


## SPEAKER-916-3-S9-WILDCAT-O-950

The 9 x 16 x 3 mm rectangular WILDCAT speaker is a high end miniature speaker specifically designed for portable devices, music phones and smartphones where high quality sound is required.

The use of a high performance magnet system leads to high sensitivity and coupled with a power handling capacity of 700mW. It enables extremely high sound pressure for the loudest 9x16x3mm speaker currently available on the market.



#### **Features:**

- Best-in-class 75dB (1W, 1m) sensitivity
- Maximum power handling capacity: 700mW
- Low THD between 4 and 8kHz due to lightweight membrane technology
- Designed for N'Bass<sup>™</sup> ultimate sound experience combined with Knowles N'Bass <sup>™</sup> technology
- Industry-standard dimensions: 9x16x3.0mm
- 100% in-line measurement of all specified acoustical and electrical parameters



Virtual Back Volume Technology

This document contains information which is confidential and/or proprietary to Knowles Electronics, LLC or its affiliates. Do not distribute or use the information contained herein without permission from an authorized representative of Knowles

www.knowles.com

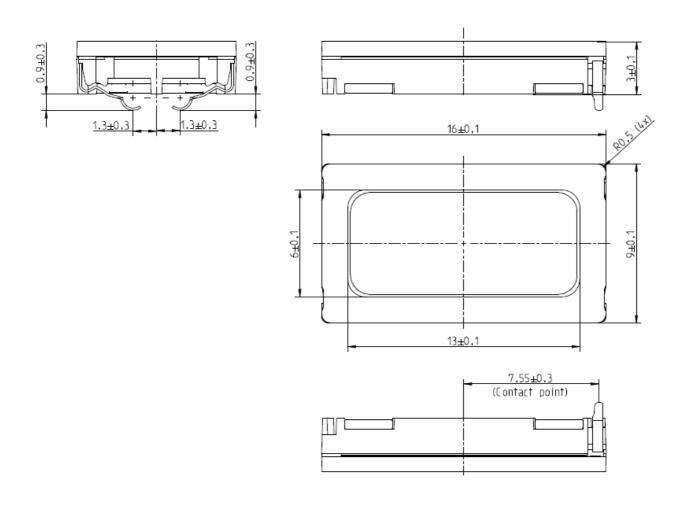
Page 1 of 21

# Contents

| 1. | Th         | eory of Operation                      | 3  |  |
|----|------------|----------------------------------------|----|--|
| 2. | Me         | echanical Layout and Dimensions        | 4  |  |
|    | 2.1.       | Main Dimensions                        | 4  |  |
|    | 2.2.       | PWB Layout & electric polarity         |    |  |
|    | 2.3.       | Magnetic polarity                      |    |  |
|    | 2.4.       | Spring Force                           |    |  |
|    | 2.5.       | Forces on Component                    |    |  |
|    | 2.6.       | Part Marking/Labeling                  |    |  |
|    | 2.7.       | Material List                          |    |  |
| 3. | Ele        | ectrical and Acoustical Specifications |    |  |
|    | 3.1.       | Frequency Response and THD             |    |  |
|    | 3.2.       | Electro-Acoustic Parameters            |    |  |
|    | 3.3.       | Power Handling                         |    |  |
|    | 3.4.       | Measurement Setup                      | 12 |  |
|    | 3.5.       | Measured Parameters                    |    |  |
|    | 3.6.       | Measurement adapter                    |    |  |
| 4. | En         | vironmental Conditions                 | 14 |  |
|    | 4.1.       | Storage                                | 14 |  |
|    | 4.2.       | Transportation                         | 14 |  |
|    | 4.3.       | Functionality                          | 14 |  |
| 5. | En         | vironmental Tests                      | 15 |  |
|    | 5.1.       | Qualification Tests                    | 15 |  |
|    | 5.2.       | Reliability Tests                      | 15 |  |
|    | 5.3.       | Sample Size, Sequence                  |    |  |
|    | 5.4.       | Period of Shelf-Life                   |    |  |
|    | 5.5.       | Testing Procedures                     | 15 |  |
| Re | lated      | l Documents                            | 20 |  |
| 6. | Ch         | ange History                           | 21 |  |
| 7. | Disclaimer |                                        |    |  |



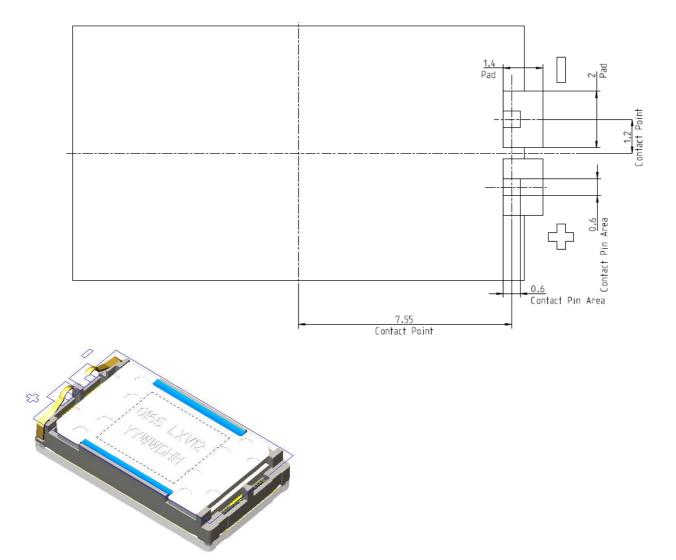



# 1. Theory of Operation

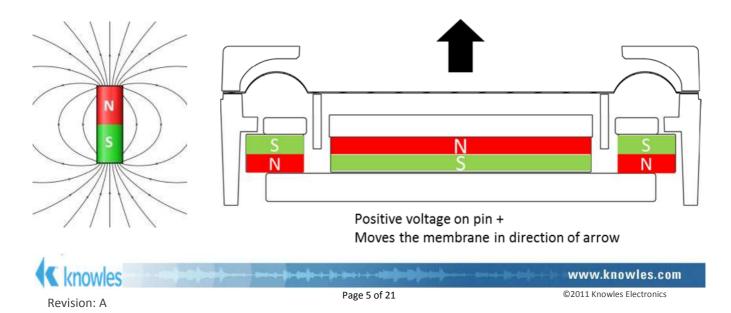
SPEAKER-916-3-S9-WILDCAT-O-950 is a high end micro size speaker specifically designed for mobile phones and other mobile applications where high quality sound is needed and only very little space for components is available.



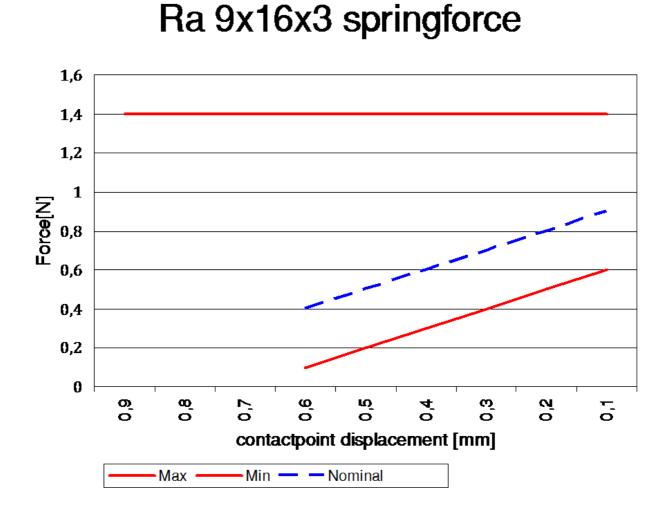
# 2. Mechanical Layout and Dimensions


## 2.1. Main Dimensions



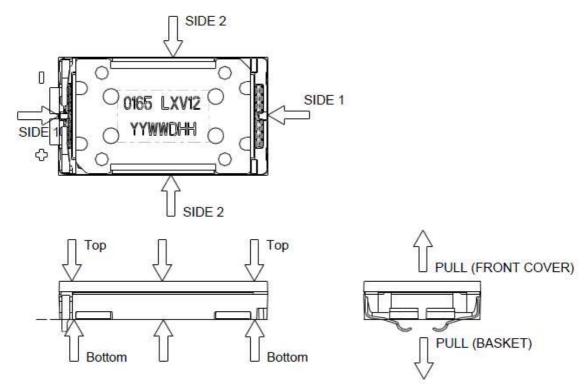


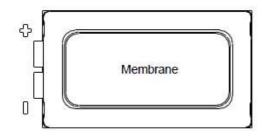

www.knowles.com


## 2.2. PWB Layout & electric polarity



2.3. Magnetic polarity





## 2.4. Spring Force





## 2.5. Forces on Component

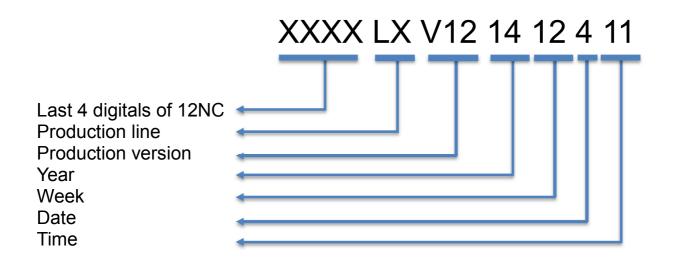




| STATE                                                       | MINIMUM AREA OF<br>FORCE APPLIED | MAXIMUM<br>PERMANENT FORCE | MAXIMUM<br>HANDLING FORCE |
|-------------------------------------------------------------|----------------------------------|----------------------------|---------------------------|
| JIAIL                                                       | [mm <sup>2</sup> ]               | [N]                        | [N]                       |
| FROM FRONT (DISTRIBUTED TO<br>GASKET AREA TO BACK (BASKET)) | -                                | 10                         | 25                        |
| FROM SIDE 1 TO SIDE 1                                       | 3                                | 10                         | 20                        |
| FROM SIDE 2 TO SIDE 2                                       | 10                               | 10                         | 20                        |
| ТО РОТ                                                      | -                                | 10                         | 25                        |
| TO MEMBRANE                                                 | -                                | 0                          | 0                         |
| PULL OFF FORCE (COVER/BASKET)                               | -                                | -                          | 10                        |






## 2.6. Part Marking/Labeling

The products have a serial number on bottom side, and laser on POT

#### Auto Line/ Semi Line:



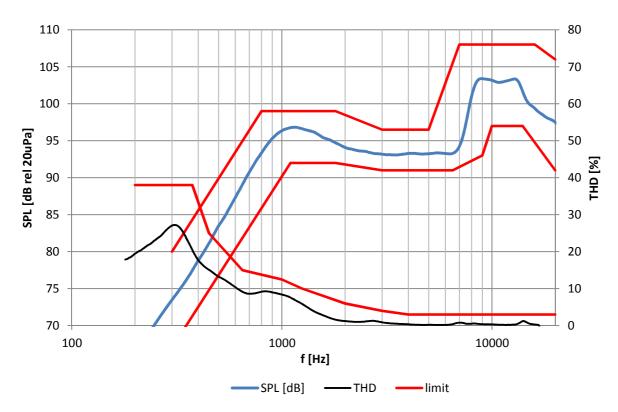
| BAR CODE: | <mark>XXXX</mark> LXV12 <mark>1412411</mark> | <mark>XXXX</mark> LX <mark>V12</mark> 1412411 |  |  |
|-----------|----------------------------------------------|-----------------------------------------------|--|--|
| Position  | Item                                         | Example                                       |  |  |
| 1         | Product 12NC [last 4 digitals]               | <mark>0165</mark>                             |  |  |
| 2         | Production Line                              | LX                                            |  |  |
| 3         | Product Version                              | V12                                           |  |  |
| 4         | Year/Week/Date/Time                          | <mark>1412411</mark>                          |  |  |





## 2.7. Material List

- 1. Material of basket:
- 2. Material of membrane:
- 3. Material of pot:
- 4. Material of magnet:
- 5. Material of contact
- 6. Material of cover:
- 7. Dimensions:
- 8. Mass:


Polycarbonate PEEK-Compound Soft magnetic Iron Nd Fe B CrNi-Steel, gold plated Polycarbonate 9x16x3.0mm 1.2g



# **3.** Electrical and Acoustical Specifications

Typical frequency response measured on baffle acc. Chapter 3.4 distance d=10cm, with rear volume 1cm<sup>3</sup> at 2.37V (700mW)

### 3.1. Frequency Response and THD



|        | Tolerance window                      |        |                                    |        |                       |  |  |
|--------|---------------------------------------|--------|------------------------------------|--------|-----------------------|--|--|
| f [Hz] | lower limit<br>[dB SPL]<br>(floating) | f [Hz] | upper limit<br>[dB SPL] (floating) | F [Hz] | upper limit<br>[%THD] |  |  |
| 300    | 67                                    | 300    | 80                                 | 200    | 38                    |  |  |
| 1100   | 92                                    | 800    | 99                                 | 375    | 38                    |  |  |
| 1800   | 92                                    | 1800   | 99                                 | 450    | 25                    |  |  |
| 3000   | 91                                    | 3000   | 97                                 | 650    | 15                    |  |  |
| 6500   | 91                                    | 5000   | 97                                 | 1000   | 13                    |  |  |
| 9000   | 93                                    | 7000   | 108                                | 1250   | 10                    |  |  |
| 10000  | 97                                    | 16000  | 108                                | 2000   | 6                     |  |  |
| 14000  | 97                                    | 20000  | 106                                | 3000   | 4                     |  |  |
| 20000  | 91                                    |        |                                    | 4000   | 3                     |  |  |
|        |                                       |        |                                    | 20000  | 3                     |  |  |

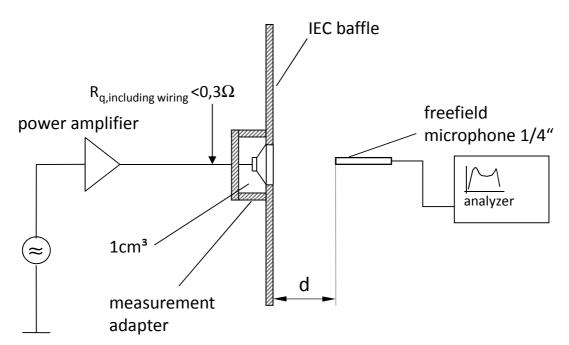


### 3.2. Electro-Acoustic Parameters

Loudspeaker mounted in adapter acc. to 2.11 and 2.13. Measurement signal: Logarithmic sine sweep, 1.5s, 22kHz-180Hz. All acoustic measurements at 23±2°C.

| 1. Rated impedance                                                                                                     | Z:                        | 8Ω                    |
|------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------|
| 2. Voice coil resistance                                                                                               | R:                        | 6.9Ω±10%              |
| 3. Resonance frequency (in 1cm <sup>3</sup> rear volume @ 700m                                                         | NW) f <sub>C</sub> :      | 950Hz±10%             |
| 3.1 Typical resonance frequency without rear volume                                                                    | f <sub>s</sub> :          | 510Hz                 |
| 4. Maximum usable excursion xmax                                                                                       | р-р:                      | 0.64mm <sub>p-p</sub> |
| 5. Nominal characteristic sensitivity<br>(measured at 1V in 10cm, calculated to 1W, 1m<br>average from 2kHz to 4.5kHz) |                           | 75±2dB                |
| 5.1. Measured characteristic sensitivity (at 700mW in 2<br>average from 2kHz to 4.5kHz, thermal compress               |                           | 94±2dB                |
| 6. THD a                                                                                                               | according chapter 3.1     |                       |
| 7. Rub & Buzz r                                                                                                        | no audible R&B at max sir | ne power              |

## 3.3. Power Handling


Speaker mounted in test device 1cm<sup>3</sup> rear volume (open front).

| 1. Max sine power                                                                   |                                                                                  | 700mW        |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------|
| 2. Max short term power<br>(thermal limit test: pink noise, 2 <sup>nd</sup> order h | (70°, 1sec. ON / 60sec. OFF)<br>igh pass filtered, -3dB at 1kHz, crest factor 2) | 1000mW (RMS) |
| 3. Max continuous power                                                             | (70°, 500h)                                                                      | 700mW (RMS)  |

3. Max continuous power (70°, 500h) (pink noise, 2<sup>nd</sup> order high pass filtered, -3dB at 400Hz, crest factor 2)



## 3.4. Measurement Setup



Measurement signal: Logarithmic sine sweep, 1.5s, 22kHz-180Hz

## 3.5. Measured Parameters

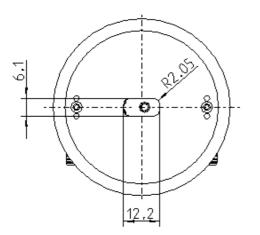
#### 3.5.1. Sensitivity

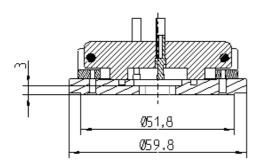
SPL is expressed in dB rel 20 $\mu$ Pa, computed according to IEC 268-5. Measurement set up and parameters according chapter 2.11. This test is performed for 100% of products in the production line.

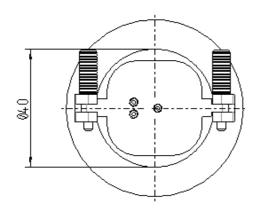
#### **3.5.2.** Frequency response

Frequency response is measured according test set up in chapter 2.11. data sheet and checked against the tolerance window defined in chapter 2.8. This Test is performed for 100% of products in the production line.

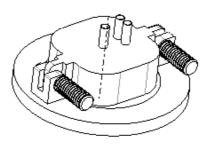
#### **3.5.3.** Total harmonic distortion (THD)

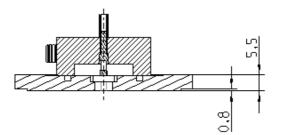

Is measured according IEEE 1241 (2nd to 5th harmonics) and test set up in chapter 2.11. This test is performed for 100% of products in the production line.


#### 3.5.4. Rub & Buzz

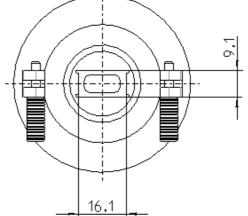

Rub & Buzz will be measured in the Inline-measuring device with a sinusoidal sweep. Rub & Buzz is defined as the maximum level of signal energy in a certain frequency-range. Signal and evaluation criteria are according to chapter 3.3. This test is performed for 100% of products in the production line.




### 3.6. Measurement adapter






<sup>1623</sup> FOX MESSATAPTER INTERN 3 CORÖSSE AR





VIEW WITHOUT CONTACTBLOCK





www.knowles.com

## 4. Environmental Conditions

### 4.1. Storage

The transducer fulfills the specified data after treatment according to the conditions of

ETS 300 019-2-1Specification of environmental test: Storage<br/>Test spec. T 1.2: Weather protected, not temperature controlled storage<br/>locations.

#### 4.2. Transportation

The transducer fulfills the specified data after treatment according to the conditions of

| ETS 300 019-2-2 | Specification of environmental test: Transportation |  |
|-----------------|-----------------------------------------------------|--|
|                 | Test Spec. T 2.3: Public Transportation             |  |

### 4.3. Functionality

The transducer fulfills the specified data after treatment according to the conditions of

ETS 300 019-2-5Specification of environmental test: Ground vehicle installations<br/>Test spec. T 5.1: Protected installationETS 300 019-2-7Specification of environmental test: Portable and non-stationary use<br/>Test spec. T 7.3E: Partly weather protected and non-weather protected<br/>locations.



## 5. Environmental Tests

### 5.1. Qualification Tests

A complete qualification test will be done at design validation of products manufactured under serial conditions.

1x per year and product family a requalification takes place. The qualification process covers all tests described under 4.5 and a complete inspection.

### 5.2. Reliability Tests

1x per month and product family samples are taken and submitted to tests described under 4.5.2

#### 5.3. Sample Size, Sequence

Unless otherwise stated 20 arbitrary new samples will be used to perform each test for both, qualification and requalification test as described under 4.1 and 4.2.

### 5.4. Period of Shelf-Life

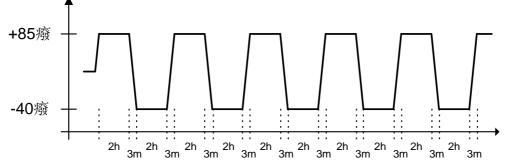
The period of shelf-life is 2 years.

#### 5.5. Testing Procedures

#### 5.5.1. Storage Tests

#### 5.5.1.1. Cold Storage Test

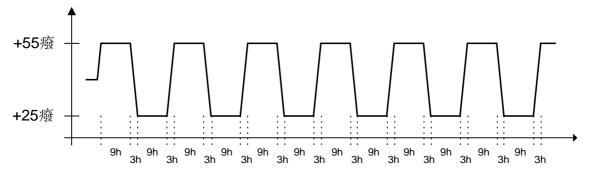
| Parameter                                         | Test Method and<br>Conditions            | Duration | Evaluation Standard                                                                                                                                                       |
|---------------------------------------------------|------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Low Temperature<br>Storage<br>(Ref. EN 60068-2-1) | -40°C<br>rel. humidity not<br>controlled | 168h     | Measurements after 2 hours<br>recovery time.<br>All samples fully operable.<br>All acoustical parameters<br>according specification with<br>tolerances increased by 50 %. |


#### 5.5.1.2. Heat Storage Test

| Parameter                               | Test Method and<br>Conditions            | Duration | Evaluation Standard                                                                                                                                                       |
|-----------------------------------------|------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dry Heat Storage<br>(Ref. EN 60068-2-2) | +85°C<br>rel. humidity not<br>controlled | 168h     | Measurements after 2 hours<br>recovery time.<br>All samples fully operable.<br>All acoustical parameters<br>according specification with<br>tolerances increased by 50 %. |



#### 5.5.1.3. Temperature Cycle Test


| Parameter                                     | Test Method and<br>Conditions                                  | Duration                                | Evaluation Standard                                                                                                                                                       |
|-----------------------------------------------|----------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Change of Temperature<br>(Ref. EN 60068-2-14) | -40°C/+85°C<br>Transition time <3 min.<br>See Figure 4-1 below | 5 cycles<br>>2h for each<br>temperature | Measurements after 2 hours<br>recovery time.<br>All samples fully operable.<br>All acoustical parameters<br>according specification with<br>tolerances increased by 50 %. |
| •                                             |                                                                |                                         |                                                                                                                                                                           |





#### 5.5.1.4. Temperature / Humidity Cycle Test

| Parameter             | Test Method and<br>Conditions                                                                                         | Duration                                                       | Evaluation Standard                                                                                                                         |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Damp heat, cyclic     | +25°C/+55°C                                                                                                           | 6 cycles / 144h                                                | Measurements after 2 hours                                                                                                                  |
| (Ref. IEC 60068-2-30) | 90% to 95% RH.<br>Temp. change time <3h<br>See Figure 4-2 below<br><u>Caution:</u> no condensed<br>water on products! | 12h at each<br>temperature<br>(inclusive temp<br>ramp up/down) | recovery time.<br>All samples fully operable.<br>All acoustical parameters<br>according specification with<br>tolerances increased by 50 %. |







### 5.5.2. Operating Tests

### 5.5.2.1. Cold Operation Test

| Parameter                                  | Test Method and<br>Conditions                                           | Duration | Evaluation Standard                                                                                                                                                                                                    |
|--------------------------------------------|-------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cold Operation Test<br>(Ref. EN 60068-2-1) | -20°C<br>rel. humidity not<br>controlled<br>signal acc. Chapter<br>2.10 | 72h      | Measurements after 2 hours<br>recovery time.<br>All samples fully operable.<br>THD may be increased after<br>test. All other acoustical<br>parameters according<br>specification with tolerances<br>increased by 50 %. |

#### 5.5.2.2. Dry Heat Operation Test

| Parameter                                 | Test Method and Duration<br>Conditions                                  |      | Evaluation Standard                                                                                                                                                                                                                                          |
|-------------------------------------------|-------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dry Heat Operation<br>(Ref. EN 60068-2-2) | +70°C<br>rel. humidity not<br>controlled<br>signal acc. Chapter<br>2.10 | 500h | Measurements after 2 hours<br>recovery time.<br>All samples fully operable.<br>The allowable change in<br>sensitivity shall not be greater<br>than 3 dB. All other acoustical<br>parameters according<br>specification with tolerances<br>increased by 50 %. |

#### 5.5.3. Salt Mist Test

| Parameter                                            | Test Method and<br>Conditions                                                                                                     | Duration | Evaluation Standard                                                                                                                                                                                                                                                                   |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Salt Mist<br>(Ref. IEC60068-2-52,<br>Kb / Severity 2 | The part must be<br>subjected to 2 hours<br>spray of 5% NaCl salt<br>mist, at 35°C then be<br>left at 40°C and 95%<br>RH for 22h. | 3 cycles | The samples shall be washed<br>after the test with distilled water<br>and dried at T< 50°C.<br>Component may have reduced<br>performance, but must still<br>function properly. The allowable<br>sensitivity difference shall not<br>be greater than ±3dB from<br>initial sensitivity. |



### 5.5.4. Guided Free Fall Test - Protected Product

| Parameter                                                   | Test Method and<br>Conditions                                                                               | Conditions /<br>Sample size                                                                                                                      | Evaluation Standard                                                                                                                                                                    |
|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mechanical shock<br>(Ref. IEC60068-2-32<br>Ed), Procedure 1 | Speaker in drop test<br>box or representative<br>mechanics from a<br>height of 1.5m onto<br>concrete floor. | 30 units<br>Two drops on<br>each side (2x6)<br>One drop on<br>each edge<br>(1x12) Two<br>drops on each<br>corner (2x8)<br>(40 drops in<br>total) | Component may have reduced<br>performance, but must still<br>function properly. The allowable<br>sensitivity difference shall not<br>be greater than ±3dB from<br>initial sensitivity. |

### 5.5.5. Random Free Fall Test (Tumble Test) – Protected Product

| Parameter                                                                               | Test Method and<br>Conditions                                                              | Conditions /<br>Sample size                | Evaluation Standard                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Impact durability (in a<br>Tumble Tester)<br>(Ref. IEC60068-2-32<br>Ed)<br>(SPR a7.1.1) | Speaker in drop test box<br>or representative<br>mechanics. Random<br>drops on steel base. | 30 units<br>300 drops, 1m<br>DUT power off | Component may have reduced<br>performance, but must still<br>function properly. The<br>allowable sensitivity difference<br>shall not be greater than ±3 dB<br>from initial sensitivity. |

### 5.5.6. Resistance to Electrostatic Discharge

| Parameter                                                  | Test Method and<br>Conditions                                                                                                                                                                                                                                                              | Conditions /<br>Sample size                                    | Evaluation Standard                                                                                                         |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Resistance to ESD<br>IEC61000-4-2 Level 4<br>(SPR c 2.5.1) | One pole is grounded and<br>the ESD pulse is applied<br>to the other pole. The<br>speaker must be stressed<br>first with one polarisation<br>and then with the other<br>polarisation. DUT must be<br>discharged between each<br>ESD exposure.<br>Level 4: contact +/- 8kV,<br>air +/- 15kV | 10 exposures on<br>each polarity / 5<br>units<br>DUT Power off | All samples fully operable.<br>All acoustical parameters<br>according specification with<br>tolerances increased by<br>50%. |



### 5.5.7. DC endurance

| Parameter    | Test Method and<br>Conditions                             | Conditions /<br>Sample size       | Evaluation Standard                                                                                                         |
|--------------|-----------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| DC endurance | Apply ±1.5V DC voltage<br>to the speaker for 3<br>minutes | 5 units per each voltage polarity | All samples fully operable.<br>All acoustical parameters<br>according specification with<br>tolerances increased by<br>50%. |



# **Related Documents**

| IEC 268-5       | Sound System equipment                                                                        |
|-----------------|-----------------------------------------------------------------------------------------------|
|                 | Part 5: Loudspeaker                                                                           |
| IEEE 1241       | Terminology and test methods for analog-to-digital converters                                 |
| IEC 68-2        | Environmental testing                                                                         |
| EN 60068-2      | Environmental testing                                                                         |
| ISO 2859 - 1    | Sampling procedures for inspection by attributes                                              |
|                 | Part 1: Sampling plans indexed by acceptable quality level (AQL) for lot-by-lot<br>inspection |
| ISO 3951        | Sampling procedures and charts for inspection by variables for percent defectives.            |
| ETS 300 019-2-1 | Specification of environmental test: Storage                                                  |
|                 | Test spec. T 1.2: Weather protected, not temperature controlled storage locations             |
| ETS 300 019-2-2 | Specification of environmental test: Transportation                                           |
|                 | Test spec. T 2.3: Public Transportation                                                       |
| ETS 300 019-2-5 | Specification of environmental test: Ground vehicle installations                             |
|                 | Test spec. T 5.1: Protected installation                                                      |
| ETS 300 019-2-7 | Specification of environmental test: Portable and non-stationary use                          |
|                 | Test spec. T 7.3E: Partly weather protected and non-weather protected locations               |



## 6. Change History

| Status  | Version | Date     | ECR | Comment / Changes              | Initials of owner |
|---------|---------|----------|-----|--------------------------------|-------------------|
| Draft   | A1      | 17.02.14 |     | First draft                    | MB                |
| Draft   | A2      | 28.02.14 |     | Adaption of acoustic curves    | MB                |
| Draft   | A3      | 06.03.14 |     | Further acoustic data adaption | MB                |
| Draft   | A4      | 22.03.14 |     | Marking/ Weight update         | Henry Yang        |
| Draft   | A5      | 26.03.14 |     | Without Mesh Pictures Update   | Henry Yang        |
| Draft   | A6      | 29.04.14 |     | Update marking spec            | Henry Yang        |
| Release | А       | 30.07.14 |     | First Release                  | Henry Yang        |
|         |         |          |     |                                |                   |

## 7. Disclaimer

Stresses above the Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only. The device may not function when operated at these or any other conditions beyond those indicated under "Electrical and Acoustical Specifications". Exposure beyond those indicated under "Electrical Specifications" for extended periods may affect device reliability.

This product is not qualified for use in automotive applications

Frequency range for Telecom use

The information contained in this literature is based on our experience to date and is believed to be reliable and it is subject to change without notice. It is intended as a guide for use by persons having technical skill at their own discretion and risk. We do not guarantee favorable results or assume any liability in connection with its use. Dimensions contained herein are for reference purposes only. For specific dimensional requirements consult factory. This publication is not to be taken as a license to operate under, or recommendation to infringe any exiting patents. This supersedes and voids all previous literature.

