

J211 / MMBFJ211 N-Channel RF Amplifier

Description

This device is designed for HF/VHF mixer/amplifier and applications where process 50 is not adequate. Sufficient gain and low-noise for sensitive receivers. Sourced from process 90.

SOT-23

Figure 1. J211 Device Package

Figure 2. MMBFJ211 Device Package

Note: Source & Drain

Ordering Information

Part Number	Top Mark	Package	Packing Method
J211-D74Z	J211	TO-92 3L	Ammo
MMBFJ211	62W	SOT-23 3L	Tape and Reel

Absolute Maximum Ratings(1), (2)

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^{\circ}\text{C}$ unless otherwise noted.

Symbol	Parameter	Value	Unit
V_{DG}	Drain-Gate Voltage	25	V
V_{GS}	Gate-Source Voltage	-25	V
I _{GF}	Forward Gate Current	10	mA
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to 150	°C

Notes:

- 1. These ratings are based on a maximum junction temperature of 150°C.
- 2. These are steady-state limits. ON Semiconductor should be consulted on applications involving pulsed or low-duty-cycle operations.

Thermal Characteristics

Values are at $T_A = 25$ °C unless otherwise noted.

Symbol	Parameter	Max.		Unit
Symbol	raiailietei	J211 ⁽³⁾	MMBFJ211 ⁽³⁾	Oilit
P _D	Total Device Dissipation	350	225	mW
	Derate Above 25°C	2.8	1.8	mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	125		°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	357	556	°C/W

Note:

3. Device mounted on FR-4 PCB 36mm × 18mm × 1.5mm; mounting pad for the collector lead minimum 6cm².

Electrical Characteristics

Values are at $T_A = 25$ °C unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Max.	Unit		
Off Characte	Off Characteristics						
V _{(BR)GSS}	Gate-Source Breakdown Voltage	$I_G = 1.0 \mu A, V_{DS} = 0$	-25		V		
I _{GSS}	Gate Reverse Current	V _{GS} = 15 V, V _{DS} = 0		-100	рА		
V _{GS} (off)	Gate-Source Cut-Off Voltage	$V_{DS} = 15 \text{ V}, I_{D} = 1.0 \text{ nA}$	-2.5	-4.5	V		
On Characteristics							
I _{DSS}	Zero-Gate Voltage Drain Current ⁽⁴⁾	V _{DS} = 15 V, V _{GS} = 0	7.0	20	mA		
Small Signal Characteristics							
9 _{fs}	Common Source Forward Transconductance	V _{DS} = 15 V, V _{GS} = 0, f = 1.0 kHz	7000	12000	μmhos		
g _{oss}	Common Source Output Conductance	V _{DS} = 15 V, V _{GS} = 0, f = 1.0 kHz		200	μmhos		

Note:

4. Pulse test: pulse width ≤ 300 μs

Typical Performance Characteristics

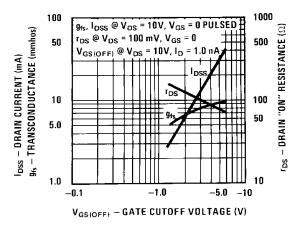


Figure 3. Parameter Interactions

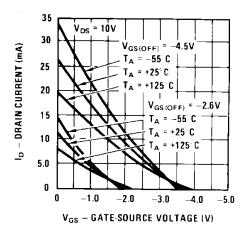


Figure 5. Transfer Characteristics

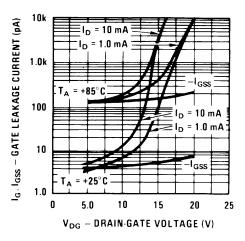


Figure 7. Leakage Current vs. Voltage

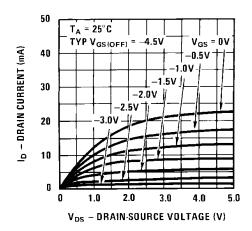


Figure 4. Common Drain-Source

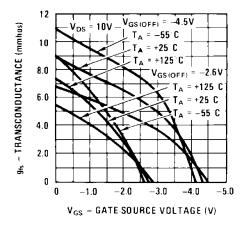


Figure 6. Transfer Characteristics

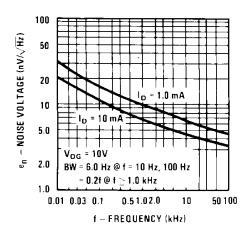


Figure 8. Noise Voltage vs. Frequency

Typical Performance Characteristics (Continued)

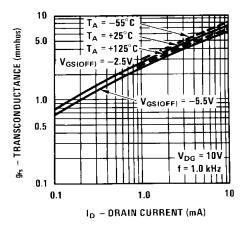


Figure 9. Transconductance vs. Drain Current

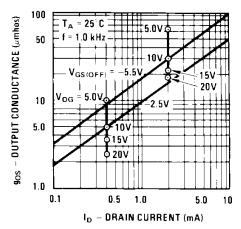


Figure 10. Output Conductance vs. Drain Current

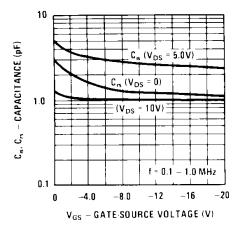


Figure 11. Capacitance vs. Voltage

Common Source Characteristics

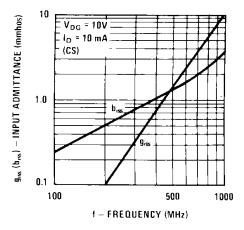


Figure 12. Input Admittance

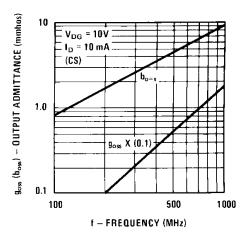


Figure 14. Output Admittance

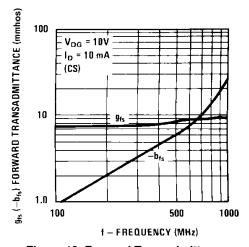


Figure 13. Forward Transadmittance

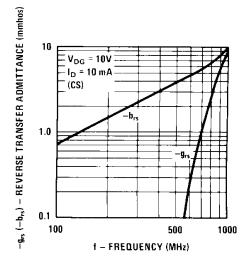


Figure 15. Reverse Transadmittance

Common Gate Characteristics

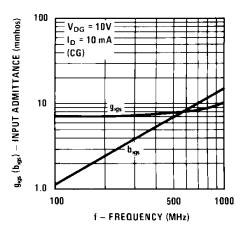


Figure 16. Input Admittance

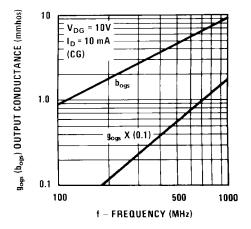


Figure 18. Output Admittance

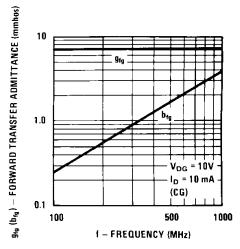


Figure 17. Forward Transadmittance

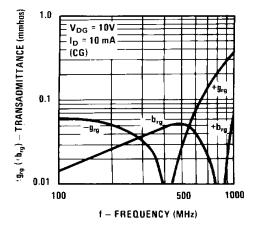
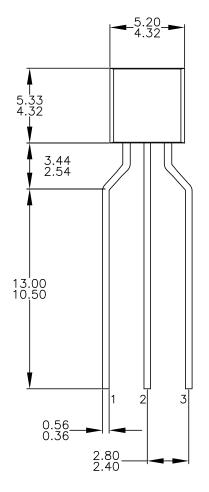
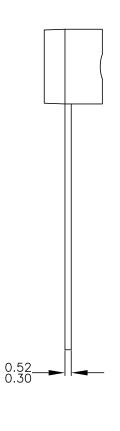
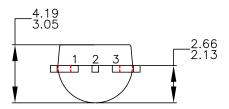





Figure 19. Reverse Transadmittance

Physical Dimensions

NOTES: UNLESS OTHERWISE SPECIFIED

- DRAWING CONFORMS TO JEDEC MS-013, VARIATION AC.
 ALL DIMENSIONS ARE IN MILLIMETERS.
 DRAWING CONFORMS TO ASME Y14.5M-2009.
 DRAWING FILENAME: MKT-ZAO3FREV3.
 FAIRCHILD SEMICONDUCTOR.

Figure 20. 3-Lead, TO-92, Molded, 0.2 In Line Spacing Lead Form

Physical Dimensions (Continued) 0.95 2.92±0.20 3 1.40 1.30+0.20 2.20 2 1 0.60 0.37 (0.29) -0.95 ⊕ 0.20M A B 1.00 1.90 - 1.90 LAND PATTERN RECOMMENDATION -1.20 MAX SEE DETAIL A (0.93)0.10 0.00 △ 0.10M C С 2.40±0.30 NOTES: UNLESS OTHERWISE SPECIFIED **GAGE PLANE** A) REFERENCE JEDEC REGISTRATION TO-236, VARIATION AB, ISSUE H. 0.23 B) ALL DIMENSIONS ARE IN MILLIMETERS. C) DIMENSIONS ARE INCLUSIVE OF BURRS, 0.08 0.25 MOLD FLASH AND TIE BAR EXTRUSIONS. D) DIMENSIONING AND TOLERANCING PER ASME Y14.5M - 1994. 0.20 MIN SEATING E) DRAWING FILE NAME: MA03DREV10 **PLANE** (0.55)**DETAIL A** SCALE: 2X

Figure 21. 3-LEAD, SOT23, JEDEC TO-236, LOW PROFILE

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative