

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an ad experson

August 2016

FCB110N65F — N-Channel SuperFET[®] II FRFET[®] MOSFET

N-Channel SuperFET[®] II FRFET[®] MOSFET

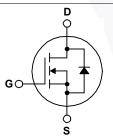
650 V, 35 A, 110 m Ω

Features

- 700 V @T_J = 150°C
- Typ. R_{DS(on)} = 96 mΩ (Typ.)
- Ultra Low Gate Charge (Typ. Q_g = 98 nC)
- Low Effective Output Capacitance (Typ. C_{oss(eff.)} = 464 pF)
- 100% Avalanche Tested
- RoHS Compliant

Applications

- Telecom/Server Power Supplies
 Solar Inverters
- Computing Power Supplies
 FPD TV Power/Lighting


Description

SuperFET[®] II MOSFET is Fairchild Semiconductor's brand-new high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low on-resistance and lower gate charge performance.

SuperFET[®] II FRFET[®] MOSFET combines a faster and more rugged intrinsic body diode performance with fast switching,

aimed at achieving better reliability and efficiency especially in resonant switching applications.

SuperFET[®] II FRFET[®] is very suitable for the switching power applications such as server/telecom power, Solar inverter, FPD TV power, computing power, lighting and industrial power applications.

Absolute Maximum Ratings T_C = 25^oC unless otherwise noted.

Symbol	Parameter			FCB110N65F	Unit
V _{DSS}	Drain to Source Voltage			650	V
V		- DC		±20	V
V _{GSS}	Gate to Source Voltage	- AC		±30	v
	Ducin Current	35			
I _D	Drain Current	- Continuous (T _C = 100 ^o C)		24	A
I _{DM}	Drain Current	- Pulsed	(Note 1)	105	А
E _{AS}	Single Pulsed Avalanche Ene	rgy	(Note 2)	809	mJ
I _{AR}	Avalanche Current (Note 1)			8	А
E _{AR}	Repetitive Avalanche Energy		(Note 1)	3.57	mJ
dv/dt	MOSFET dv/dt		(Note 3)	100	V/no
	Peak Diode Recovery dv/dt			50	V/ns
D	Dewer Dissingtion	$(T_{\rm C} = 25^{\rm o}{\rm C})$		357	W
P _D	Power Dissipation	- Derate Above 25°C		2.86	W/ ^o C
T _J , T _{STG}	Operating and Storage Tempe	erature Range		-55 to +150	°C
Τ _L	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds			300	°C

Thermal Characteristics

Symbol	Parameter	FCB110N65F	Unit
R_{\thetaJC}	Thermal Resistance, Junction to Case	0.35	
D	Thermal Resistance, Junction to Ambient (Mimimum Pad of 2-oz copper), Max.	62.5	°C/W
$R_{ heta JA}$	Thermal Resistance, Junction to Ambient (1 in ² Pad of 2-oz copper), Max.	40	

1

Electrical Characteristics $T_C = 25^\circ$ C unless otherwise noted. Symbol Parameter Test Conditions Min. Typ. Max. U Off Characteristics BV _{DSS} Drain to Source Breakdown Voltage $\frac{I_D = 10 \text{ mA}, V_{GS} = 0 \text{ V}, T_J = 25^\circ \text{C}}{10} - \frac{650}{700} - \frac{1}{7}$ $V_{Coefficient V_{DS} = 650 \text{ V}, V_{CS} = 0 \text{ V}$ $ 10$ ABV_{DSS}/AT_J Breakdown Voltage Temperature $I_D = 10 \text{ mA}, Referenced to 25^\circ \text{C} 0.72 V_{VC} Coefficient V_{DS} = 650 \text{ V}, V_{CS} = 0 \text{ V} 10 V_{DS} = 520 \text{ V}, V_{CS} = 0 \text{ V} 10 V_{DS} = 520 \text{ V}, V_{CS} = 0 \text{ V} 100 \text{ F} On Characteristics VGS = V_{DS}, I_D = 3.5 \text{ mA} 3 5 Norward Transconductance V_{OS} = 100 \text{ V}, V_{GS} = 0 \text{ V} 36800 \text{ 4895} fr Output Capacitance V_{OS} = 100 \text{ V}, V_{CS} = 0 \text{ V} 36800 \text{ 4895} fr Output Capacitance V_{OS} = 0 \text{ V} fa \text{ 1MHz} - $	Electrical Characteristics $T_c = 25^{\circ}C$ unless otherwise noted. Symbol Parameter Test Conditions Min. Typ. Max. Ur Off Characteristics BV _{DSS} Drain to Source Breakdown Voltage $I_D = 10 \text{ mA}, V_{GS} = 0 \text{ V}, T_J = 25^{\circ}C$ 650 - - V/V ABV _{DSS} /AT, J Breakdown Voltage Temperature $I_D = 10 \text{ mA}, Referenced to 25^{\circ}C 0.72 - V/C Lpss Zero Gate Voltage Drain Current VDS = 650 V, VGS = 0 V, T_J = 125^{\circ}C - 110 - 140 Lgss Gate to Body Leakage Current VGS = 20 V, VGS = 0 V, T_S = 125^{\circ}C - 1100 n/V On Characteristics VGS = 10 V, I_D = 17.5 A - 30 - 55 Dynamic Characteristics VDS = 100 V, VGS = 0 V, T_S = 0.4 + 0.4844 - 0.65 - pf Cqss Input Capacitance VDS = 300 V, VGS = 0 V, T = 10.145 - 30 - 55 Dynamic Characteristics - - 3680 4895 pf - 655 - pf$	Part Num	ber	Top Mark	Package	Packing Method	Reel Size	Тар	e Width	Таре	Width
SymbolParameterTest ConditionsMin.Typ.Max.UDff CharacteristicsBV _{DSS} Drain to Source Breakdown Voltage $\frac{1}{10} = 10 \text{ mA}, V_{GS} = 0 \text{ V}, T_J = 25^{\circ}\text{C}}{10} = 100^{\circ}\text{ C}$ 650 $ -$ NBV _{DSS} / AT,Breakdown Voltage Temperature $1_D = 10 \text{ mA}, V_{GS} = 0 \text{ V}, T_J = 150^{\circ}\text{C}$ 700 $ -$ NDSSZero Gate Voltage Drain Current $V_{DS} = 650 \text{ V}, V_{CS} = 0 \text{ V}$ $ 100$ NDSSZero Gate Voltage Drain Current $V_{DS} = 520 \text{ V}, V_{CS} = 0 \text{ V}$ $ 1100$ $-$ NGSSGate Threshold VoltageVGS = 10 V, I_D = 17.5 \text{ A} $ 960$ $ 3100$ $-$ POR CharacteristicsVGS(m)Gate Threshold VoltageVGS = 10 V, I_D = 17.5 \text{ A} $ 960$ $ 3680$ 4895 pf Porpamic CharacteristicsCrassOutput CapacitanceV_{OS} = 100 V, V_{OS} = 0 V, I_D = 17.5 \text{ A} $ 3680$ 4895 pf CrassOutput CapacitanceV_{OS} = 380 V, V_{OS} = 0 V, I_D = 110142 $ 3680$ 4895 pf CrassOutput CapacitanceV_{OS} = 380 V, V_{OS} = 0 V, I_D = 17.5 \text{ A} $ 98$ 145 pf CrassGate to Drain Miller CharageV_{OS} = 380 V, I_D = 17.5 \text{ A} $ 311$ 72 100 CrassGate to Drain Miller CharageV_{OS} = 10 V, R_S = 4.7 \Omega $ 31$ 72 100 <tr< th=""><th>SymbolParameterTest ConditionsMin.Typ.Max.UrDff CharacteristicsBV_{DSS}Drain to Source Breakdown Voltage$\frac{10}{10} = 10 \text{ mA}, V_{GS} = 0 \text{ V}, T_y = 25^{\circ}\text{C}}{100}$$650$VABV_{DSS} / ATyBreakdown Voltage Temperature Coefficient$\frac{10}{10} = 10 \text{ mA}, V_{GS} = 0 \text{ V}, T_y = 150^{\circ}\text{C}}{700}$VAbvSecond State Voltage Drain Current$\frac{V_{OS} = 650 \text{ V}, V_{OS} = 0 \text{ V}}{V_{DS} = 520 \text{ V}, V_{OS} = 0 \text{ V}}$10MossZero Gate Voltage Drain Current$\frac{V_{OS} = 650 \text{ V}, V_{OS} = 0 \text{ V}$±100n/Conditionation StaticGate Threshold VoltageVGS = V_{DS}, I_p = 3.5 \text{ mA}3-5VVGS(m)Gate Threshold VoltageVGS = 10 V, I_p = 17.5 A-96110mBysicForward TransconductanceV_{DS} = 100 V, V_{OS} = 0 \text{ V}-300-SSynamic CharacteristicsV10048495pfCaseInput CapacitanceV_{DS} = 100 V, V_{OS} = 0 \text{ V}-0.65-pfCaseOutput CapacitanceV_{DS} = 380 V, V_{GS} = 0 \text{ V}-48495pfCaseOutput CapacitanceV_DS = 380 V, V_{GS} = 0 \text{ V}-4844-0.65-CaseOutput CapacitanceV_DS = 380 V, V_GS = 0 \text{ V}-4844-0.65-pfCaseOutput CapacitanceV_DS = 380 V, V_GS = 0 V, = 110H1z</th><th>FCB110N</th><th>65F</th><th>FCB110N65F</th><th>D²-PAK</th><th>Tape and Reel</th><th>330 mm</th><th>24</th><th>4 mm</th><th>800</th><th>units</th></tr<>	SymbolParameterTest ConditionsMin.Typ.Max.UrDff CharacteristicsBV _{DSS} Drain to Source Breakdown Voltage $\frac{10}{10} = 10 \text{ mA}, V_{GS} = 0 \text{ V}, T_y = 25^{\circ}\text{C}}{100}$ 650 VABV _{DSS} / ATyBreakdown Voltage Temperature Coefficient $\frac{10}{10} = 10 \text{ mA}, V_{GS} = 0 \text{ V}, T_y = 150^{\circ}\text{C}}{700}$ VAbvSecond State Voltage Drain Current $\frac{V_{OS} = 650 \text{ V}, V_{OS} = 0 \text{ V}}{V_{DS} = 520 \text{ V}, V_{OS} = 0 \text{ V}}$ 10MossZero Gate Voltage Drain Current $\frac{V_{OS} = 650 \text{ V}, V_{OS} = 0 \text{ V}$ ±100n/Conditionation StaticGate Threshold VoltageVGS = V_{DS}, I_p = 3.5 \text{ mA}3-5VVGS(m)Gate Threshold VoltageVGS = 10 V, I_p = 17.5 A-96110mBysicForward TransconductanceV_{DS} = 100 V, V_{OS} = 0 \text{ V}-300-SSynamic CharacteristicsV10048495pfCaseInput CapacitanceV_{DS} = 100 V, V_{OS} = 0 \text{ V}-0.65-pfCaseOutput CapacitanceV_{DS} = 380 V, V_{GS} = 0 \text{ V}-48495pfCaseOutput CapacitanceV_DS = 380 V, V_{GS} = 0 \text{ V}-4844-0.65-CaseOutput CapacitanceV_DS = 380 V, V_GS = 0 \text{ V}-4844-0.65-pfCaseOutput CapacitanceV_DS = 380 V, V_GS = 0 V, = 110H1z	FCB110N	65F	FCB110N65F	D ² -PAK	Tape and Reel	330 mm	24	4 mm	800	units
Dr f CharacteristicsBV _{DSS} Drain to Source Breakdown Voltage $\frac{I_D = 10 \text{ mA}, V_{GS} = 0 \text{ V}, T_J = 150^\circ\text{C}}{10} = 10 \text{ mA}, V_{GS} = 0 \text{ V}, T_J = 150^\circ\text{C}}{700} = \frac{10}{10} = 10 \text{ mA}, V_{GS} = 0 \text{ V}, T_J = 150^\circ\text{C}}{700} = 10 = 10 by set of the transmission of transmissing transmission of transmission of $	Dr Control Contro	Electrical	Chara	acteristics T _c =	25°C unless of	otherwise noted.					
		Symbol		Parameter		Test Conditi	ons	Min.	Тур.	Max.	Uni
		Off Charact	eristics	6							
$ \begin{array}{ c c c c c c } \begin{tabular}{ c c c c } \begin{tabular}{ c c c c c } \begin{tabular}{ c c c c c } \begin{tabular}{ c c c c c } \begin{tabular}{ c c c c c c c } \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Ducin to			I _D = 10 mA, V _{GS} = 0 V	T _J = 25°C	650	-	-	V
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	BVDSS	Drain to	Source Breakdown v	oltage	I _D = 10 mA, V _{GS} = 0 V	T _J = 150°C	700	-	-	V
Ibps Lero Gate Voltage Drain Current $V_{DS} = 520 V, V_{CS} = 0 V, T_{C} = 125^{\circ}C$ 110 1 Idgs Gate to Body Leakage Current $V_{GS} = 420 V, V_{DS} = 0 V$ - - ± 100 r Dn Characteristics VGS(m) Gate Threshold Voltage $V_{GS} = V_{DS}, I_D = 3.5 \text{ mA}$ 3 - 5 0 Static Drain to Source On Resistance $V_{GS} = 10 V, V_{DS} = 17.5 A$ - 96 110 n grs Forward Transconductance $V_{DS} = 20 V, V_{DS} = 0 V, - - 30 - 0 Optamic Characteristics - 3680 4895 f f f 110 145 f f 110 145 f f f 110 145 f f f f f f f 110 145 f $		$\Delta BV_{DSS} / \Delta T_{J}$			ure	I _D = 10 mA, Reference	d to 25°C	-	0.72	-	V/ºC
Non- Nos 520 V, Nos 0 V, I_C = 123°C 10 - 1 100 - 1 100 - 1 100 - 1 100 - 1 100 - 1 100 - 1 100 - 1 100 1 100 1 100 1 100 1 100 1 100 1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	VDS 5.20 V, VGS 0.1 C = 125°C - 110 - - ±100 nv Case Gate to Body Leakage Current VGS = ±20 V, VGS = 0 V - - ±100 nv On Characteristics VGS = ±20 V, VGS = 0 V - - ±100 nv Static Drain to Source On Resistance VGS = 10 V, VGS = 0 V, ID = 17.5 A - 96 110 mm Gras Forward Transconductance VDS = 20 V, ID = 17.5 A - 30 - S Dynamic Characteristics - 100 V, VGS = 0 V, IC = 101 V, VGS = 0 V, IC = 101 V, ID = 110 T, ID 145 pr 110 145 pr Cass Output Capacitance VDS = 380 V, VGS = 0 V, IC = 101 Hz - 0.65 - pf Cass Output Capacitance VDS = 380 V, VGS = 0 V, IC = 101 Hz - 0.7 - 0.7 Gate to Drain Viller'Characteristics - 20 - nd - 0.7 - 0.7 Gate to Source Gate Charge VGS = 10 V - 31 72 n <td>l</td> <td colspan="2">Zoro Cato Voltago Drain Current</td> <td>ont</td> <td>V_{DS} = 650 V, V_{GS} = 0 V</td> <td>V</td> <td>-</td> <td>-</td> <td>10</td> <td></td>	l	Zoro Cato Voltago Drain Current		ont	V_{DS} = 650 V, V_{GS} = 0 V	V	-	-	10	
On Characteristics VGS(th) Gate Threshold Voltage VGS = VDS, ID = 3.5 mA 3 - 5 5 RSS(m) Static Drain to Source On Resistance VGS = 10 V, ID = 17.5 A - 96 110 n 9FS Forward Transconductance VDS = 20 V, ID = 17.5 A - 30 - 5 Optimic Characteristics Ciss Input Capacitance - - 3680 4895 pf Coss Output Capacitance - - 3680 4895 pf Coss Output Capacitance VDS = 100 V, VGS = 0 V, f = 1 MHz - 0.65 - pf Coss Output Capacitance VDS = 380 V, VGS = 0 V, f = 1 MHz - 0.65 - pf Qast Gate to Durbut Capacitance VDS = 380 V, ID = 17.5 A, - 98 145 r Qagd Gate to Drain "Miller" Charge VGS = 10 V - 20 - r Switching Characteristics - 0.7 - 21 52 - 12 12 12	On Characteristics VGS(th) Gate Threshold Voltage VGS = VDS. ID = 3.5 mA 3 - 5 V RDS(an) Static Drain to Source On Resistance VGS = 10 V, ID = 17.5 A - 96 110 mm 9FS Forward Transconductance VDS = 20 V, ID = 17.5 A - 300 - SS Optimic Characteristics Criss Input Capacitance VDS = 100 V, VGS = 0 V, - 3680 4895 pf Criss Neverse Transfer Capacitance VDS = 380 V, VGS = 0 V, - 110 145 pf Criss Reverse Transfer Capacitance VDS = 380 V, VGS = 0 V, - 10.65 - pf Coss Output Capacitance VDS = 380 V, VGS = 0 V - 464 - pf Qagtor) Total Gate Charge at 10V VDS = 380 V, ID = 17.5 A, - 98 145 nd Qagd Gate to Source Gate Charge VGS = 10 V - 43 - nd Qagd Gate to Source Setscharce f = 1 MHz - 0.7 - 0D <td>DSS</td> <td>2610 08</td> <td>te voltage Drain Curr</td> <td>ent</td> <td></td> <td></td> <td>-</td> <td>110</td> <td>-</td> <td>μΛ</td>	DSS	2610 08	te voltage Drain Curr	ent			-	110	-	μΛ
		I _{GSS}	Gate to	Body Leakage Currer	nt	V_{GS} = ±20 V, V_{DS} = 0 V		-	-	±100	nA
		On Charact	eristics	6							
						$V_{GS} = V_{DS}$, $I_{D} = 3.5 \text{ m}$	A	3	-	5	V
grsForward Transconductance $V_{DS}^{c} = 20 V$, $I_{D} = 17.5 A$ -30-OpparationOpparationClassInput Capacitance $V_{DS} = 100 V$, $V_{GS} = 0 V$, $f = 1 MHz$ -36804895pClassInput Capacitance $V_{DS} = 100 V$, $V_{GS} = 0 V$, $f = 1 MHz$ -36804895pCrssReverse Transfer Capacitance $V_{DS} = 380 V$, $V_{GS} = 0 V$, $f = 1 MHz$ -65-pCoss eff.Effective Output Capacitance $V_{DS} = 380 V$, $V_{GS} = 0 V$ -464-p $Q_{gt(ot)}$ Total Gate Charge at 10V $V_{DS} = 380 V$, $V_{GS} = 10 V$ -20 Q_{gd} Gate to Source Gate Charge $V_{CS} = 10 V$ 0.7137210 Q_{gd} Gate to Drain "Miller" Charge $V_{CS} = 10 V$ $V_{CS} = 10 V$ -0.7-137210 Q_{gd} Gate to Drain "Miller" Charge $V_{CS} = 10 V$ $V_{CS} = 10 V$ -0.7-1317210Switching Characteristics $t_{d(off)}$ Turn-On Delay Time $V_{CS} = 10 V$, $R_g = 4.7 \Omega$ -317210 V_{SD} Maximum Continuous Drain to Source Diode Forward Current35 t_{f} Maximum Continuous Drain to Source Diode Forward Current1.4 V_{SD} Drain to Source Diode Forward Vultage $V_{GS} = 0 V$, $I_{SD} = 1$	Production Forward Transconductance $V_{DS}^{c} = 20 V, I_{D} = 17.5 A$ - 30 - S0 Opynamic Characteristics Class Input Capacitance $V_{DS} = 100 V, V_{GS} = 0 V, f = 1 MHz$ - 3680 4895 pf Class Output Capacitance $f = 1 MHz$ - 0.65 - pf Class Output Capacitance $V_{DS} = 380 V, V_{GS} = 0 V, f = 1 MHz$ - 0.65 - pf Coss Output Capacitance $V_{DS} = 380 V, V_{GS} = 0 V, f = 1 MHz$ - 0.65 - pf Coss Output Capacitance $V_{DS} = 380 V, V_{GS} = 0 V$ - 464 - pf Qagtoti Total Gate Charge at 10V $V_{DS} = 380 V, I_D = 17.5 A, V_{GS} = 0 V$ - 484 - 0.7 - GG Gade to Drain "Miller" Charge $V_{CS} = 10 V, R_g = 4.7 \Omega$ - 31 72 n V_{dof} Turn-Of Delay Time $V_{CS} = 10 V, R_g = 4.7 \Omega$ - 31 72 n V_{dof} Turn-Off Delay Time				sistance			-	96	-	mΩ
Dynamic CharacteristicsOpenation of the second state of the second	Dynamic Characteristics VDS VDS VDS 0 <					00		-			S
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		haracto	rictics		50 5					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-							3680	4895	nF
CrissReverse Transfer CapacitanceI = T MH2-0.65-ICossOutput Capacitance $V_{DS} = 380 V, V_{GS} = 0 V, f = 1 MH2$ -65-fCoss eff.Effective Output Capacitance $V_{DS} = 0 V to 400 V, V_{GS} = 0 V$ -464-fQg(ot)Total Gate Charge at 10V $V_{DS} = 380 V, I_D = 17.5 A,$ -98145rQgsGate to Source Gate Charge $V_{GS} = 10 V$ -464-rQgdGate to Drain "Miller" Charge $V_{CS} = 10 V$ -433-rESREquivalent Series Resistancef = 1 MHz-0.7-4Switching Characteristicstransfer Capacitance $V_{DS} = 380 V, I_D = 17.5 A,$ -3172r $V_{CS} = 10 V$ $V_{CS} = 10 V, R_g = 4.7 \Omega$ -3172r(Note 4)-5.721rtransfor CapacitanceV_DD = 380 V, I_D = 17.5 A,-2152r(Note 4)-5.721rTurn-On Rise TimeV_DD = 380 V, I_D = 17.5 A,-2152r(Note 4)-5.721rOther CharacteristicsIsMaximum Continuous Drain to Source Diode Forward Current35IsMaximum Pulsed Drain to Source Diode Forward Current	CrissReverse Transfer CapacitanceI = 1 MH2-0.65-pfCossOutput Capacitance $V_{DS} = 380 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$ -65-pfCoss eff.Effective Output Capacitance $V_{DS} = 0 \text{ V}$ to 400 V, $V_{GS} = 0 \text{ V}$ -464-pfQg(ot)Total Gate Charge at 10V $V_{DS} = 380 \text{ V}, I_D = 17.5 \text{ A},$ -98145nfQgdGate to Source Gate Charge $V_{GS} = 10 \text{ V}$ -464-pfQgdGate to Drain "Miller" Charge $V_{GS} = 10 \text{ V}$ -433-nfESREquivalent Series Resistancef = 1 MHz-0.7-0.65Switching Characteristicstd(on)Turn-On Delay TimetrTurn-Off Delay Time-3172nt_d(off)Turn-Off Fall TimeVDD = 380 V, ID = 17.5 A,-2152nt_d(off)Turn-Off Fall TimeVDD = 380 V, ID = 17.5 A,35At_gMaximum Continuous Drain to Source Diode Forward Current35At_rReverse Recovery TimeVGS = 0 V, ISD = 17.5 A,1.4VVSDDrain to Source Diode Forward VoltageVGS = 0 V, ISD = 17.5 A,1.4VVgSDrain to Source Diode Forward VoltageVGS = 0 V, ISD = 17.5 A,1.4VVgSDrain to Source Diode Forward VoltageVGS						V,	_			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccc} \hline \label{eq:coss} & Output Capacitance & V_{DS} = 380 \ V, \ V_{GS} = 0 \ V, \ f = 1 \ MHz & - & 65 & - & \rhof \\ \hline \ C_{oss} \ eff. & Effective Output Capacitance & V_{DS} = 0 \ V \ o 400 \ V, \ V_{GS} = 0 \ V & - & 464 & - & \rhof \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$				<u> </u>	f = 1 MHz	_	_		-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{cccc} C_{\text{OSS}} \text{ eff.} & \text{Effective Output Capacitance} & V_{\text{DS}} = 0 \ V \ to 400 \ V, V_{\text{GS}} = 0 \ V & - & 464 & - & \text{pf} \\ \hline Q_{q(tot)} & \text{Total Gate Charge at 10V} & V_{\text{DS}} = 380 \ V, I_{\text{D}} = 17.5 \ \text{A}, & - & 98 & 145 & \text{nd} \\ \hline Q_{\text{gs}} & \text{Gate to Source Gate Charge} & V_{\text{GS}} = 10 \ V & (\text{Note 4}) & - & 433 & - & \text{nd} \\ \hline Q_{\text{gd}} & \text{Gate to Drain "Miller" Charge} & f = 1 \ \text{MHz} & - & 0.7 & - & 0.7 \\ \hline \text{SR} & \text{Equivalent Series Resistance} & f = 1 \ \text{MHz} & - & 0.7 & - & 0.7 \\ \hline \text{Switching Characteristics} & & & & & & & & & & & & & & & & & & &$				-	$V_{PQ} = 380 \text{ V} \text{ V}_{QQ} = 0^{10}$	V f = 1 MHz			-	pF
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $									-	pF
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Qgs QgsGate to Source Gate Charge Qgd $V_{GS} = 10 V$ $ 20$ $ ncd$ Q_{gd} Gate to Drain "Miller" Charge(Note 4) $ 43$ $ ncd$ ESREquivalent Series Resistance $f = 1 MHz$ $ 0.7$ $ 0.7$ Switching Characteristicstrun-On Delay Time tr $t_{q(off)}$ Turn-On Rise Time $V_{DD} = 380 V, I_D = 17.5 A, V_GS = 10 V, R_g = 4.7 \Omega$ $ 31$ 72 ncd $t_{d(off)}$ Turn-Off Delay Time $V_{GS} = 10 V, R_g = 4.7 \Omega$ $ 89$ 188 ncd t_{f} Turn-Off Fall Time $V_{GS} = 0 V, R_g = 4.7 \Omega$ $ 5.7$ 21 ncd Drain-Source Diode CharacteristicsIs I_S Maximum Continuous Drain to Source Diode Forward Current $ 1.4$ V V_{SD} Drain to Source Diode Forward Voltage $V_{GS} = 0 V, I_{SD} = 17.5 A$ $ 1.4$ V V_{Tr} Reverse Recovery Time $V_{GS} = 0 V, I_{SD} = 17.5 A$ $ 1.4$ V Q_{rr} Reverse Recovery Charge $d _F/dt = 100 A/\mu s$ $ 0.67$ $ \mu t$ Notes:1. Repetitive rating: pulse width limited by maximum junction temperature. $2. I_{AS} = 8 A, R_G = 25 \Omega, starting T_J = 25^{\circ}C.3. I_{SD} \leq 17.5 A, di/dt < 200 A/\mu s, V_{DD} < 380 V, starting T_J = 25^{\circ}C.$							-		145	nC
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-			, , , , , , , , , , , , , , , , , , ,	-	20	-	nC
ESREquivalent Series Resistancef = 1 MHz-0.7Switching Characteristics $t_{d(on)}$ Turn-On Delay Time $V_{DD} = 380 V, I_D = 17.5 A, V_{GS} = 10 V, R_g = 4.7 \Omega$ -21521 $t_{d(off)}$ Turn-Off Delay Time $V_{GS} = 10 V, R_g = 4.7 \Omega$ -891881 t_{f} Turn-Off Fall Time $V_{OD} = 380 V, I_D = 17.5 A, V_{GS} = 10 V, R_g = 4.7 \Omega$ -891881Drain-Source Diode Characteristics I_S Maximum Continuous Drain to Source Diode Forward Current351 I_S Maximum Pulsed Drain to Source Diode Forward Current100100 V_{SD} Drain to Source Diode Forward Voltage $V_{GS} = 0 V, I_{SD} = 17.5 A$ 1.4 t_{rr} Reverse Recovery Time $V_{GS} = 0 V, I_{SD} = 17.5 A,1.33-1Q_{rr}Reverse Recovery ChargedI_F/dt = 100 A/\mu S-0.67-\muNotes:1. Repetitive rating: pulse width limited by maximum junction temperature.2. I_{AS} = 8 A, R_G = 25 \Omega, starting T_J = 25^{\circ}C.$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $						(Note 4)	-	43	-	nC
Turn-On Delay Time tr trVDD = 380 V, ID = 17.5 A, VDD = 380 V, Rg = 4.7 Ω -317211-215211-89188-10V, Rg = 4.7 Ω -89188-10V, Rg = 4.7 Ω -5.72110Drain-Source Diode CharacteristicsIsometria Maximum Continuous Drain to Source Diode Forward Current35IsMaximum Pulsed Drain to Source Diode Forward Current100VSDDrain to Source Diode Forward VoltageVGS = 0 V, ISD = 17.5 A1.4trrReverse Recovery TimeVGS = 0 V, ISD = 17.5 A,-133-11QrrReverse Recovery ChargedIF/dt = 100 A/µs-0.67-µNotes:1. Repetitive rating: pulse width limited by maximum junction temperature.2. $I_{AS} = 8 A, R_G = 25 \Omega, starting T_J = 25^{\circ}C1.4$	Turn-On Delay Time trVDD = 380 V, ID = 17.5 A, VGS = 10 V, Rg = 4.7 Ω -3172nmtd(off)Turn-Off Delay Time tqVDD = 380 V, Rg = 4.7 Ω -2152nmtd(off)Turn-Off Delay Time tq-89188nmtqTurn-Off Fall TimeNote 4)-5.721nmOrain-Source Diode CharacteristicsIsMaximum Continuous Drain to Source Diode Forward Current35AIsMaximum Pulsed Drain to Source Diode Forward Current100AVSDDrain to Source Diode Forward VoltageVGS = 0 V, ISD = 17.5 A1.4VtrrReverse Recovery TimeVGS = 0 V, ISD = 17.5 A, dIF/dt = 100 A/µs-0.67- μ CNotes:1. Repetitive rating: pulse width limited by maximum junction temperature.2. IAS = 8 A, Rg = 25 Q, starting TJ = 25°C.3.S0 V, starting TJ = 25°C.					f = 1 MHz		-	0.7	-	Ω
Turn-On Delay Time tr trVDD = 380 V, ID = 17.5 A, VDD = 380 V, Rg = 4.7 Ω -317211-215211-89188-10V, Rg = 4.7 Ω -89188-10V, Rg = 4.7 Ω -5.72110Drain-Source Diode CharacteristicsIsometria Maximum Continuous Drain to Source Diode Forward Current35IsMaximum Pulsed Drain to Source Diode Forward Current100VSDDrain to Source Diode Forward VoltageVGS = 0 V, ISD = 17.5 A1.4trrReverse Recovery TimeVGS = 0 V, ISD = 17.5 A,-133-11QrrReverse Recovery ChargedIF/dt = 100 A/µs-0.67-µNotes:1. Repetitive rating: pulse width limited by maximum junction temperature.2. $I_{AS} = 8 A, R_G = 25 \Omega, starting T_J = 25^{\circ}C1.4$	Turn-On Delay Time trVDD = 380 V, ID = 17.5 A, VGS = 10 V, Rg = 4.7 Ω -3172nmtd(off)Turn-Off Delay Time tqVDD = 380 V, Rg = 4.7 Ω -2152nmtd(off)Turn-Off Delay Time tq-89188nmtqTurn-Off Fall TimeNote 4)-5.721nmOrain-Source Diode CharacteristicsIsMaximum Continuous Drain to Source Diode Forward Current35AIsMaximum Pulsed Drain to Source Diode Forward Current100AVSDDrain to Source Diode Forward VoltageVGS = 0 V, ISD = 17.5 A1.4VtrrReverse Recovery TimeVGS = 0 V, ISD = 17.5 A, dIF/dt = 100 A/µs-0.67- μ CNotes:1. Repetitive rating: pulse width limited by maximum junction temperature.2. IAS = 8 A, Rg = 25 Q, starting TJ = 25°C.3.S0 V, starting TJ = 25°C.	Switching (haract	oristics					I	1	
O(III)Turn-On Rise Time $V_{DD} = 380 \text{ V}, I_D = 17.5 \text{ A}, V_{GS} = 10 \text{ V}, R_g = 4.7 \Omega$ -21521 $t_{d(off)}$ Turn-Off Delay Time $V_{GS} = 10 \text{ V}, R_g = 4.7 \Omega$ -891881 t_f Turn-Off Fall Time(Note 4)-5.7211Drain-Source Diode Characteristics I_S Maximum Continuous Drain to Source Diode Forward Current35 I_{SM} Maximum Pulsed Drain to Source Diode Forward Current100 V_{SD} Drain to Source Diode Forward Voltage $V_{GS} = 0 \text{ V}, I_{SD} = 17.5 \text{ A},1.4t_{rr}Reverse Recovery TimeV_{GS} = 0 \text{ V}, I_{SD} = 17.5 \text{ A},1.33-1Q_{rr}Reverse Recovery ChargedI_F/dt = 100 \text{ A}/\mu \text{s}-0.67-\muNotes:1. Repetitive rating: pulse width limited by maximum junction temperature.2. I_{AS} = 8 \text{ A}, R_G = 25 \Omega, starting T_J = 25^\circ \text{ C}.$	O(III)Turn-On Rise Time $V_{DD} = 380 \text{ V}, I_D = 17.5 \text{ A}, V_{GS} = 10 \text{ V}, R_g = 4.7 \Omega$ -2152n: $t_{d(off)}$ Turn-Off Delay Time89188n: t_f Turn-Off Fall Time <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>31</td> <td>72</td> <td>ns</td>							-	31	72	ns
Image: display fill below fill bel	Turn-Off Delay Time $V_{GS} = 10 \text{ V}, \text{ R}_{g} = 4.7 \Omega$ -89188number of the second sec	t.				V _{DD} = 380 V, I _D = 17.5	Α,				ns
Turn-Off Fall Time (Note 4) - 5.7 21 1 Drain-Source Diode Characteristics Is Maximum Continuous Drain to Source Diode Forward Current - - 35 1 Is Maximum Pulsed Drain to Source Diode Forward Current - - 100 100 VsD Drain to Source Diode Forward Voltage V _{GS} = 0 V, I _{SD} = 17.5 A - - 1.4 1.4 trr Reverse Recovery Time V _{GS} = 0 V, I _{SD} = 17.5 A, - 0.67 - µ Notes: 1.8 8A, R _G = 25 Ω, starting T _J = 25°C. 25.0 25.0 25.0 25.0	Turn-Off Fall Time(Note 4)-5.721nDrain-Source Diode Characteristics I_S Maximum Continuous Drain to Source Diode Forward Current35A I_{SM} Maximum Pulsed Drain to Source Diode Forward Current100A V_{SD} Drain to Source Diode Forward Voltage $V_{GS} = 0 V$, $I_{SD} = 17.5 A$ 1.4V t_{rr} Reverse Recovery Time $V_{GS} = 0 V$, $I_{SD} = 17.5 A$,-133-ns Q_{rr} Reverse Recovery Charge $dI_F/dt = 100 A/\mu s$ -0.67- μd Notes:1. Repetitive rating: pulse width limited by maximum junction temperature.2. $I_{AS} = 8 A$, $R_G = 25 \Omega$, starting $T_J = 25^{\circ}C$.	ta(off)									ns
Drain-Source Diode Characteristics Is Maximum Continuous Drain to Source Diode Forward Current - - 35 ISM Maximum Pulsed Drain to Source Diode Forward Current - - 100 VSD Drain to Source Diode Forward Voltage VGS = 0 V, ISD = 17.5 A - - 1.4 trr Reverse Recovery Time VGS = 0 V, ISD = 17.5 A, - 133 - IN Notes: 1. Repetitive rating: pulse width limited by maximum junction temperature. 2. I_AS = 8 A, R_G = 25 \Omega, starting T_J = 25°C. Image: Color	Drain-Source Diode Characteristics I_S Maximum Continuous Drain to Source Diode Forward Current - - 35 A I_{SM} Maximum Pulsed Drain to Source Diode Forward Current - - 100 A V_{SD} Drain to Source Diode Forward Voltage $V_{GS} = 0 V$, $I_{SD} = 17.5 A$ - - 1.4 V t_{rr} Reverse Recovery Time $V_{GS} = 0 V$, $I_{SD} = 17.5 A$, - 133 - ns Q_{rr} Reverse Recovery Charge $dI_F/dt = 100 A/\mu s$ - 0.67 - μc Notes: 1. Repetitive rating: pulse width limited by maximum junction temperature. 1. $S_{1S} = 8 A$, $R_G = 25 \Omega$, starting $T_J = 25^\circ C$	+				(Note 4)		7.			ns
Is Maximum Continuous Drain to Source Diode Forward Current - - 35 IsM Maximum Pulsed Drain to Source Diode Forward Current - - 100 V _{SD} Drain to Source Diode Forward Voltage V _{GS} = 0 V, I _{SD} = 17.5 A - - 1.4 t _{rr} Reverse Recovery Time V _{GS} = 0 V, I _{SD} = 17.5 A, - 133 - 1.4 Q _{rr} Reverse Recovery Charge U _{IF} /dt = 100 A/µs - 0.67 - µ Notes: 1.8 = 8 A, R _G = 25 Ω, starting T _J = 25°C. - - - - 1.4	Is Maximum Continuous Drain to Source Diode Forward Current - - 35 A IsM Maximum Pulsed Drain to Source Diode Forward Current - - 100 A VSD Drain to Source Diode Forward Voltage VGS = 0 V, ISD = 17.5 A - - 1.4 V trr Reverse Recovery Time VGS = 0 V, ISD = 17.5 A, - - 1.33 - ns Qrr Reverse Recovery Charge dIF/dt = 100 A/µs - 0.67 - µ0 Notes: - 1.8 = 8 A, RG = 25 Ω, starting TJ = 25°C. - - 0.67 - µ0			a Diede Characteristics							
Solution Maximum Pulsed Drain to Source Diode Forward Current - 100 V_{SD} Drain to Source Diode Forward Voltage $V_{GS} = 0 V$, $I_{SD} = 17.5 A$ - - 1.4 t_{rr} Reverse Recovery Time $V_{GS} = 0 V$, $I_{SD} = 17.5 A$, - 133 - 1 Q_{rr} Reverse Recovery Charge $dI_F/dt = 100 A/\mu s$ - 0.67 - μ Notes: I. Repetitive rating: pulse width limited by maximum junction temperature. 2. $I_{AS} = 8 A$, $R_G = 25 \Omega$, starting $T_J = 25^{\circ}C$. - </td <td>JoMaximum Pulsed Drain to Source Diode Forward Current100AV_{SD}Drain to Source Diode Forward Voltage$V_{GS} = 0 \text{ V}, I_{SD} = 17.5 \text{ A}$1.4V$t_{rr}$Reverse Recovery Time$V_{GS} = 0 \text{ V}, I_{SD} = 17.5 \text{ A},$-133-ns$Q_{rr}$Reverse Recovery Charge$dI_F/dt = 100 \text{ A/}\mu\text{s}$-0.67-$\mu$Notes:1. Repetitive rating: pulse width limited by maximum junction temperature.2. $I_{AS} = 8 \text{ A}, R_G = 25 \Omega$, starting $T_J = 25^{\circ}$C.8. <math>I_{SD} \le 17.5 \text{ A}, di/dt \le 200 \text{ A/}\mu\text{s}, V_{DD} \le 380 \text{ V}, starting $T_J = 25^{\circ}$C.</math></td> <td></td> <td></td> <td></td> <td></td> <td>Eanword Current</td> <td></td> <td></td> <td></td> <td>25</td> <td>Δ</td>	JoMaximum Pulsed Drain to Source Diode Forward Current100A V_{SD} Drain to Source Diode Forward Voltage $V_{GS} = 0 \text{ V}, I_{SD} = 17.5 \text{ A}$ 1.4V t_{rr} Reverse Recovery Time $V_{GS} = 0 \text{ V}, I_{SD} = 17.5 \text{ A},$ -133-ns Q_{rr} Reverse Recovery Charge $dI_F/dt = 100 \text{ A/}\mu\text{s}$ -0.67- μ Notes:1. Repetitive rating: pulse width limited by maximum junction temperature.2. $I_{AS} = 8 \text{ A}, R_G = 25 \Omega$, starting $T_J = 25^{\circ}$ C.8. $I_{SD} \le 17.5 \text{ A}, di/dt \le 200 \text{ A/}\mu\text{s}, V_{DD} \le 380 \text{ V}, starting T_J = 25^{\circ}C.$					Eanword Current				25	Δ
Similar Drain to Source Diode Forward Voltage $V_{GS} = 0 \text{ V}, I_{SD} = 17.5 \text{ A}$ - 1.4 V_{Tr} Reverse Recovery Time $V_{GS} = 0 \text{ V}, I_{SD} = 17.5 \text{ A},$ - 133 - 1 Q_{rr} Reverse Recovery Charge $dI_F/dt = 100 \text{ A}/\mu \text{ s}$ - 0.67 - 1 Notes: I. Repetitive rating: pulse width limited by maximum junction temperature. 2. $I_{AS} = 8 \text{ A}, R_G = 25 \Omega$, starting $T_J = 25^{\circ}C$. - - - - - -	OW VSDDrain to Source Diode Forward Voltage $V_{GS} = 0 \text{ V}, I_{SD} = 17.5 \text{ A}$ -1.4V V_{rr} Reverse Recovery Time $V_{GS} = 0 \text{ V}, I_{SD} = 17.5 \text{ A},$ -133-ns Q_{rr} Reverse Recovery Charge $dI_F/dt = 100 \text{ A/}\mu\text{s}$ -0.67- μ Notes:1. Repetitive rating: pulse width limited by maximum junction temperature.2. $I_{AS} = 8 \text{ A}, R_G = 25 \Omega$, starting $T_J = 25^{\circ}C$.8. $I_{SD} \le 17.5 \text{ A}, di/dt \le 200 \text{ A/}\mu\text{s}, V_{DD} \le 380 \text{ V}, starting T_J = 25^{\circ}C.$								-		
trrReverse Recovery Time $V_{GS} = 0 \text{ V}, I_{SD} = 17.5 \text{ A},$ -133-IQrrReverse Recovery Charge $dI_F/dt = 100 \text{ A}/\mu \text{ s}$ -0.67- μ Notes:1. Repetitive rating: pulse width limited by maximum junction temperature.2. $I_{AS} = 8 \text{ A}, R_G = 25 \Omega$, starting $T_J = 25^{\circ}C$.	t_{rr} Reverse Recovery Time $V_{GS} = 0 \text{ V}, I_{SD} = 17.5 \text{ A},$ -133-ns Q_{rr} Reverse Recovery Charge $dI_F/dt = 100 \text{ A/}\mu\text{s}$ -0.67- $\mu(r)$ Notes:1. Repetitive rating: pulse width limited by maximum junction temperature.2. $I_{AS} = 8 \text{ A}, R_G = 25 \Omega$, starting $T_J = 25^{\circ}\text{C}$.3. $I_{SD} \le 17.5 \text{ A}, di/dt \le 200 \text{ A/}\mu\text{s}, V_{DD} \le 380 \text{ V}, starting T_J = 25^{\circ}\text{C}.$						1				V
Image: Note of the second	Image: Note: Image: Note: Image: Note: Image: Note: 1. Repetitive rating: pulse width limited by maximum junction temperature. 2. $I_{AS} = 8 A, R_G = 25 \Omega$, starting $T_J = 25^{\circ}C$. 3. $I_{SD} \le 17.5 A$, di/dt $\le 200 A/\mu s$, $V_{DD} \le 380 V$, starting $T_J = 25^{\circ}C$.				a voltage						
Notes: I. Repetitive rating: pulse width limited by maximum junction temperature. 2. $I_{AS} = 8 \text{ A}, R_G = 25 \Omega$, starting $T_J = 25^{\circ}C$.	Notes: I. Repetitive rating: pulse width limited by maximum junction temperature. 2. $I_{AS} = 8 \text{ A}, R_G = 25 \Omega$, starting $T_J = 25^{\circ}C$. 3. $I_{SD} \le 17.5 \text{ A}$, di/dt $\le 200 \text{ A/}\mu\text{s}, V_{DD} \le 380 \text{ V}$, starting $T_J = 25^{\circ}C$.			,		00 02	٦,				μC
	$B_{\rm L}$ Is $D_{\rm SD} \leq 17.5$ A, di/dt ≤ 200 A/µs, V _{DD} ≤ 380 V, starting T _J = 25°C.	Notes: . Repetitive rating:	pulse width	limited by maximum junction	temperature.					(F	2
		, 10			5°C.						
4. Essentially independent of operating temperature typical characteristics.											

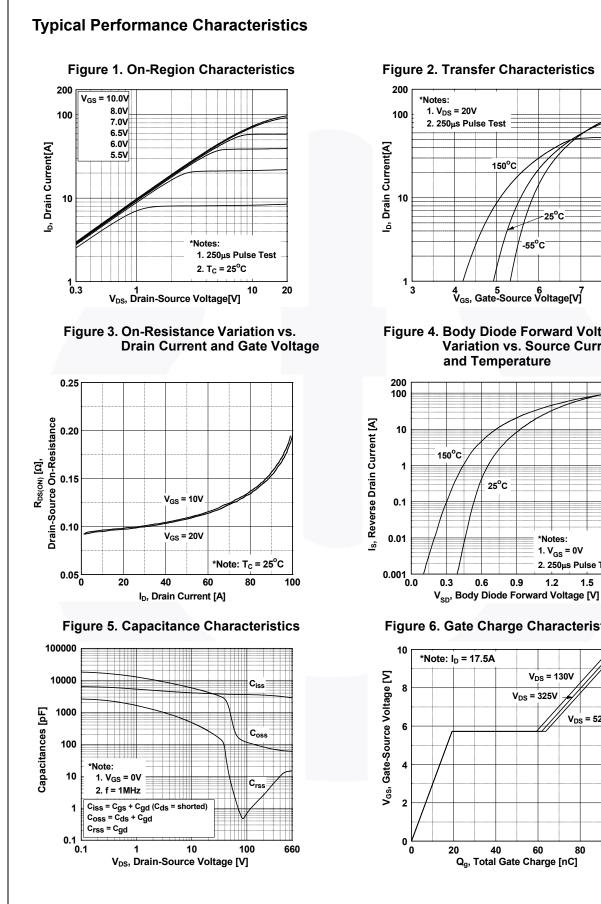
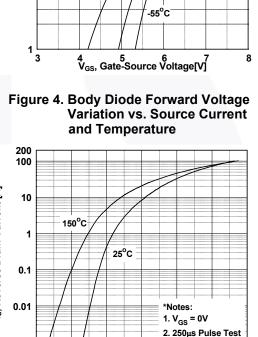
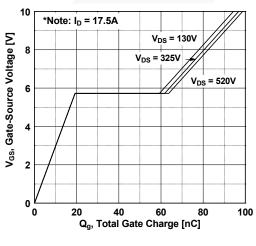
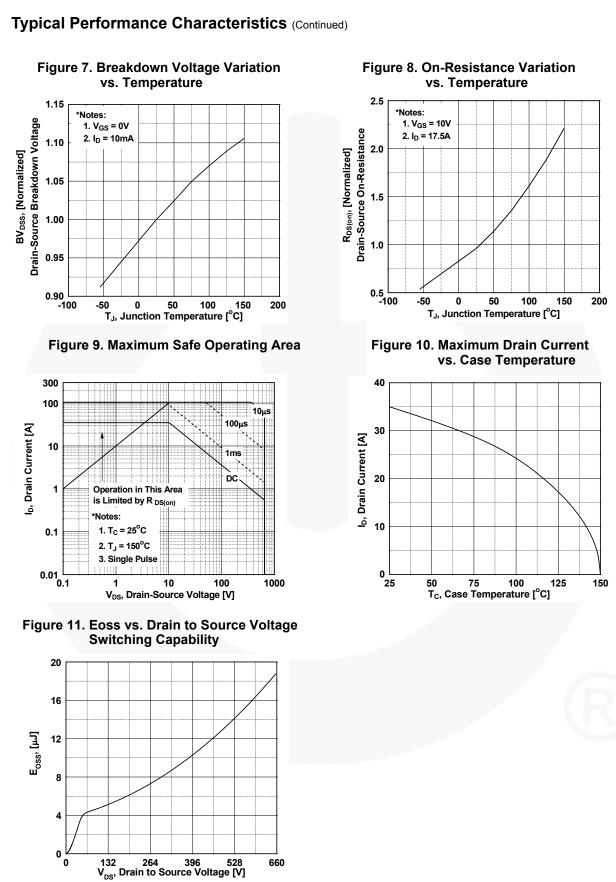



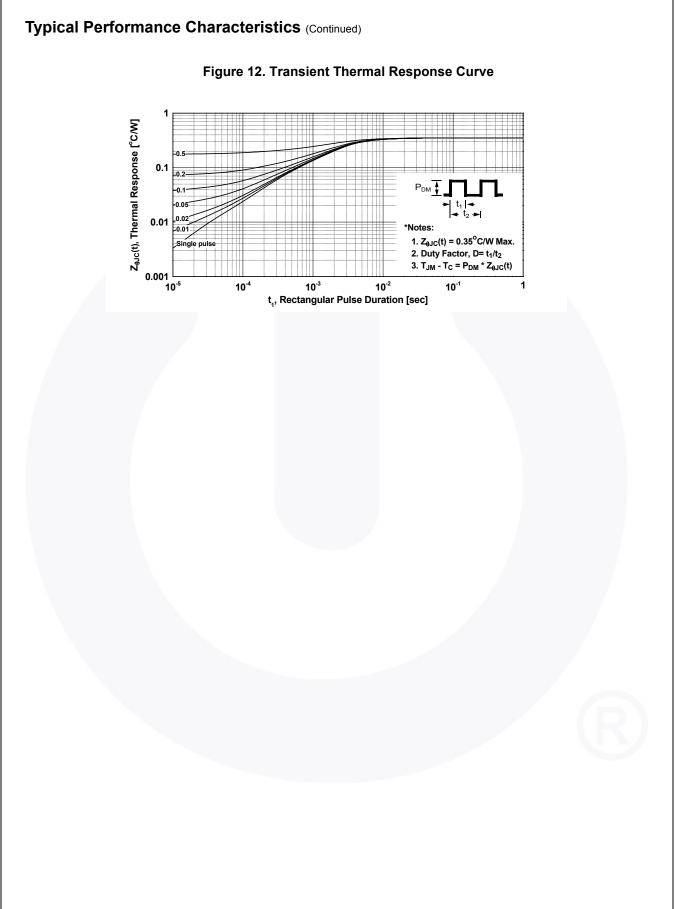
Figure 2. Transfer Characteristics

150°C

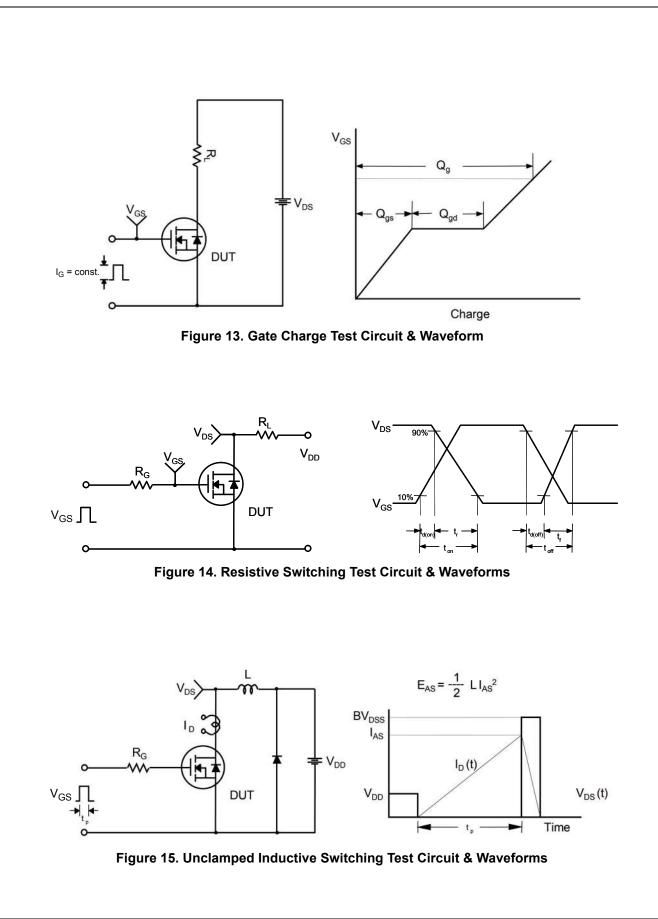
25°C

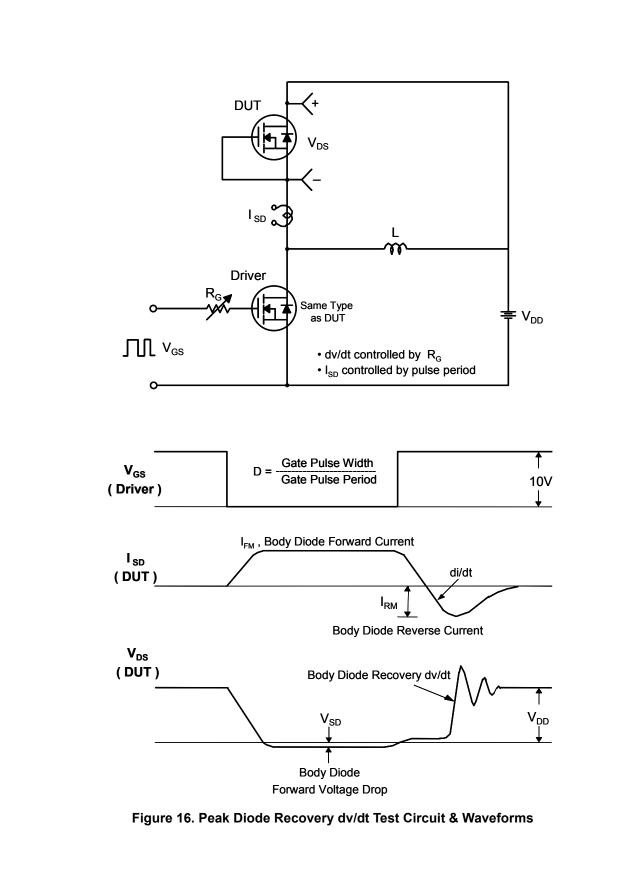

0.6

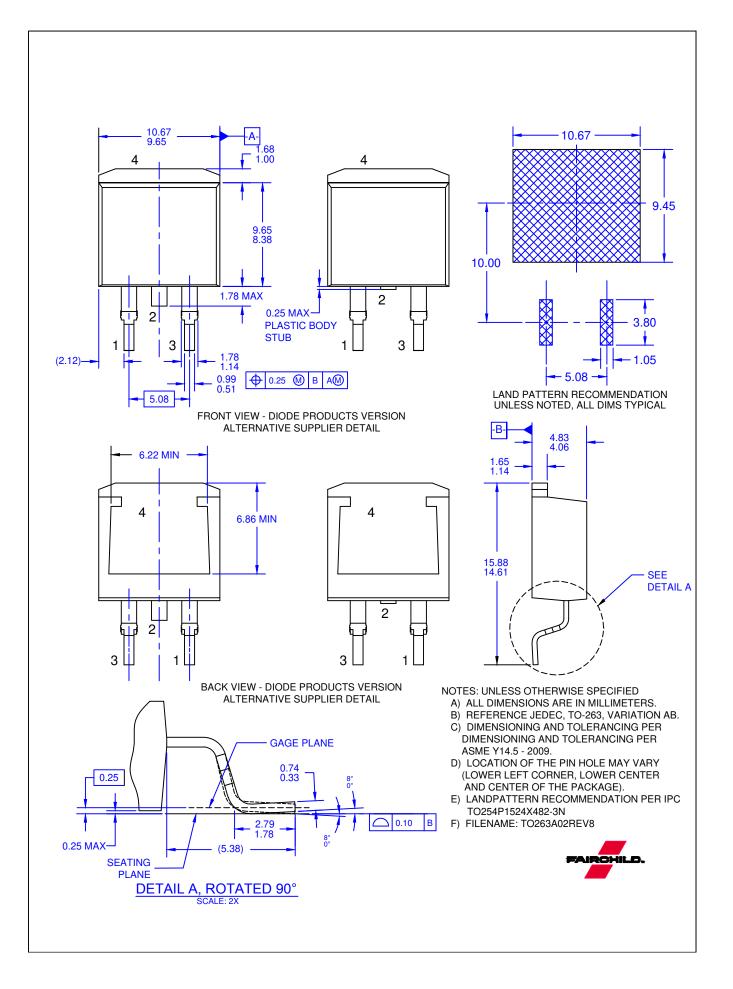

0.9


1.2

1.5


1.8




FCB110N65F — N-Channel SuperFET[®] II FRFET[®] MOSFET

FCB110N65F — N-Channel SuperFET[®] II FRFET[®] MOSFET

7

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC