
■ Typical electrical/thermal characteristics (RO, T_A = 22°C)


Parameter	Symbol	Rating	Unit
Peak chip membrane temperature	T_{M}	460/500	°C
Heater voltage	V_{H}	5.23/5.66	V
Heater power	P_{H}	394/446	mW

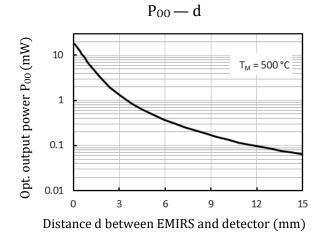

Mean 1 and upper bound of heater voltage V_H vs. cold resistance RC_{22}

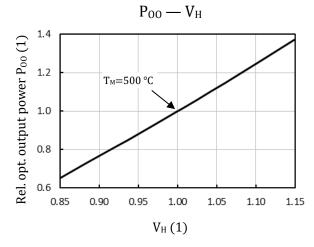
Mean 1 and upper bound of heater power P_{H} vs. cold resistance RC_{22}

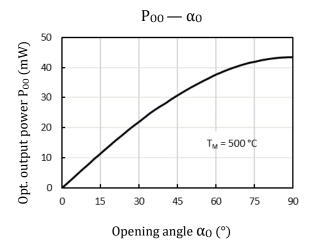
Relative change of membrane temperature (T_M) by changing heater voltage (V_H)

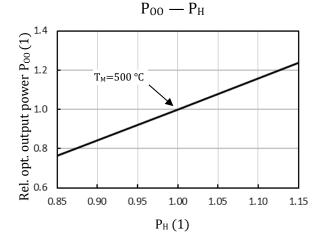


Relative change membrane temperature (T_M) by changing heater power (P_H)


 $^{^1}$ Recommended operation mode T_M =460°C, which ensures 95% confidence that the maximum temperature T_M = 500°C is not exceeded.


■ Typical Optical Characteristics (RO, T_A = 22°C)


Hemispherical spectral emissive power of EMIRS200 chip surface with a typical emissivity (mean from 2 to 14 μ m) of ϵ =0.85


Optical output power (P_{00}) versus distance d of a 1 mm² detection surface at 500°C T_M

Relative change of optical output power (P_{00}) by changing heater voltage (V_H)

Optical output power (P_{00}) versus opening angle α_0 (integral rotation of a cone) at 500°C T_M

Relative change of optical output power (P_{00}) by changing heater power (P_{H})