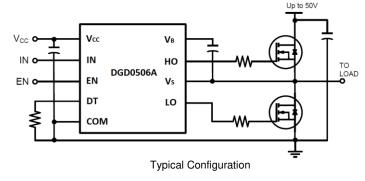


HIGH FREQUENCY HALF-BRIDGE GATE DRIVER WITH PROGRAMMABLE DEADTIME

Description


The DGD0506A is a high-frequency half-bridge gate driver capable of driving N-channel MOSFETs in a half-bridge configuration. The floating high-side driver is rated up to 50V.

The DGD0506A logic inputs are compatible with standard TTL and CMOS levels (down to 3.3V) to interface easily with MCUs. UVLO for high-side and low-side will protect a MOSFET with loss of supply. To protect MOSFETs, cross conduction prevention logic prevents the HO and LO outputs being on at the same time.

Fast and well-matched propagation delays allow a higher switching frequency, enabling a smaller, more compact power switching design using smaller associated components. The DGD0506A is offered in the W-DFN3030-10 and MSOP-10 packages and operates over an extended -40°C to \pm 125°C temperature range.

Applications

- DC-DC Converters
- Motor Controls
- Battery Powered Hand Tools
- eCig Devices
- Class D Power Amplifiers

Features

- 50V Floating High-Side Driver
- Drives Two N-Channel MOSFETs in a Half-Bridge Configuration
- 1.5A Source / 2.0A Sink Output Current Capability
- Internal Bootstrap Diode Included
- Undervoltage Lockout for High-Side and Low-Side Drivers
- Programmable Deadtime to Protect MOSFETs
- Logic Input (IN and EN) 3.3V Capability
- Ultra Low Standby Currents (<1μA)
- Extended Temperature Range: -40°C to +125°C
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please contact us or your local Diodes representative.

https://www.diodes.com/quality/product-definitions/

Mechanical Data

- Case: W-DFN3030-10 (Type TH)
- Case material: Molded Plastic. "Green" Molding Compound.
 UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 3 per J-STD-020
- Terminals: Finish Matte Tin Finish
 Solderable per MIL-STD-202, Method 208 (2)
- Weight: 0.017 grams (Approximate)

Mechanical Data

- Case: MSOP-10
- Case material: Molded Plastic. "Green" Molding Compound.
 UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 3 per J-STD-020
- Terminals: Finish Matte Tin Plated Leads
 Solderable per MIL-STD-202, Method 208 (3)
- Weight: 0.0286 grams (Approximate)

Top View

Bottom View

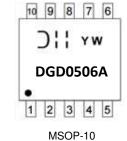
MSOP10

Top View

Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

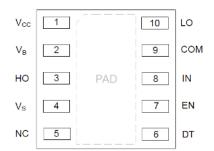
Ordering Information (Note 4)


Part Number	Package	Marking	Reel Size (inches)	Tape Width (mm)	Quantity per Reel
DGD0506AFN-7	W-DFN3030-10	DGD0506A	7	8	3,000
DGD0506AM10-13	MSOP10	DGD0506A	13	12	2,500

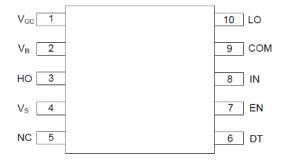
Note: 4. For packaging details, go to our website at https://www.diodes.com/design/support/packaging/diodes-packaging/.

Marking Information

DGD0506A = Product Type Marking Code YY = Year (ex: 19 = 2019) WW = Week (01 to 53)


)|| = Manufacturer's Marking DGD0506A = Product Type Marking Code

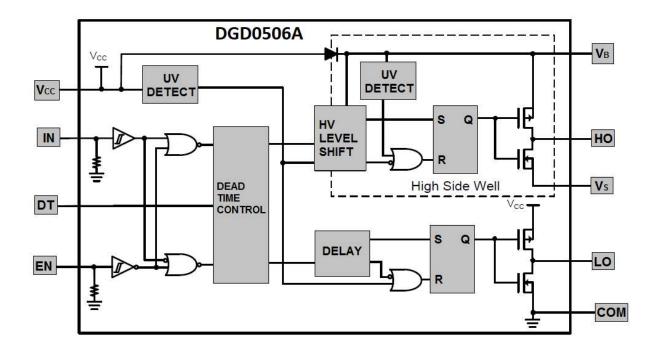
Y = Year: (0 to 9)


W = Week: (A - Z : 1 - 26 week)(a - z : 27 - 52 week)

W-DFN3030-10

Pin Diagrams

Top View: W-DFN3030-10


Top View: MSOP-10

Pin Descriptions

Pin Number	Pin Name	Function
1	Vcc	Low-Side and Logic Supply
2	V _B	High-Side Floating Supply
3	НО	High-Side Gate Drive Output
4	Vs	High-Side Floating Supply Return
5	NC	No Connect (No Internal Connection)
6	DT	Deadtime Control
7	EN	Logic Input Enable, a Logic Low turns off Gate Driver
8	IN	Logic Input for High-Side and Low-Side Gate Driver Outputs (HO and LO), in Phase with HO
9	COM	Low-Side and Logic Return
10	LO	Low-Side Gate Drive Output
PAD	Substrate	Connect to COM on PCB

Functional Block Diagram

Absolute Maximum Ratings (@TA = +25°C, unless otherwise specified.)

Characteristic	Symbol	Value	Unit
High-Side Floating Positive Supply Voltage	V _B	-0.3 to +60	V
High-Side Floating Negative Supply Voltage	Vs	V _B -14 to V _B +0.3	V
High-Side Floating Output Voltage	V _{HO}	Vs-0.3 to V _B +0.3	V
Offset Supply Voltage Transient	dV _S /dt	50	V/ns
Logic and Low-Side Fixed Supply Voltage	Vcc	-0.3 to +14	V
Low-Side Output Voltage	V _{LO}	-0.3 to Vcc+0.3	V
Logic Input Voltage (IN and EN)	V _{IN}	-0.3 to V _{CC} +0.3	V

Thermal Characteristics - W-DFN3030-10 (@TA = +25°C, unless otherwise specified.)

Characteristic	Symbol	Value	Unit
Power Dissipation Linear Derating Factor (Note 5)	P _D	0.4	W
Thermal Resistance, Junction to Ambient (Note 5)	Reja	64	°C/W
Thermal Resistance, Junction to Case (Note 5)	ReJC	42	°C/W
Operating Temperature	TJ	+150	
Lead Temperature (Soldering, 10s)	TL	+300	°C
Storage Temperature Range	Tstg	-55 to +150	

Note: 5. When mounted on a standard JEDEC 2-layer FR-4 board.

Thermal Characteristics - MSOP-10 (@T_A = +25°C, unless otherwise specified.)

Characteristic	Symbol	Value	Unit
Power Dissipation Linear Derating Factor (Note 6)	PD	0.75	W
Thermal Resistance, Junction to Ambient (Note 6)	Reja	166	°C/W
Thermal Resistance, Junction to Case (Note 6)	ReJC	32	°C/W
Operating Temperature	TJ	+150	
Lead Temperature (Soldering, 10s)	TL	+300	°C
Storage Temperature Range	T _{STG}	-55 to +150	

Note: 6. When mounted on a standard JEDEC 2-layer FR-4 board with minimum recommended pad layout.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
High-Side Floating Supply	V _B	Vs + 8	Vs + 14	V
High-Side Floating Supply Offset Voltage	Vs	(Note 7)	50 (Note 8)	V
High-Side Floating Output Voltage	VHO	Vs	VB	V
Logic and Low Side Fixed Supply Voltage	Vcc	8	14	V
Low-Side Output Voltage	V _{LO}	0	Vcc	V
Logic Input Voltage (IN and EN)	VIN	0	5	V
Ambient Temperature	TA	-40	+125	°C

Notes: 7. Logic operation for V_S of -5V to +50V.

8. Provided V_{B} doesn't exceed absolute maximum rating of 60V.

DC Electrical Characteristics (V_{CC} = V_{BS} = 12V, COM = V_S = 0V, @T_A = +25°C, unless otherwise specified.) (Note 9)

Parameter	Symbol	Min	Тур	Max	Unit	Condition
Logic "1" Input Voltage	ViH	2.4	_	_	V	_
Logic "0" Input Voltage	VIL	_	_	0.8	V	_
Enable Logic "1" Input Voltage	VENIH	1.5	_	_	V	_
Enable Logic "0" Input Voltage	V _{ENIL}		_	0.7	V	_
Input Voltage Hysteresis	VINHYS	_	0.6	_	V	_
High Level Output Voltage, VBIAS - VO	Vон		0.45	0.6	V	$I_{O+} = 100 \text{mA}$
Low Level Output Voltage, Vo	V_{OL}	_	0.15	0.22	V	I _{O-} = 100mA
Offset Supply Leakage Current	ILK		10	50	μΑ	$V_B = V_S = 60V$
Vcc Shutdown Supply Current	Iccsd		0	1	μΑ	$V_{IN} = 0V \text{ or } 5V, V_{EN} = 0V$
Vcc Quiescent Supply Current	Iccq	_	0.28	0.5	mA	$V_{IN} = 0V \text{ or } 5V,$ $R_{DT} = 100k\Omega$
V _{CC} Operating Supply Current	ICCOP	_	7.6	_	mA	$fs = 500kHz, C_L = 1000pF$
V _{BS} Quiescent Supply Current	I _{BSQ}	_	32	100	μΑ	V _{IN} = 0V or 5V
V _{BS} Operating Supply Current	IBSOP	_	7.6	_	mA	$fs = 500kHz, C_L = 1000pF$
Logic "1" Input Bias Current	I _{IN+}	_	25	60	μΑ	VIN = 5V
Logic "0" Input Bias Current	I _{IN} -	_	0	1	μΑ	$V_{IN} = 0V$
V _{BS} Supply Undervoltage Positive Going Threshold	V_{BSUV_+}	6.0	7.0	8.0	V	_
V _{BS} Supply Undervoltage Negative Going Threshold	V _{BSUV} -	5.6	6.6	7.6	V	_
V _{CC} Supply Undervoltage Positive Going Threshold	V_{CCUV+}	6.0	7.0	8.0	V	_
Vcc Supply Undervoltage Negative Going Threshold	Vccuv-	5.6	6.6	7.6	V	_
Output High Short-Circuit Pulsed Current	I _{O+}	0.9	1.5	_	Α	V _O = 0V, PW ≤ 10μs
Output Low Short-Circuit Pulsed Current	I _O -	1.5	2.0	_	Α	V _O = 15V, PW ≤ 10μs
Forward Voltage of Bootstrap Diode	V _{F1}	_	0.67	_	V	IF = 100μA
Forward Voltage of Bootstrap Diode	V _{F2}	_	1.7	_	V	IF = 100mA

Note: 9. The V_{IN} and I_{IN} parameters are applicable to the two logic pins: IN and EN. The V_O and I_O parameters are applicable to the respective output pins: HO and LO.

AC Electrical Characteristics (Vcc = VBS = 12V, COM = VS = 0V, CL = 1000pF, @TA = +25°C, unless otherwise specified.)

Parameter	Symbol	Min	Тур	Max	Unit	Condition
Turn-On Propagation Delay, HO & LO	4	65	96	125	ns	$R_{DT} = 10k\Omega$
Turr-On Propagation Delay, HO & LO	ton	350	463	580	ns	$R_{DT} = 100k\Omega$
Turn-Off Propagation Delay, HO & LO	toff	_	22	56	ns	_
Turn-On Rise Time	t _R	_	17	35	ns	_
Turn-Off Fall Time	tr	_	12	25	ns	_
Delay Matching	t _{DM}	_	_	50	ns	_
Decelting at the control of the cont	4	40	70	100	ns	$R_{DT} = 10k\Omega$
Deadtime: tpт Lo-нo & tpт нo-Lo	tот	300	430	560	ns	$R_{DT} = 100k\Omega$
Deadtime Matching	t _{MDT}	_	_	50	ns	$R_{DT} = 100k\Omega$

Timing Waveforms

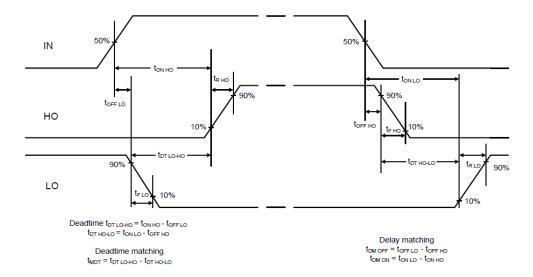


Figure 1. Switching Time Waveform Definitions

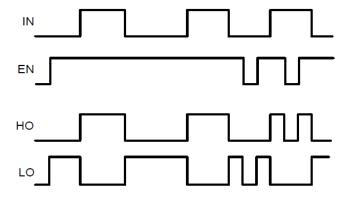


Figure 2. Input / Output Timing Diagram

$\textbf{Typical Performance Characteristics} \ \, (V_{CC} = 12V, @T_A = +25 ^{\circ}C, \text{ unless otherwise specified.})$

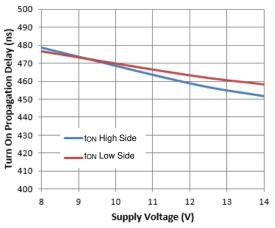


Figure 3. Turn-on Propagation Delay vs. Supply Voltage

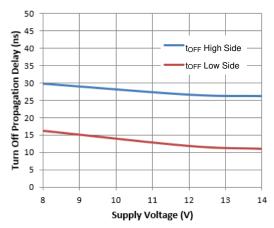


Figure 5. Turn-off Propagation Delay vs. Supply Voltage

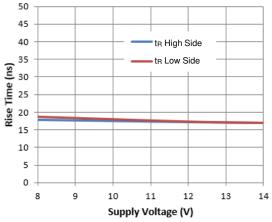


Figure 7. Rise Time vs. Supply Voltage

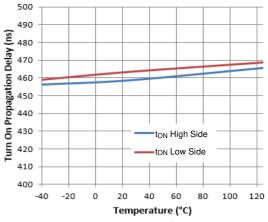


Figure 4. Turn-on Propagation Delay vs. Temperature

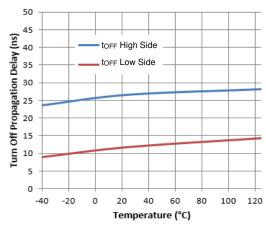


Figure 6. Turn-off Propagation Delay vs. Temperature

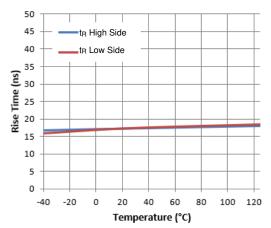


Figure 8. Rise Time vs. Temperature

Typical Performance Characteristics (continued)

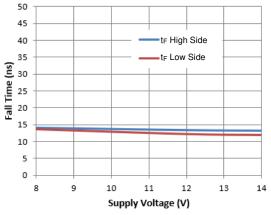


Figure 9. Fall Time vs. Supply Voltage

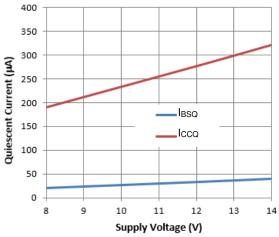


Figure 11. Quiescent Current vs. Supply Voltage

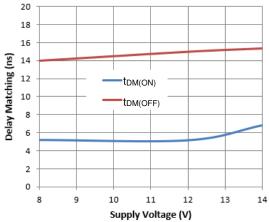


Figure 13. Delay Matching vs. Supply Voltage

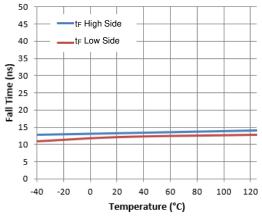


Figure 10. Fall Time vs. Temperature

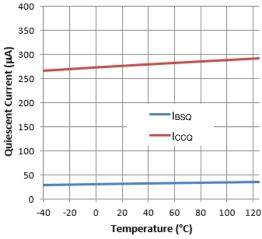


Figure 12. Quiescent Current vs. Temperature

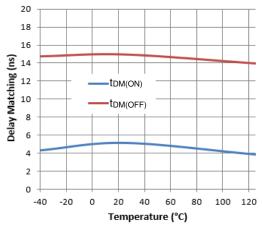


Figure 14. Delay Matching vs. Temperature

Typical Performance Characteristics (continued)

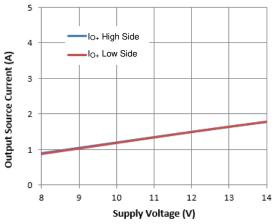


Figure 15. Output Source Current vs. Supply Voltage

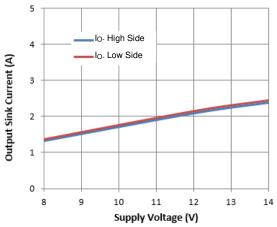


Figure 17. Output Sink Current vs. Supply Voltage

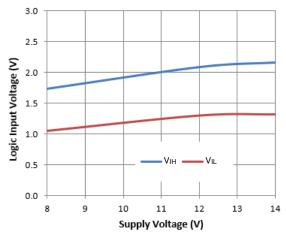


Figure 19. Logic Input Voltage vs. Supply Voltage

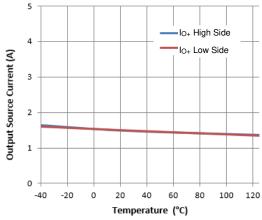


Figure 16. Output Source Current vs. Temperature

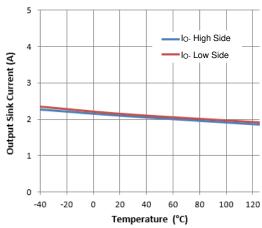


Figure 18. Output Sink Current vs. Temperature

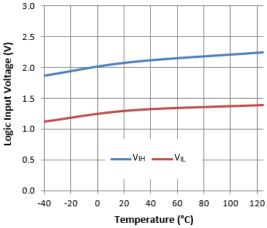


Figure 20. Logic Input Voltage vs. Temperature

Typical Performance Characteristics (continued)

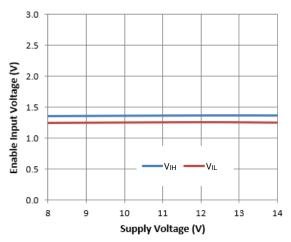


Figure 21. Enable Input Voltage vs. Supply Voltage

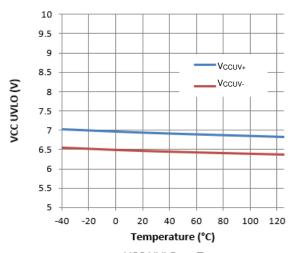


Figure 23. VCC UVLO vs. Temperature

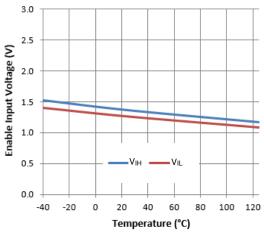
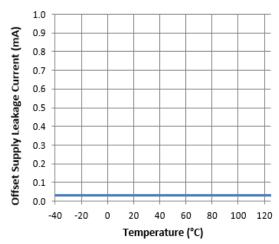
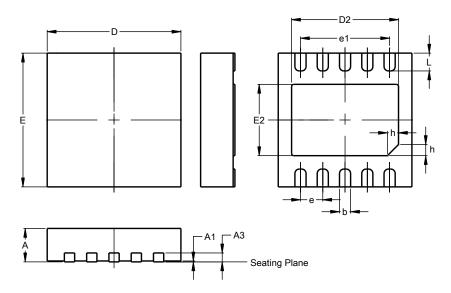


Figure 22. Enable Input Voltage vs. Temperature

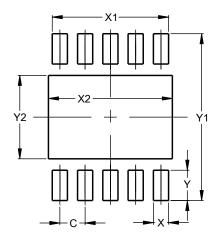



Figure 24. Offset Supply Leakage Current vs. Temperature

Package Outline Dimensions

Please see http://www.diodes.com/package-outlines.html for the latest version.

W-DFN3030-10 (Type TH)



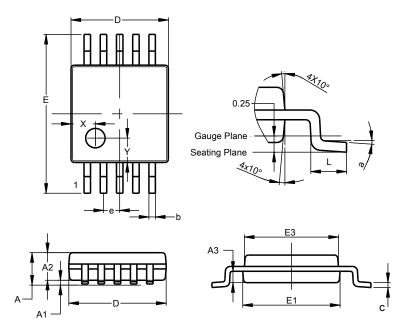
	W-DFN3030-10				
		pe TH)			
Dim	Min	Max	Тур		
Α	0.70	0.80	0.75		
A 1	1	0.05	0.02		
A3	0.18	0.25	0.20		
b	0.18	0.30	0.25		
D	2.90	3.10	3.00		
D2	2.40	2.60	2.50		
е		0.50BS	SC SC		
e1		2.00BS	SC SC		
Е	2.90	3.10	3.00		
E2	1.45	1.65	1.55		
h	0.20	0.30	0.25		
L	0.30	0.50	0.40		
All	All Dimensions in mm				

Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

W-DFN3030-10 (Type TH)

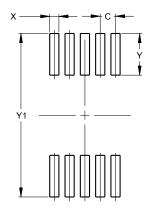
Dimensions	Value (in mm)
С	0.500
Х	0.300
X1	2.300
X2	2.600
Υ	0.600
Y 1	3.300
Y2	1.650


Note: For high voltage applications, the appropriate industry sector guidelines should be considered with regards to creepage and clearance distances between device Terminals and PCB tracking.

Package Outline Dimensions (continued)

Please see http://www.diodes.com/package-outlines.html for the latest version.

MSOP-10



MSOP-10					
Dim	Min	Max	Тур		
Α	-	1.10	-		
A1	0.05	0.15	0.10		
A2	0.75	0.95	0.86		
A3	0.29	0.49	0.39		
b	0.17	0.27	0.20		
C	0.08	0.23	0.15		
D	2.95	3.05	3.00		
e	ı	ı	0.50		
Е	4.80	5.00	4.90		
E1	2.95	3.05	3.00		
E3	2.85	3.05	2.95		
L	0.40	0.80	0.60		
Х			0.750		
Υ			0.750		
а	0°	8°	4°		
All D	imens	sions i	n mm		

Suggested Pad Layout (continued)

Please see http://www.diodes.com/package-outlines.html for the latest version.

MSOP-10

Dimensions	Value (in mm)
С	0.50
Х	0.30
Υ	1.35
Y1	5.30

Note: For high-voltage applications, the appropriate industry sector guidelines should be considered with regards to creepage and clearance distances between device Terminals and PCB tracking.

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2019, Diodes Incorporated

www.diodes.com