

AS7024 Biosensors

General Description

The AS7024 device provides a flexible analog front end for light sensing applications. The photodiode input circuit can be configured in different ways to guarantee best tradeoff between speed and sensitivity for a large number of different sensing applications.

AS7024 is targeted for wearables (fitness band, smart watch).

[Ordering Information](#page-97-0) and [Content Guide](#page-102-0) appear at end of datasheet.

Key Benefits and Features

The benefits and features of AS7024, Biosensors are listed below:

Figure 1: Added Value of Using AS7024

Applications

The device is suitable for optical sensor platform.

Pin Assignments

Optical Module Pinout:

Figure 3: AS7024 Optical Module Pinout (Top View)

Figure 4: Pin Description

amin

Absolute Maximum Ratings

Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in [Electrical Characteristics](#page-6-0) is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Figure 5:

Absolute Maximum Ratings [\(1\)](#page-5-0)

Note(s):

1. All optical customer designs shall be reviewed by **ams** before production.

Electrical Characteristics

All limits are guaranteed. The parameters with min and max values are guaranteed with production tests or SQC (Statistical Quality Control) methods.

VDD=2.7 to 5.5V, typ. values are at T_{AMB} =25°C (unless otherwise specified).

Figure 6: Operating Conditions

OMIT

Note(s):

- 1. GPIO0-3 configured to draw minimum current (software dependent).
- 2. The design of AS7024 is done in a way that it does not affect other I²C communication on SCL/SDA even if AS7024 is in power down.
- 3. Specified only typical value for DNL to reduce production test time.
- 4. After this period, the first clock pulse is generated.

5. A device must internally provide a hold time of at least 300ns for the SDA signal (referred to the VIHMIN of the SCL signal) to bridge the undefined region of the falling edge of SCL.

6. A fast-mode device can be used in a standard-mode system, but the requirement $t_{SU:DAT}$ = to 250ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line tR max + t_{SU:DAT} = 1000 + 250 = 1250ns before the SCL line is released.

dmin

Figure 7: I²C Mode Timing Diagram

I²C Mode Timing Diagram: This figure shows the different timings required for I²C communication.

Detailed Description

Optical Analog Front End

Figure 8: Optical Analog Front End

LEDs

Two green LEDs are used with anode on pin VD1 and VD2. A IR LED is connected with anode to pin VD4. VD3 allows direct access to the current sink 3.

LED-Driver

The LED-driver outputs can be controlled manually or by the built in sequencer. See [Optical Front End Operating Modes](#page-33-0)

Figure 9: LED Drivers

LED Configuration Registers

Figure 10: LED_CFG Register

The LED_CURR defines the LED output current. Warning: it is recommended to configure the current only when the output is not active, as there is no latch implemented to keep the 10 bits consistent. New values are applied directly and immediately.

Figure 11: LED1_CURRL Register

amin

Figure 12: LED1_CURRH Register

Figure 13: LED2_CURRL Register

Figure 14: LED2_CURRH Register

Figure 15: LED3_CURRL Register

Figure 16: LED3_CURRH Register

Figure 17: LED4_CURRL Register

Figure 18:

LED4_CURRH Register

amin

Figure 19: LED12_MODE Register

Note(s):

1. Function enabled only in manual mode

Figure 20: LED34_MODE Register

Note(s):

1. Function enabled only in manual mode

The MAN_SEQ_CFG register is used to configure the operation of the optical front end.

Figure 21: MAN_SEQ_CFG Register

amin

Figure 22: LEDSTATUS Register

An asserted bit can be cleared by writing a '1' to the irq_led_ supply_low bit.

Photodiode Selection

In order to have flexible arrangement of the use photodiodes, PD1-PD4 can be individually connected to the photodiode amplifier input. The optional offset current allows cancellation of constant light sources like sunlight. In case of an external photodiode or any other sensor with (low) current output, the pins GPIO0 and GPIO1 can be used as input.

Additionally the sequencer can control the diodes – see diode_ ctrl described in register MAN_SEQ_CFG.

Photodiode Registers

The PD_CFG register is used to configure the input to the photo amplifier.

Figure 25: PDOFFX_LEDOFF Register

Figure 26: PDOFFX_LEDON Register

Photodiode Characteristics

For operation and characteristics of photodiode 'A' and photodiode 'B' see [Light-to-Frequency Mode](#page-53-0).

Figure 28:

Photodiode Sensitivity (solid green and black) and LED Emission Spectrum (dotted green and dotted black)

Note(s):

1. All 4 photodiodes used pd1/2/3/4=1;perpendicular; perpendicular light source and no diffuser used on AS7024; due to the difference in photodiode size the absolute response for Photodiode B (0.01mm²) is much lower compared to PD1-PD4 (0.8mm²).

Photodiode Trans-Impedance Amplifier (TIA)

The photodiode amplifier can be configured in three different modes:

- **•** Photocurrent to frequency converter see [Light-to-Frequency Mode Registers](#page-54-0)
- **•** Photocurrent to voltage converter
- **•** Photocurrent integrator

Figure 29: Trans-Impedance-Amplifier (TIA)

The integration time t_{INT} is defined either by the sequencer (man_mode=0) of manually through the bit sw_itg if man_mode=1.

Use following settings for the programming of the TIA:

Figure 30: TIA Programming Settings

Note(s):

1. pd1234: number of active photodiodes (for example, pd1=1, pd2=0, pd3=1, pd4=0 -> pd1234=2).

Photodiode TIA Registers

Figure 31: PD_AMPRCCFG Register

The PD_AMPCFG register is used to configure the operating mode of the photoamplifier.

Figure 32: PD_AMPCFG Register

Figure 33: PD_THRESHCFG Register

Voltage Mode of the Photodiode Amplifier

The output voltage of the photodiode amplifier is depending on the feedback component:

(EQ1) Feedback resistor:
$$
U_{out} = I_{photo} \cdot R_{fb}
$$

feedback.

(EQ2) **Feedback capacitor:**
$$
U_{out} = I_{photo} \cdot \frac{t_{INT}}{C_{fb}}
$$

Note(s): The integration time t_{INT} is defined either by the sequencer (man_mode=0) of manually through the bit sw_itg if man_mode=1. For the synchronous demodulator only use the resistive

Figure 34: Difference Between Resistive and Capacitive Feedback

With reference to [Figure 34,](#page-32-0)

- **Green:** Capacitive Integration
- **Green Dotted:** Effective Value from Capacitive Mode
- **Blue:** Resistive Feedback
- **Red:** Light Intensity

Optical Front End Operating Modes

Once the photodiode amplifier is configured the measurement can be done in two different ways. Either the LED-outputs, the photodiode amplifier and the ADC are controlled manually by means of register bits, or they are controlled by a built in sequencer.

Manual Operation of the Optical Frontend:

The optical front end can be manually controlled via the register man_mode=1

Figure 35: Manual Operation of the Optical Frontend and LED [\(1\)](#page-33-1)

Note(s):

1. Applies only If man_mode=1

For manual operation of the LEDs and its current sinks see [LED-Driver](#page-14-0).

Sequencer

In order to synchronize the LED-currents, the integration time and the ADC-sampling time, a built in sampling Sequencers can be used. The sequencer generates the 8 bit-timings based on a 1μs clock which can be pre-scaled with seq_div. The results of the analog to digital conversion are automatically stored in a pipeline buffer or in register adc_data and the ADC FIFO.

The timings can be programmed with following registers (apply for man_mode=0):

Figure 36: Sequencer Control Registers Overview

Register	Description
seq_div	Divider of the 1µs input clock for all sequencer timings
seq_count	Number of measurements in one sequence
seq_start	Writing 1 starts the sequencer, 0 stops the sequencer
seq_period	Time of one measurement cycle
seq_led_start	Start time of the LED drivers within one cycle
seq_led_stop	Stop time of the LED drivers within one cycle
seq_secled_start	Start time of the secondary LED drivers within one cycle (used for SpO2)
seq_secled_stop	Stop time of the secondary LED drivers within one cycle (used for SpO2)
seq_itg_start	Start time of the integrator
seq_itg_stop	Stop time of the integrator
seq_sdp1_start	Start time of the synchronous demodulator's 1 positive multiplication
seq_sdp1_stop	Stop time of the synchronous demodulator's 1 positive multiplication
seq_sdm1_start	Start time of the synchronous demodulator's 1 negative multiplication
seq_sdm1_stop	Stop time of the synchronous demodulator's 1 negative multiplication
seq_sdp2_start	Start time of the synchronous demodulator's 2 positive multiplication
seq_sdp2_stop	Stop time of the synchronous demodulator's 2 positive multiplication
seq_sdm2_start	Start time of the synchronous demodulator's 2 negative multiplication
seq_sdm2_stop	Stop time of the synchronous demodulator's 2 negative multiplication
seq_adc	Sampling position of the ADC

Note(s):

1. The lowest data value of all registers except seq_count and seq_div is 1.

2. This bit is located in register ADC_CFGB bit 1.
Figure 37: Block Diagram of Sequencer

Sequencer Registers

Figure 38: SEQ_CNT Register

The SEQ_DIV register sets the input divider for the main clock.

Figure 39: SEQ_DIV Register

Figure 40: SEQ_START Register

With the SEQ_START register sets the configured sequencer can be started

Figure 41: SEQ_PER Register

The SEQ_PER register sets one measurement cycle of the sequencer.

Figure 42: SEQ_LED_STA Register

The SEQ_LED register sets the LED drive timing. Data is stored as 16-bit value.

Figure 43: SEQ_LED_STO Register

Figure 44: SEQ_SECLED_STA Register

The SEQ_LED register sets the secondary LED drive timing which is used in ledX_mode 6 only. Data is stored as 16-bit value.

Figure 45: SEQ_SECLED_STO Register

Figure 46: SEQ_ITG_STA Register

The SEQ_ITG register sets the photoamplifier integration time. Data is stored as 16-bit value.

Figure 47: SEQ_ITG_STO Register

Figure 48: SEQ_SDP1_STA Register

The SEQ_SDP register sets the synchronous demodulator positive multiplication time. Data is stored as 16-bit value.

Figure 49: SEQ_SDP1_STO Register

Figure 50: SEQ_SDP2_STA Register

The SEQ_SDP register sets the synchronous demodulator positive multiplication time. Data is stored as 16-bit value

Figure 51: SEQ_SDP2_STO Register

Figure 52: SEQ_SDM1_STA Register

The SEQ_SDM1 register sets the synchronous demodulator negative multiplication time 1. Data is stored as 16-bit value

Figure 53: SEQ_SDM1_STO Register

Figure 54: SEQ_SDM2_STA Register

The SEQ_SDM2 register sets the synchronous demodulator negative multiplication time 2. Data is stored as 16-bit value

Figure 55: SEQ_SDM2_STO Register

Figure 56: SEQ_ADC Register

The SEQ_ADC register defines the time when the ADC starts sampling during each measurement cycle.

Figure 57: SEQ_ADC2TIA Register

Figure 58: SEQ_ADC3TIA Register

Figure 59: SD_SUBS Register

amin

Figure 60: SEQ_CFG Register

Figure 61: SEQ_ERR Register

Figure 62: CYC_COUNTER Register

The SEQ_COUNTER register shows the current value of the sequence counter and period counter

Figure 63: SEQ_COUNTER Register

Figure 64: SUBS_COUNTER Register

Optical Signal Conditioning

Figure 65: Optical Signal Conditioning

Synchronous Demodulator

Two optional synchronous demodulators can be used to detect small optical signals in the presence of large unwanted noise (ambient light). Since the detector synchronizes to the LED frequency, the demodulator can only be used of the measurement sequencer is running.

It includes input filer (high pass at 200Hz, adjustable low pass) and an 2nd order adjustable output low pass. The demodulator itself multiplies the signal by +1 / 0 / -1 with a timing which is controlled by the sequencer.

Note(s): The optical signal conditioning stage need sigref_ en=1 for operation.

High Pass Filter

Two optional high pass filter can be used to remove unwanted DC-components from the signal and allows further amplification. In order to guarantee fast settling times of the filter, four cutoff frequencies can be chosen.

Gain Stage

Two optional gain stage can be used to amplify the signal after the DC-component has been removed.

Optical Signal Conditioning Registers

Figure 66: OFE_CFGA Register

Figure 67: OFE_CFGB Register

amin

Figure 68: OFE_CFGC Register

Figure 69: OFE_CFGD Register

Figure 70: OFE1_CFGA Register

Figure 71: OFE1_CFGB Register

Figure 72: OFE2_CFGA Register

Figure 73: OFE2_CFGB Register

amin

Light-to-Frequency Mode

The LTF (light-to-frequency, or FM, frequency mode) mode.

Note(s):

1. Do not use diodes which are connected to the TIA (register pd_a, pd_b, pd1...4) at the same time when Itf_en is enabled on the same diode.

Light-to-Frequency Mode Registers

Figure 75: LTFDATA0_L Register

Figure 76: LTFDATA0_H Register

Figure 77: LTFDATA1_L Register

Figure 78: LTFDATA1_H Register

Figure 79: ITIME Register

Figure 80: LTF_CONFIG Register

amin

Figure 81: LTF_SEL Register

Figure 82: LTF_GAIN Register

Figure 83: LTF_CONTROL Register

Figure 84: AZ_CONTROL Register

Figure 85:

OFFSET0 Register

Figure 86: OFFSET1 Register

Electrical Analog Front End

The electrical analog front end consists of three identical signal paths with independent settings of bias condition, gain and offset.

Figure 87: Electrical Analog Front End Internal Circuit

DAC Switching

Figure 88:

Electrical Analog Front End DAC Level Switching

If register dac_mode is not zero, the DAC switches its codes between dac1_value and dac2_value on the beginning of every/every 2nd/every 4th sequencer cycle where the ADC is converting the electrical frontend channel. ADC conversions of any other channel do not switch the DAC.

Input Pins

Four general purpose pins and ECG_REF can be used either as configurable GPIO pin or as analog input pins for the electrical analog front end. The analog inputs can be configured to setup different amplifier topologies.

EAF (Electrical Analog Frontend) Registers

Figure 89: AFE_CFG Register

The AFE_CFG register is used to configure the analog frontend.

Figure 90: EAF_GST Register

The EAF register is used to configure the electrical frontend

Figure 91: EAF_BIAS Register

Figure 92: EAF_DAC Register

Figure 93: EAF_DAC1_L Register

The EAF_DAC1/2_L/H registers is used to configure the dac value. See register dac_mode for selection of dac register 1 or 2.

Figure 94: EAF_DAC1_H Register

Figure 95: EAF_DAC2_L Register

Figure 96: EAF_DAC2_H Register

Figure 97: EAF_DAC_CFG Register

Possible Configurations of Every Amplifier Stage

Figure 98:

Non Inverting Amplifier with Offset and Input Voltage Divider (Temperature Sensor)

Figure 99:

Non Inverting Amplifier with Current Source and Offset (Temperature Sensor)

amin

Figure 100:

Non Inverting Amplifier with Current Source and Reference Path (Temperature Sensor)

Figure 101: Non Inverting Amplifier High Impedance, GND Referenced

Figure 102: Non Inverting Amplifier with DC-Blocking, Referenced to V_ADCRef/2

Figure 103:

Non Inverting Amplifier with DC-Blocking and Fast Settling Time, Referenced to ADCRef /2

ECG Amplifier

Figure 104: ECG Amplifier Internal Circuit

The ECG (electro cardiogram) amplifier is a high impedance, low noise instrumentation amplifier with analog circuitry to bandpass filter the signal and amplify it before converting it with the ADC.

ECG Lead OFF Detection

Figure 105: ECG Lead OFF Detection Internal Circuit

The ECG lead OFF detection can be used for detection if the user actually touches the leads. It is a circuitry to measure the capacitor and/or resistance between the two lead inputs ECG_ INP and ECG_INN.

ECG Registers

Figure 106: ECG_CFGA Register

Figure 107: ECG_CFGB Register

Figure 108: ECG_CFGC Register

Figure 109: ECG_CFGD Register

ADC and FIFO

The ADC is a 14bit successive-approximation register (SAR) type. It supports 14bit with conversion time up to 50ksps.

The ADC is started by the sequencer and its timing or in manual mode (man_mode=1) by setting seq_start=1 (seq_start stays '1' as long as the conversion runs). The AS7024 can be configured to trigger an interrupt upon end of conversion.

Figure 110: ADC Internal Circuit and Multiplexer

For best accuracy, the ADC can be optionally calibrated.

Note(s): If GPIO2 or GPIO3 is used as ADC input, there is no anti-aliasing filter in front of the ADC (needs to be added externally).

ADC Threshold

At the output of the ADC converter a digital threshold can be enabled. If the output of the ADC exceeds the threshold adc_threshold, it triggers an interrupt. This mechanism can be used to identify if an object is in proximity of the sensor and then to interrupt the host. In cases where no object is detected, the host can be sleeping therefore reducing power consumption of the system.

For detailed description of the threshold calculation see the register ADC_THRESHOLD and ADC_THRESHOLD_CFG description.

ADC Registers

Figure 111: ADC_THRESHOLD Register

Figure 112: ADC_THRESHOLD_CFG Register

Figure 113: ADC_CFGA Register

Note(s):

1. If the ADC is triggered with the sequencer, the very first ADC conversion after seq_en=1 stores the number of samples according to above table. All subsequent samples use one sample less (e.g. 7 instead of 8).

> The ADC_CFGA,B,C register is used to configure the ADC operation.

amin

Figure 114: ADC_CFGB Register

Figure 115: ADC_CFGC Register

amin

Figure 116: ADC_CHANNEL_MASK_L Register

The adc channel is chosen automatically from the bits within the adc_channel_mask_* set. It starts from right and finishes left (LSB->MSB) and wraps back from the most significant asserted bit to the least significant of the asserted bits. After every ADC conversion it switches to the next enabled channel, (except around the adc2tia/adc3tia cases). See register description FIFOH and FIFOL for encoding of the first channel in the data stream.

This applies to both, manual mode and sequencer mode. In sequencer mode, it starts with the smallest channel when the sequencer is being started. In manual mode, the adc_sel is reset with every write to either ADC_CHANNEL_MASK_L or ADC_CHANNEL_MASK_H

amin

Figure 117: ADC_CHANNEL_MASK_H Register

Figure 118: ADC_DATA_L Register

The ADC_DATA register shows the current raw output of the ADC

Figure 119: ADC_DATA_H Register

FIFO Registers

Figure 120: FIFO_CFG Register

Figure 121: FIFO_CNTRL Register

Figure 122: FIFOSTATUS Register

im In

Figure 123: FIFOL Register

FIFOL can be read out with single reads (2 consecutive l^2C addresses have to be read to get one FIFO entry) or with block-read (up to 2 x fifo_depth values can be read in a single block-read)

Upon reading of FIFOH, it automatically advances the internal read pointer and decreases FIFO level.

If reading beyond end of FIFO, data will return 00h. There is no underrun flag, this is not an error condition.

Use ams SDK functions to read from the FIFO register to keep the reading in synchronization with the ADC channel selection. If synchronization is no concern use [fifoh[7:0] : fifol[7:2]] as ADC result as the ADC data is multiplied by x4 before it is pushed in to the FIFO. FIFOl[0] is used as an ADC first channel indication. The first channel indication bit toggles upon every new entry unless the first ADC channel is transmitted. Then toggling can be stopped for up to 5 FIFO entries and the very first stopping indicates the first ADC channel. To allow encoding of any number of ADC channels, the first ADC channel encoding is dropped from time to time.

Figure 124: FIFOH Register

See [Interrupts](#page-83-0) for the actual FIFO interrupt.

Digital Interface

Power Management

After setting the pin ENABLE=1 the AS7024 registers can be accessed by the I²C interface. Before enabling any additional function (current source, TIA, ADC...) set the bit ldo en=1 to set the internal LDO to normal mode.

For operating the ADC or the sequencer enable the oscillator by setting osc_en=1.

GPIO Pins

Each of the GPIO pins can be digitally controlled and is capable of adding a pullup and/or pulldown:

Interrupts

An interrupt output pin INT can be used to interrupt the host. Following interrupt sources are possible

irq_adc: End of ADC conversion

irq_sequencer: End of sequencer sequence reached.

irq_ltf: A light-to-frequency conversion is finished.

irg_adc_threshold: [ADC](#page-75-0) threshold triggered – see ADC [Threshold.](#page-75-0)

irq_fifothreshold: FIFO almost full (as defined in register fifo_threshold)

irg fifooverflow: FIFO overflow (error condition, data is lost)

irg_clipdetect: TIA output and/or SD output exceeded threshold– see details in CLIPSTATUS

irq_led_supply_low: led supply low comparator triggered – see details in LEDSTATUS

Depending on the setting in register INTENAB each of the above interrupt source can assert INT output pin (active low).

 I^2C

The AS7024 includes an I²C slave using an I²C address of 0x30 (7-bit format; R/W bit has to be added) respectively 60h (8-bit format for writing) and 61h (8-bit format for reading). It expects external pullup resistors.

I²C Serial Control Interface

I²C Feature List

Fast mode (400kHz) and standard mode (100kHz) support

7+1-bit addressing mode

Write formats: Single-Byte-Write, Page-Write

Read formats: Current-Address-Read, Random-Read, Sequential-Read

SDA input delay and SCL spike filtering by integrated RC-components

I²C Protocol

Figure 126: I²C Symbol Definition

I²C Symbol Definition: Shows the symbols used in the following mode descriptions.

I²C Write Access

Byte Write and Page Write formats are used to write data to the slave.

I²C Byte Write: Shows the format of an I²C byte write access.

Figure 128: I²C Page Write

I²C Page Write: Shows the format of an I²C page write access.

The transmission begins with the START condition, which is generated by the master when the bus is in IDLE state (the bus is free). The device-write address is followed by the word address. After the word address any number of data bytes can be sent to the slave. The word address is incremented internally, in order to write subsequent data bytes on subsequent address locations.

For reading data from the slave device, the master has to change the transfer direction. This can be done either with a repeated START condition followed by the device-read address, or simply with a new transmission START followed by the device-read address, when the bus is in IDLE state. The device-read address is always followed by the 1st register byte transmitted from the slave. In Read Mode any number of subsequent register bytes can be read from the slave. The word address is incremented internally.

I²C Read Access

Random, Sequential and Current Address Read are used to read data from the slave.

I²C Random Read: Shows the format of an I²C random read access.

Random Read and Sequential Read are combined formats. The repeated START condition is used to change the direction after the data transfer from the master.

The word address transfer is initiated with a START condition issued by the master while the bus is idle. The START condition is followed by the device-write address and the word address.

In order to change the data direction a repeated START condition is issued on the 1st SCL pulse after the acknowledge bit of the word address transfer. After the reception of the device-read address, the slave becomes the transmitter. In this state the slave transmits register data located by the previous received word address vector. The master responds to the data byte with a not-acknowledge, and issues a STOP condition on the bus.

Figure 130: I²C Sequential Read

I²C Sequential Read: Shows the format of an I²C sequential read access.

Sequential Read is the extended form of Random Read, as more than one register-data bytes are transferred subsequently. In difference to the Random Read, for a sequential read the transferred register-data bytes are responded by an acknowledge from the master. The number of data bytes transferred in one sequence is unlimited (consider the behavior of the word-address counter). To terminate the transmission the master has to send a not-acknowledge following the last data byte and generate the STOP condition subsequently.

Figure 131: I²C Current Address Read

I²C Current Address Read: Shows the format of an I²C current address read access.

To keep the access time as small as possible, this format allows a read access without the word address transfer in advance to the data transfer. The bus is idle and the master issues a START condition followed by the Device-Read address. Analogous to Random Read, a single byte transfer is terminated with a not-acknowledge after the 1st register byte. Analogous to Sequential Read an unlimited number of data bytes can be transferred, where the data bytes has to be responded with an acknowledge from the master. For termination of the transmission the master sends a not-acknowledge following the last data byte and a subsequent STOP condition.

Power, GPIO, ID and Interrupt Registers

Figure 132: CONTROL Register

Figure 133: GPIO_A Register

Note(s):

1. No further I²C commands are required (different to GPIO2/3).

Figure 134: GPIO_E Register

Figure 135: GPIO_O Register

Figure 136: GPIO_I Register

amin

Figure 137: GPIO_P Register

Figure 138: GPIO_SR Register

Figure 139: SUBID Register

Internal information: At least one bit is set on subid.

Figure 140: ID Register

am r

Figure 141: STATUS Register

The STATUS register shows the current state of the interface. Some bits in here can trigger an interrupt.

An asserted bit can be cleared by writing a '1' to it - in case of irq_led_supply_low and irq_clipdetect, this also clears the underlying condition in the CLIPSTATUS and LEDSTATUS registers.

The FIFO threshold interrupt cannot be cleared directly, but only by lowering the FIFO level. The FIFO overflow interrupt is sticky and must be cleared explicitly.

Figure 142: CLIPSTATUS Register

An asserted bit can be cleared by writing a '1' to the irq_ clipdetect.

Figure 143: LEDSTATUS Register

An asserted bit can be cleared by writing a '1' to the irq_led_ supply_low bit.

Figure 144: INTENAB Register

Each of the STATUS register bits can cause an interrupt (register INTR) if the respective bit is asserted in the INTENAB register.

Figure 145: INTR Register

The INTR registers shows the bit or bits that are responsible for an asserted interrupt. Effectively, these bits are OR-ed together to drive the interrupt pin INT low (open drain output).

Application Information

The following figure shows the complete integration of the AS7024 in a mobile optical measurement system for HRM, SpO2, GSR (galvanic skin resistivity) and skin temperature using an NTC.

The device can be powered directly by a Lilon battery as it has its own power management. Nevertheless the I²C interface can be powered by 1.8V circuitry.

Figure 146: Optical HRM Measurement System for Wrist-Based Application

OMM

Package Drawings & Markings

Figure 147: Package Drawing

Ordering & Contact Information

Figure 148: Ordering Information

Buy our products or get free samples online at: [www.ams.com/Products](https://ams.com/products)

Technical Support is available at: [www.ams.com/Technical-Support](https://ams.com/technical-support)

Provide feedback about this document at: [www.ams.com/Document-Feedback](https://ams.com/document-feedback)

For further information and requests, e-mail us at: ams_sales@ams.com

For sales offices, distributors and representatives, please visit: [www.ams.com/Contact](https://ams.com/contact)

Headquarters

ams AG Tobelbader Strasse 30 8141 Premstaetten Austria, Europe

Tel: +43 (0) 3136 500 0 Website[: www.ams.com](https://ams.com)

RoHS Compliant & ams Green Statement

RoHS: The term RoHS compliant means that ams AG products fully comply with current RoHS directives. Our semiconductor products do not contain any chemicals for all 6 substance categories, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, RoHS compliant products are suitable for use in specified lead-free processes.

ams Green (RoHS compliant and no Sb/Br): ams Green defines that in addition to RoHS compliance, our products are free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).

Important Information: The information provided in this statement represents ams AG knowledge and belief as of the date that it is provided. ams AG bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. ams AG has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. ams AG and ams AG suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

Olaalit

Copyrights & Disclaimer

Copyright ams AG, Tobelbader Strasse 30, 8141 Premstaetten, Austria-Europe. Trademarks Registered. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.

Devices sold by ams AG are covered by the warranty and patent indemnification provisions appearing in its General Terms of Trade. ams AG makes no warranty, express, statutory, implied, or by description regarding the information set forth herein. ams AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with ams AG for current information. This product is intended for use in commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment are specifically not recommended without additional processing by ams AG for each application. This product is provided by ams AG "AS IS" and any express or implied warranties, including, but not limited to the implied warranties of merchantability and fitness for a particular purpose are disclaimed.

ams AG shall not be liable to recipient or any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to recipient or any third party shall arise or flow out of ams AG rendering of technical or other services.

amin

Document Status

Revision Information

Note(s):

- 1. Page and figure numbers for the previous version may differ from page and figure numbers in the current revision.
- 2. Correction of typographical errors is not explicitly mentioned.

Content Guide

- **[1 General Description](#page-0-0)**
- [1 Key Benefits and Features](#page-0-1)
- [2 Applications](#page-1-0)
- **[3 Pin Assignments](#page-2-0)**
- **[5 Absolute Maximum Ratings](#page-4-0)**
- **[7 Electrical Characteristics](#page-6-0)**

[14 Detailed Description](#page-13-0)

- [14 Optical Analog Front End](#page-13-1)
- 14 LEDs
- [15 LED-Driver](#page-14-0)
- [16 LED Configuration Registers](#page-15-0)
- [24 Photodiode Selection](#page-23-0)
- [25 Photodiode Registers](#page-24-0)
- [27 Photodiode Characteristics](#page-26-0)
- [29 Photodiode Trans-Impedance Amplifier \(TIA\)](#page-28-0)
- [31 Photodiode TIA Registers](#page-30-0)
- [33 Voltage Mode of the Photodiode Amplifier](#page-32-0)

[34 Optical Front End Operating Modes](#page-33-0)

- [34 Manual Operation of the Optical Frontend:](#page-33-1)
- [35 Sequencer](#page-34-0)
- [38 Sequencer Registers](#page-37-0)

[46 Optical Signal Conditioning](#page-45-0)

- [46 Synchronous Demodulator](#page-45-1)
- [46 High Pass Filter](#page-45-2)
- [46 Gain Stage](#page-45-3)
- [47 Optical Signal Conditioning Registers](#page-46-0)
- [54 Light-to-Frequency Mode](#page-53-0)
- [55 Light-to-Frequency Mode Registers](#page-54-0)
- [61 Electrical Analog Front End](#page-60-0)
- [62 DAC Switching](#page-61-0)
- [62 Input Pins](#page-61-1)
- [62 EAF \(Electrical Analog Frontend\) Registers](#page-61-2)
- [67 Possible Configurations of Every Amplifier Stage](#page-66-0)
- [70 ECG Amplifier](#page-69-0)
- [71 ECG Lead OFF Detection](#page-70-0)
- [75 ADC and FIFO](#page-74-0)
- [76 ADC Threshold](#page-75-0)
- [76 ADC Registers](#page-75-1)
- [82 FIFO Registers](#page-81-0)
- [84 Digital Interface](#page-83-1)
- [84 Power Management](#page-83-2)
- [84 GPIO Pins](#page-83-3)
- [84 Interrupts](#page-83-0)
- $85 \frac{12}{5}$
- [86 I²C Write Access](#page-85-0)
- [87 I²C Read Access](#page-86-0)
- [89 Power, GPIO, ID and Interrupt Registers](#page-88-1)
- **[96 Application Information](#page-95-0)**
- **[97 Package Drawings & Markings](#page-96-0)**

- **[98 Ordering & Contact Information](#page-97-0)**
- **[99 RoHS Compliant & ams Green Statement](#page-98-0)**
- **[100 Copyrights & Disclaimer](#page-99-0)**
- **[101 Document Status](#page-100-0)**
- **[102 Revision Information](#page-101-0)**