

# 8-Mbit (1024K x 8) MoBL<sup>®</sup> Static RAM

#### **Features**

Very high speed: 45 ns, 55 ns and 70 ns
 Wide voltage range: 2.20V – 3.60V

· Ultra-low active power

Typical active current: 1.5 mA @ f = 1 MHz
 Typical active current: 12 mA @ f = f<sub>max</sub>

· Ultra-low standby power

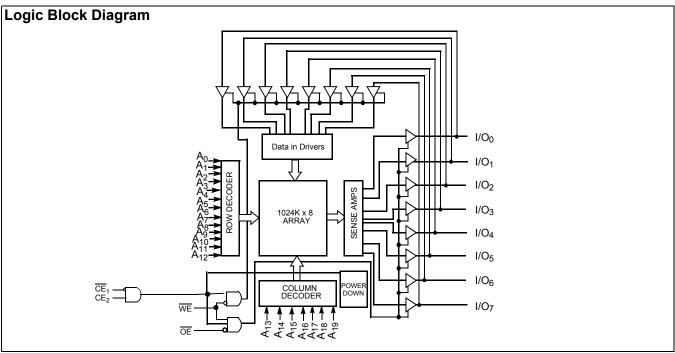
Easy memory expansion with CE<sub>1</sub>, CE<sub>2</sub>, and OE features

· Automatic power-down when deselected

CMOS for optimum speed/power

 Packages offered in a 48-ball BGA, 48-pin TSOPI, and 44-pin TSOPII

### Functional Description[1]

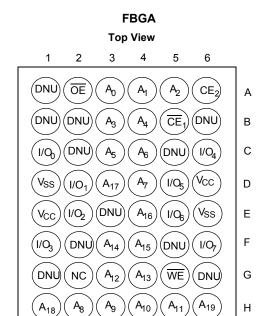

The CY62158DV30 is a high-performance CMOS static RAMs organized as 1024K words by 8 bits. This device features advanced circuit design to provide ultra-low active current.

This is ideal for providing More Battery Life<sup>TM</sup> (MoBL<sup>®</sup>) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption. The device can be put into standby mode reducing power consumption by 85% when deselected ( $\overline{CE}_1$  HIGH or  $\overline{CE}_2$  LOW).

Writing to the device is accomplished by taking Chip Enable 1 ( $\overline{\text{CE}}_1$ ) and Write Enable (WE) inputs LOW and Chip Enable 2 ( $\overline{\text{CE}}_2$ ) HIGH. Data on the eight I/O pins (I/O<sub>0</sub> through I/O<sub>7</sub>) is then written into the location specified on the address pins (A<sub>0</sub> through A<sub>19</sub>).

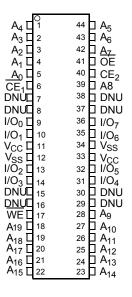
Reading from the device is accomplished by taking Chip Enable 1 ( $CE_1$ ) and Output Enable (OE) LOW and Chip Enable 2 ( $CE_2$ ) HIGH while forcing Write Enable (WE) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O $_0$  through I/O $_7$ ) are placed in a high-impedance state when the device is des<u>elected (CE $_1$ LOW and CE $_2$  HIGH), the <u>outputs</u> are disabled (OE HIGH), or during a write operation (CE $_1$ LOW and CE $_2$  HIGH and WE LOW). See the truth table for a complete description of read and write modes.</u>




Note

1. For best practice recommendations, please refer to the Cypress application note entitled System Design Guidelines, available at http://www.cypress.com.




# Pin Configuration<sup>[2, 3, 4]</sup>



48TSOPI Top View 44 TSOPII Top View





#### Notes:

- 2. NC pins are not internally connected to the die.
- 3. DNU pins have to be left floating.
- 4. The BYTE pin in the TSOPI package has to be tied LOW to use the device as 1M x 8 SRAM. The 48-TSOPI package can also be used as a 512K × 16 SRAM by tying the BYTE signal HIGH. For 512K x 16 functionality, please refer to the CY62157DV30 data sheet.



# **Maximum Ratings**

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature ......-65°C to +150°C Ambient Temperature with Supply Voltage to Ground Potential .–0.3V to  $V_{cc(max)}$  + 0.3V DC Voltage Applied to Outputs in High-Z State  $^{[5,\ 6]}$  .......-0.3V to  $V_{CC(max)}$  + 0.3V DC Input Voltage<sup>[5, 6]</sup> ......-0.3V to V<sub>CC(max)</sub> + 0.3V

| Output Current into Outputs (LOW)                      | 20 mA   |
|--------------------------------------------------------|---------|
| Static Discharge Voltage(per MIL-STD-883, Method 3015) | >2001V  |
| Latch-up Current                                       | >200 mA |

### **Operating Range**

| Product       | Range      | Ambient<br>Temperature<br>(T <sub>A</sub> ) | <b>V</b> cc <sup>[7]</sup> |
|---------------|------------|---------------------------------------------|----------------------------|
| CY62158DV30L  | Industrial | –40°C to +85°C                              | 2.2V - 3.6V                |
| CY62158DV30LL |            |                                             |                            |

#### **Product Portfolio**

|               |      |                           |      |          |                     |           | Power                  | Dissipatio | n                   |                                  |
|---------------|------|---------------------------|------|----------|---------------------|-----------|------------------------|------------|---------------------|----------------------------------|
|               |      |                           |      |          |                     | Operating | J I <sub>CC</sub> (mA) |            |                     |                                  |
|               | Vo   | V <sub>CC</sub> Range (V) |      | Speed    | f = 1               | MHz       | f = 1                  | max        | Standby             | / I <sub>SB2</sub> (μ <b>A</b> ) |
| Product       | Min. | Typ. <sup>[8]</sup>       | Max. | (ns)     | Typ. <sup>[8]</sup> | Max.      | Typ. <sup>[8]</sup>    | Max.       | Typ. <sup>[8]</sup> | Max.                             |
| CY62158DV30L  | 2.2  | 3.0                       | 3.6  | 45,55,70 | 1.5                 | 3         | 12                     | 20         | 2                   | 20                               |
| CY62158DV30LL | 2.2  | 3.0                       | 3.6  | 45,55,70 | 1.5                 | 3         | 12                     | 15         | 2                   | 8                                |

### **Electrical Characteristics** Over the Operating Range

|                  |                                  |                                                                                                                           |                                        |    | (    | CY62158                     | BDV30                                                                                                          |    |
|------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----|------|-----------------------------|----------------------------------------------------------------------------------------------------------------|----|
| Parameter        | Description                      | Test Condi                                                                                                                | itions                                 |    | Min. | <b>Typ</b> . <sup>[8]</sup> | 0.4<br>0.4<br>V <sub>CC</sub> +0.3V<br>V <sub>CC</sub> +0.3V<br>0.6<br>0.8<br>+1<br>+1<br>12 20<br>15<br>1.5 3 |    |
| V <sub>OH</sub>  | Output HIGH Voltage              | I <sub>OH</sub> = -0.1 mA                                                                                                 | V <sub>CC</sub> = 2.20V                |    | 2.0  |                             |                                                                                                                | V  |
|                  |                                  | I <sub>OH</sub> = -1.0 mA                                                                                                 | V <sub>CC</sub> = 2.70V                |    | 2.4  |                             |                                                                                                                | V  |
| V <sub>OL</sub>  | Output LOW Voltage               | I <sub>OL</sub> = 0.1 mA                                                                                                  | V <sub>CC</sub> = 2.20V                |    |      |                             | 0.4                                                                                                            | V  |
|                  |                                  | I <sub>OL</sub> = 2.1mA                                                                                                   | V <sub>CC</sub> = 2.70V                |    |      |                             | 0.4                                                                                                            | V  |
| V <sub>IH</sub>  | Input HIGH Voltage               | V <sub>CC</sub> = 2.2V to 2.7V                                                                                            |                                        |    | 1.8  |                             | V <sub>CC</sub> + 0.3V                                                                                         | V  |
|                  |                                  | V <sub>CC</sub> = 2.7V to 3.6V                                                                                            |                                        |    | 2.2  |                             | V <sub>CC</sub> + 0.3V                                                                                         | V  |
| V <sub>IIL</sub> | Input LOW Voltage                | V <sub>CC</sub> = 2.2V to 2.7V                                                                                            |                                        |    | -0.3 |                             | 0.6                                                                                                            | V  |
|                  |                                  | V <sub>CC</sub> = 2.7V to 3.6V                                                                                            |                                        |    | -0.3 |                             | 0.8                                                                                                            | V  |
| I <sub>IX</sub>  | Input Leakage Current            | $GND \le V_1 \le V_{CC}$                                                                                                  |                                        |    | -1   |                             | +1                                                                                                             | μΑ |
| I <sub>OZ</sub>  | Output Leakage Current           | GND $\leq$ V <sub>O</sub> $\leq$ V <sub>CC</sub> , Output Disa                                                            | abled                                  |    | -1   |                             | +1                                                                                                             | μА |
| I <sub>CC</sub>  | V <sub>CC</sub> Operating Supply | $f = f_{MAX} = 1/t_{RC}$                                                                                                  | V <sub>CC</sub> = V <sub>CCmax</sub>   | L  |      | 12                          | 20                                                                                                             | mA |
|                  | Current                          |                                                                                                                           | I <sub>OUT</sub> = 0 mA<br>CMOS levels | LL |      |                             | 15                                                                                                             | mA |
|                  |                                  | f = 1 MHz                                                                                                                 | OWOO ICVCIS                            | L  |      | 1.5                         | 3                                                                                                              | mA |
|                  |                                  |                                                                                                                           |                                        | LL |      |                             | 3                                                                                                              | mA |
| I <sub>SB1</sub> | Automatic CE                     | $CE_1 \ge V_{CC} - 0.2V, CE_2 \le 0.2V$                                                                                   |                                        | L  |      | 2                           | 20                                                                                                             | μА |
|                  | Power-down Current — CMOS Inputs | $V_{IN} \ge V_{CC} - 0.2V$ , $V_{IN} \le 0.2V$<br>$f = f_{MAX}$ (Address and Data C<br>$f = 0$ (OE, and WE), $V_{CC} = 3$ | Ònly),                                 | LL |      | 2                           | 8                                                                                                              |    |
| I <sub>SB2</sub> | Automatic CE                     | $CE_1 \ge V_{CC} - 0.2V$ or $CE_2 \le 0$                                                                                  |                                        | L  |      | 2                           | 20                                                                                                             | μА |
|                  | Power-down Current — CMOS Inputs | $V_{IN} \ge V_{CC} - 0.2V \text{ or } V_{IN} \le 0.2V$<br>f = 0, $V_{CC}$ = 3.60V                                         | 2V,                                    | LL |      | 2                           | 8                                                                                                              |    |

- Notes:

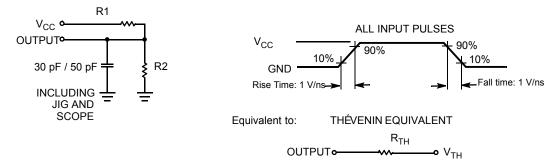
  5. V<sub>IL(min.)</sub> = -2.0V for pulse durations less than 20 ns.

  6. V<sub>IH(max)</sub>= V<sub>CC</sub>+0.75V for pulse duration less than 20ns.

  7. Full device AC operation assumes a 100 μs ramp time from 0 to V<sub>cc</sub>(min) and 200 μs wait time after V<sub>cc</sub> stabilization.

  8. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V<sub>CC</sub> = V<sub>CC(typ.)</sub>, T<sub>A</sub> = 25°C.




# Capacitance<sup>[9, 10.]</sup>

| Parameter        | Description        | Test Conditions                         | Max. | Unit |
|------------------|--------------------|-----------------------------------------|------|------|
| C <sub>IN</sub>  | Input Capacitance  | $T_A = 25^{\circ}C, f = 1 \text{ MHz},$ | 10   | pF   |
| C <sub>OUT</sub> | Output Capacitance | $V_{CC} = V_{CC(typ.)}$                 | 10   | pF   |

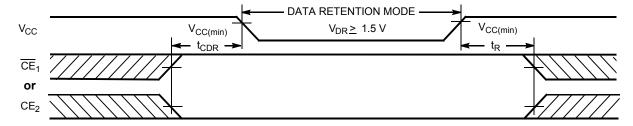
#### **Thermal Resistance**

| Parameter       | Description                                          | Test Conditions                                                         | BGA  | TSOP II | TSOP I | Unit |
|-----------------|------------------------------------------------------|-------------------------------------------------------------------------|------|---------|--------|------|
| $\Theta_{JA}$   |                                                      | Still Air, soldered on a 3 x 4.5 inch, four-layer printed circuit board | 72   | 75.13   | 74.88  | °C/W |
| Θ <sub>JC</sub> | Thermal Resistance <sup>[9]</sup> (Junction to Case) |                                                                         | 8.86 | 8.95    | 8.6    | °C/W |

# AC Test Loads and Waveforms [11]



| Parameters      | 2.50V | 3.0V | Unit |
|-----------------|-------|------|------|
| R1              | 16667 | 1103 | Ω    |
| R2              | 15385 | 1554 | Ω    |
| R <sub>TH</sub> | 8000  | 645  | Ω    |
| V <sub>TH</sub> | 1.20  | 1.75 | V    |


## Data Retention Characteristics (Over the Operating Range)

| Parameter                       | Description                             | Conditions                                                                                                                      |    | Min.            | Typ. <sup>[8]</sup> | Max. | Unit |
|---------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----|-----------------|---------------------|------|------|
| $V_{DR}$                        | V <sub>CC</sub> for Data Retention      |                                                                                                                                 |    | 1.5             |                     |      | V    |
| I <sub>CCDR</sub>               | Data Retention Current                  | $V_{CC} = 1.5V$                                                                                                                 | L  |                 |                     | 10   | μΑ   |
|                                 |                                         | $V_{CC} = 1.5V$<br>$CE_1 \ge V_{CC} - 0.2V \text{ or } CE_2 \le 0.2V$<br>$V_{IN} \ge V_{CC} - 0.2V \text{ or } V_{IN} \le 0.2V$ | LL |                 |                     | 4    | μΑ   |
| t <sub>CDR</sub> <sup>[9]</sup> | Chip Deselect to Data<br>Retention Time |                                                                                                                                 |    | 0               |                     |      | ns   |
| t <sub>R</sub> <sup>[12]</sup>  | Operation Recovery Time                 |                                                                                                                                 |    | t <sub>RC</sub> |                     |      | ns   |

- 9. Tested initially and after any design or process changes that may affect these parameters.
- 10. The input capacitance on the  $CE_2$  pin is 15 pF.
- 11. Test condition for the 45 ns part is a load capacitance of 30 pF.
   12. Full Device AC operation requires linear V<sub>CC</sub> ramp from V<sub>DR</sub> to V<sub>CC(min.)</sub> ≥ 100 μs or stable at V<sub>CC(min.)</sub> ≥ 100 μs.



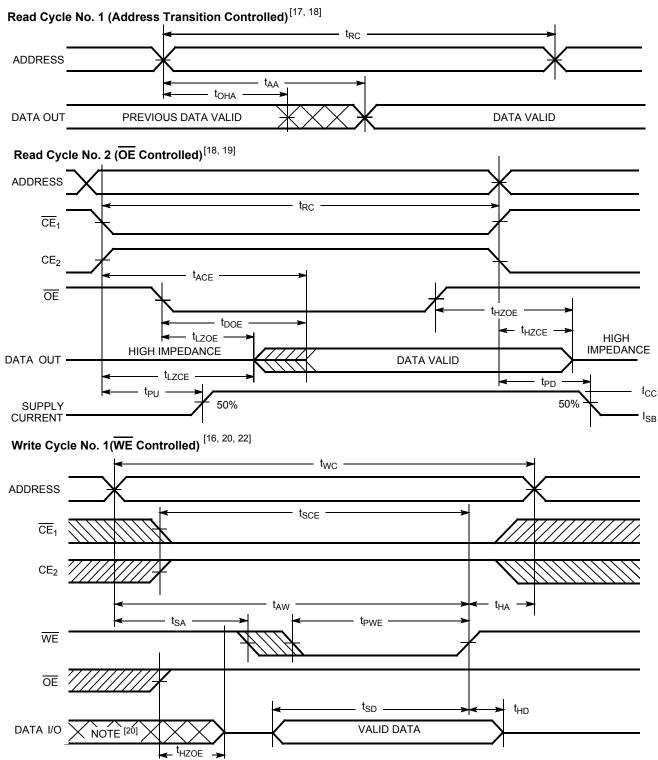
#### **Data Retention Waveform**



## Switching Characteristics Over the Operating Range [13]

|                             |                                                                           | 45 n | ıs <sup>[11]</sup> | 55   | ns   |      |      |      |
|-----------------------------|---------------------------------------------------------------------------|------|--------------------|------|------|------|------|------|
| Parameter                   | Description                                                               | Min. | Max.               | Min. | Max. | Min. | Max. | Unit |
| Read Cycle                  |                                                                           |      | •                  |      | •    |      | 1    |      |
| t <sub>RC</sub>             | Read Cycle Time                                                           | 45   |                    | 55   |      | 70   |      | ns   |
| t <sub>AA</sub>             | Address to Data Valid                                                     |      | 45                 |      | 55   |      | 70   | ns   |
| t <sub>OHA</sub>            | Data Hold from Address Change                                             | 10   |                    | 10   |      | 10   |      | ns   |
| t <sub>ACE</sub>            | CE <sub>1</sub> LOW and CE <sub>2</sub> HIGH to Data Valid                |      | 45                 |      | 55   |      | 70   | ns   |
| t <sub>DOE</sub>            | OE LOW to Data Valid                                                      |      | 25                 |      | 25   |      | 35   | ns   |
| t <sub>LZOE</sub>           | OE LOW to Low Z <sup>[14]</sup>                                           | 5    |                    | 5    |      | 5    |      | ns   |
| t <sub>HZOE</sub>           | OE HIGH to High Z <sup>[14, 15]</sup>                                     |      | 15                 |      | 20   |      | 25   | ns   |
| t <sub>LZCE</sub>           | CE <sub>1</sub> LOW and CE <sub>2</sub> HIGH to Low Z <sup>[14]</sup>     | 10   |                    | 10   |      | 10   |      | ns   |
| t <sub>HZCE</sub>           | CE <sub>1</sub> HIGH or CE <sub>2</sub> LOW to High Z <sup>[14, 15]</sup> |      | 20                 |      | 20   |      | 25   | ns   |
| t <sub>PU</sub>             | $\overline{\text{CE}}_1$ LOW and $\text{CE}_2$ HIGH to Power-Up           | 0    |                    | 0    |      | 10   |      | ns   |
| t <sub>PD</sub>             | CE <sub>1</sub> HIGH or CE <sub>2</sub> LOW to Power-Down                 |      | 45                 |      | 55   |      | 25   | ns   |
| Write Cycle <sup>[16]</sup> |                                                                           |      | •                  |      |      |      |      | •    |
| t <sub>WC</sub>             | Write Cycle Time                                                          | 45   |                    | 55   |      | 70   |      | ns   |
| t <sub>SCE</sub>            | CE <sub>1</sub> LOW and CE <sub>2</sub> HIGH to Write End                 | 40   |                    | 40   |      | 60   |      | ns   |
| t <sub>AW</sub>             | Address Set-Up to Write End                                               | 40   |                    | 40   |      | 60   |      | ns   |
| t <sub>HA</sub>             | Address Hold from Write End                                               | 0    |                    | 0    |      | 0    |      | ns   |
| t <sub>SA</sub>             | Address Set-Up to Write Start                                             | 0    |                    | 0    |      | 0    |      | ns   |
| t <sub>PWE</sub>            | WE Pulse Width                                                            | 35   |                    | 40   |      | 45   |      | ns   |
| t <sub>SD</sub>             | Data Set-Up to Write End                                                  | 25   |                    | 25   |      | 30   |      | ns   |
| t <sub>HD</sub>             | Data Hold from Write End                                                  | 0    |                    | 0    |      | 0    |      | ns   |
| t <sub>HZWE</sub>           | WE LOW to High Z <sup>[14, 15]</sup>                                      |      | 15                 |      | 20   |      | 25   | ns   |
| t <sub>LZWE</sub>           | WE HIGH to Low Z <sup>[14]</sup>                                          | 10   |                    | 10   |      | 10   |      | ns   |

<sup>13.</sup> Test conditions for all parameters other than tri-state parameters assume signal transition time of 3ns or less (1V/ns), timing reference levels of V<sub>CC(typ.)</sub>/2, input pulse levels of 0 to V<sub>CC(typ.)</sub>, and output loading of the specified I<sub>OL</sub>/I<sub>OH</sub> as shown in the "AC Test Loads and Waveforms" section.


14. At any given temperature and voltage condition, t<sub>HZCE</sub> is less than t<sub>LZOE</sub>, t<sub>HZOE</sub> is less than t<sub>LZOE</sub>, and t<sub>HZWE</sub> is less than t<sub>LZWE</sub> for any given device.

15. t<sub>HZCE</sub>, t<sub>HZCE</sub>, and t<sub>HZWE</sub> transitions are measured when the outp<u>uts enter</u> a high impedance state.

16. The internal write time of the memory is defined by the overlap of WE, CE<sub>1</sub> = V<sub>IL</sub>, and CE<sub>2</sub> = V<sub>IH</sub>. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates the write.

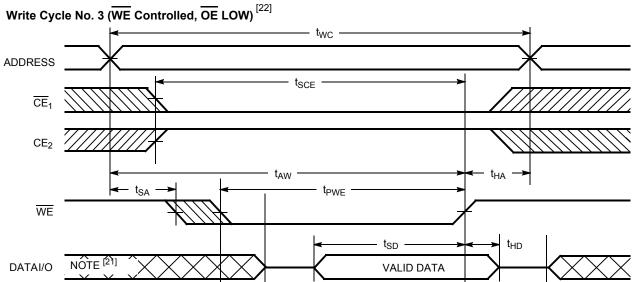


# **Switching Waveforms**



- Notes:

  17. <u>Dev</u>ice is continuously selected.  $\overline{OE}$ ,  $\overline{CE}_1 = V_{IL}$ ,  $CE_2 = V_{IH}$ .


  18.  $\overline{WE}$  is HIGH for read cycle.

  19. Address valid prior to or coincident with  $\overline{CE}_1$  transition LOW and  $CE_2$  transition HIGH.



# Switching Waveforms (continued)

# Write Cycle No. 2( $\overline{\text{CE}}_1$ or $\text{CE}_2$ Controlled) [16, 20, 22] $t_{WC}$ **ADDRESS** t<sub>SCE</sub> CE<sub>1</sub> $CE_2$ $t_{\text{AW}} \\$ $t_{\text{PWE}}$ $t_{SD}$ $\mathsf{t}_{\mathsf{HD}}$ DATA I/O VALID DATA



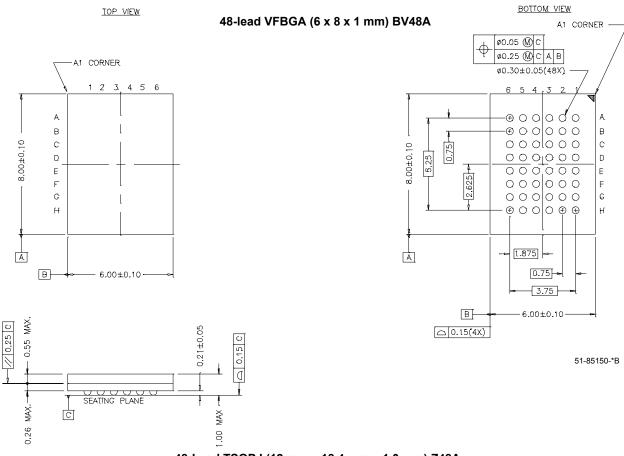
#### **Truth Table**

| CE <sub>1</sub> | CE <sub>2</sub> | WE | OE | Inputs/Outputs                                 | Mode                | Power                      |
|-----------------|-----------------|----|----|------------------------------------------------|---------------------|----------------------------|
| Н               | Х               | X  | X  | High Z                                         | Deselect/Power-down | Standby (I <sub>SB</sub> ) |
| Х               | L               | Х  | Х  | High Z                                         | Deselect/Power-down | Standby (I <sub>SB</sub> ) |
| L               | Н               | Н  | L  | Data Out (I/O <sub>0</sub> -I/O <sub>7</sub> ) | Read                | Active (I <sub>CC</sub> )  |
| L               | Н               | Н  | Н  | High Z                                         | Output Disabled     | Active (Icc)               |
| L               | Н               | L  | Х  | Data in (I/O <sub>0</sub> -I/O <sub>7</sub> )  | Write               | Active (Icc)               |

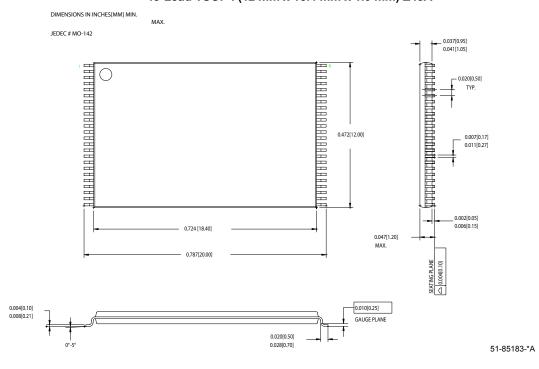
#### Notes:

20. Data I/O is high impedance if  $\overline{\text{OE}} = \text{V}_{\text{IH}}$ .
21. During this period, the I/Os are in output state and input signals should not be applied.
22. If  $\overline{\text{CE}}_1$  goes HIGH or  $\overline{\text{CE}}_2$  goes LOW simultaneously with  $\overline{\text{WE}}$  HIGH, the output remains in high-impedance state.

t<sub>LZWE</sub> -




# **Ordering Information**

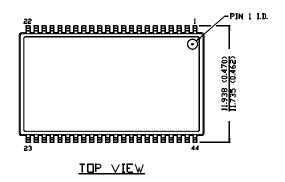

| Speed<br>(ns) | Ordering Code        | Package<br>Name | Package Type                               | Operating Range |
|---------------|----------------------|-----------------|--------------------------------------------|-----------------|
| 45            | CY62158DV30L-45BVI   | BV48A           | 48-ball Fine Pitch BGA (6 mm × 8mm × 1 mm) | Industrial      |
|               | CY62158DV30LL-45BVI  |                 |                                            |                 |
| 45            | CY62158DV30L-45ZXI   | Z-48            | 48 Pin TSOP I (Pb-free)                    | Industrial      |
|               | CY62158DV30LL-45ZXI  |                 |                                            |                 |
| 45            | CY62158DV30L-45ZSXI  | ZS-44           | 44 Pin TSOP II (Pb-free)                   | Industrial      |
|               | CY62158DV30LL-45ZSXI |                 |                                            |                 |
| 55            | CY62158DV30L-55BVI   | BV48A           | 48-ball Fine Pitch BGA (6 mm × 8mm × 1 mm) | Industrial      |
|               | CY62158DV30LL-55BVI  |                 |                                            |                 |
| 55            | CY62158DV30L-55ZXI   | Z-48            | 48 Pin TSOP I (Pb-free)                    | Industrial      |
|               | CY62158DV30LL-55ZXI  |                 |                                            |                 |
| 55            | CY62158DV30L-55ZSXI  | ZS-44           | 44 Pin TSOP II (Pb-free)                   | Industrial      |
|               | CY62158DV30LL-55ZSXI |                 |                                            |                 |
| 70            | CY62158DV30L-70BVI   | BV48A           | 48-ball Fine Pitch BGA (6 mm × 8mm × 1 mm) | Industrial      |
|               | CY62158DV30LL-70BVI  |                 |                                            |                 |
| 70            | CY62158DV30L-70ZXI   | Z-48            | 48 Pin TSOP I (Pb-free)                    | Industrial      |
|               | CY62158DV30LL-70ZXI  |                 |                                            |                 |
| 70            | CY62158DV30L-70ZSXI  | ZS-44           | 44 Pin TSOP II (Pb-free)                   | Industrial      |
|               | CY62158DV30LL-70ZSXI |                 |                                            |                 |

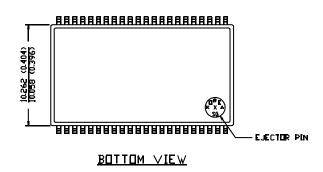


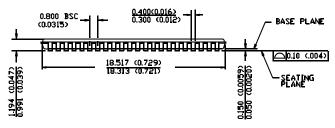
# **Package Diagrams**

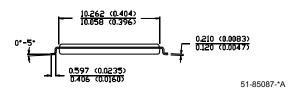


48-Lead TSOP I (12 mm x 18.4 mm x 1.0 mm) Z48A





### Package Diagrams (continued)


#### 44-pin TSOP II ZS44

DIMENSION IN MM (INCH)









MoBL is a registered trademark, and More Battery Life is a trademark, of Cypress Semiconductor. All product and company names mentioned in this document are trademarks of their respective holders.



# **Document History Page**

|      | Document Title:CY62158DV30 MoBL <sup>®</sup> 8-Mbit (1024K x 8) MoBL <sup>®</sup> Static RAM<br>Document Number: 38-05391 |            |                    |                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|------|---------------------------------------------------------------------------------------------------------------------------|------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| REV. | ECN NO.                                                                                                                   | Issue Date | Orig. of<br>Change | Description of Change                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| **   | 126293                                                                                                                    | 05/22/03   | HRT                | New Data Sheet                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| *A   | 131014                                                                                                                    | 11/25/03   | CBD                | Change from Advance to Preliminary                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| *B   | 133114                                                                                                                    | 01/24/04   | CBD                | Minor Change: MPN change and upload                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| *C   | 211602                                                                                                                    | See ECN    | AJU                | Change from Preliminary to Final Changed Marketing part # from CY62158DV to CY62158DV30 in the "Title" and in the "Ordering Information" table Added footnote 4 and 10 Modified footnote 7 to include ramp time and wait time Removed MAX value for V <sub>DR</sub> on "Data Retention Characteristics" table Changed ordering code for Pb-free parts Modified voltage limits in Maximum Ratings section |  |  |  |  |
| *D   | 239450                                                                                                                    | See ECN    | SYT/AJU            | Added footnote #11 Added 45 ns and 70 ns Speed Bins                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |