ON Semiconductor

Is Now

Onsemí

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

ON Semiconductor® FCD5N60-F085

N-Channel SuperFET[®] MOSFET 600 V, 4.6 A, 1.1 Ω

Features

- 600V, 4.6A, typ. R_{ds(on)}=860mΩ@V_{GS}=10V
- Ultra Low Gate Charge (Typ. Q_q = 16 nC)
- UIS Capability
- RoHS Compliant
- Qualified to AEC Q101

Applications

- Automotive On Board Charger
- Automotive DC/DC Converter for HEV

Description

SuperFETTM is ON Semiconductor proprietary new generation of high voltage MOSFETs utilizing an advanced charge balance mechanism for outstanding low on-resistance and lower gate charge performance.

This advanced technology has been tailored to minimize conduction loss, provide superior switching performance, and withstand extreme dv/dt rate and higher avalanche energy. Consequently, SuperFET is suitable for various automotive DC/DC power conversion.

Symbol	Parameter	Ratings	Units	
V _{DSS}	Drain-to-Source Voltage		600	V
V _{GS}	Gate-to-Source Voltage		±30	V
I _D	Drain Current - Continuous (V _{GS} =10) (Note 1)	T _C = 25°C	4.6	۸
	Pulsed Drain Current	T _C = 25°C	See Figure 4	— A
E _{AS}	Single Pulse Avalanche Energy	(Note 1)	29	mJ
P _D	Power Dissipation		54	W
	Derate Above 25°C		1.56	W/ºC
T _J , T _{STG}	Operating and Storage Temperature		-55 to + 150	°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case		2.3	°C/W
$R_{\theta JA}$	Maximum Thermal Resistance, Junction to Ambient	(Note 2)	83	°C/W

Notes:

1: Starting $T_J = 25^{\circ}$ C, L = 10mH, I_{AS} = 2.4A, V_{DD} = 100V during inductor charging and V_{DD} = 0V during time in avalanche.

ROHS

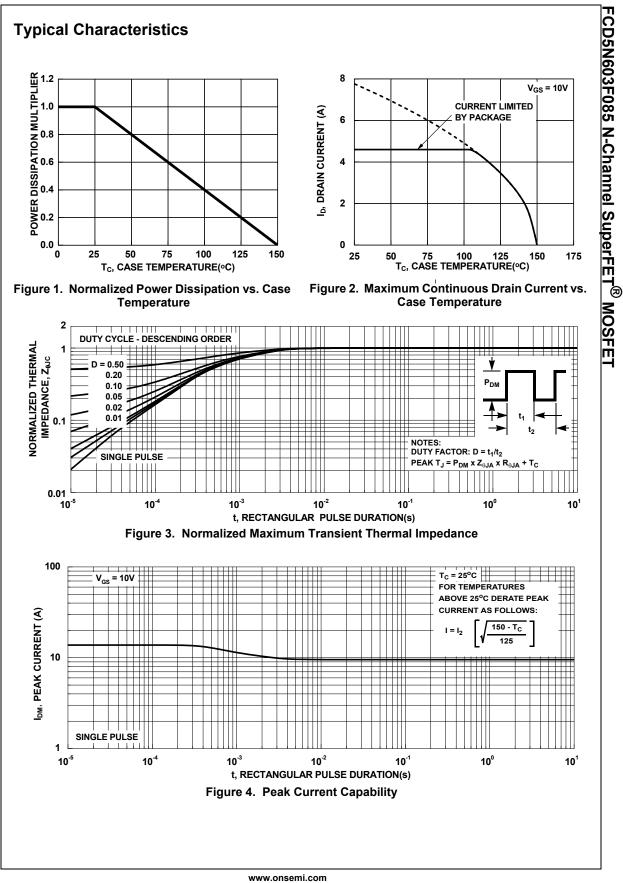

G

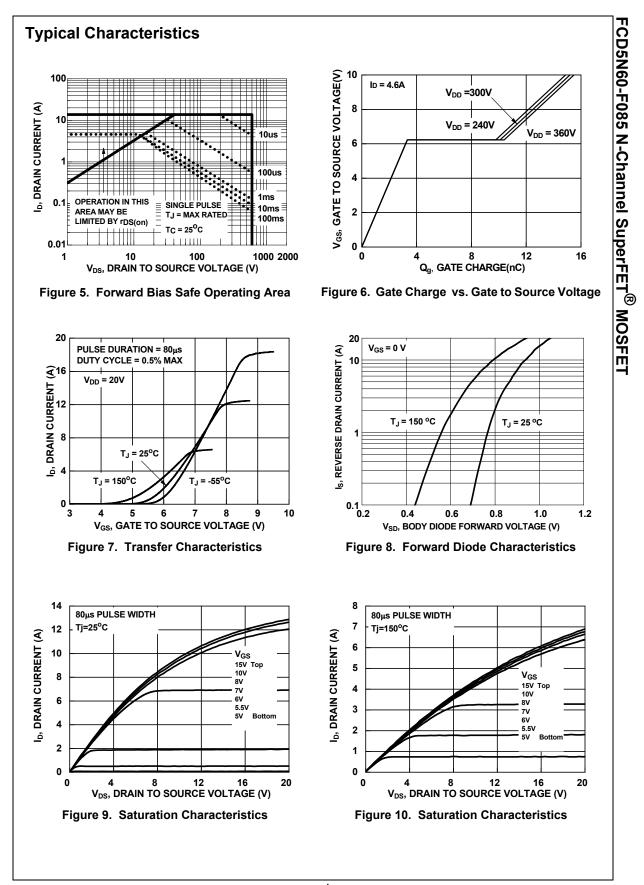
S

2: R_{0JA} is the sum of the junction-to-case and case-to-ambient thermal resistance, where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{0JC} is guaranteed by design, while R_{0JA} is determined by the board design. The maximum rating presented here is based on mounting on a 1 in² pad of 2oz copper.

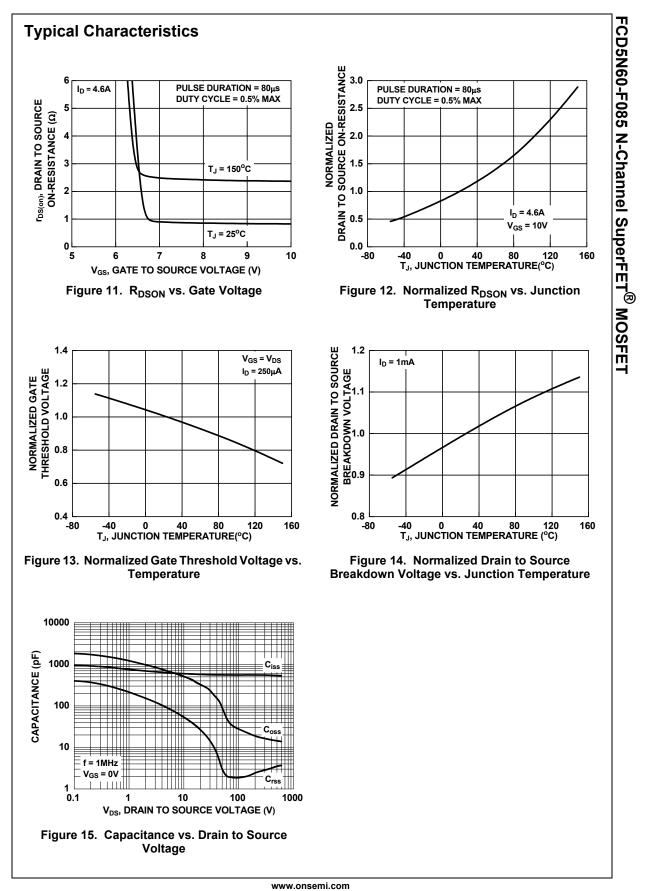
Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FCD5N60	FCD5N60-F085	D-PAK(TO-252)	13"	16mm	2500units


D


D-PAK

D


Publication Order Number: FCD5N60-F085/D

Symbol	Parameter	Test	t Conditions	Min.	Тур.	Max.	Unit
Off Cha	racteristics						
B _{VDSS}	Drain-to-Source Breakdown Voltage	I _D = 250μA, ¹	V _{GS} = 0V	600	-	-	V
	Drain to Source Lookage Current	V _{DS} =600V,	T _J = 25 ^o C	-	-	1	μA
IDSS	Drain-to-Source Leakage Current	$V_{GS} = 0V$	$T_{\rm J}$ = 150°C (Note 4)	-	-	10	μA
I _{GSS}	Gate-to-Source Leakage Current	V_{GS} = ±30V		-	-	±100	nA
On Cha	racteristics						
V _{GS(th)}	Gate to Source Threshold Voltage	V _{GS} = V _{DS} , I	ь = 250µА	3.0	-	5.0	V
		I _D = 4.6A,	T ₁ = 25°C	-	0.86	1.1	Ω
R _{DS(on)}	Drain to Source On Resistance		$T_{\rm J} = 150^{\circ} C \text{ (Note 4)}$	-	2.5	3.2	Ω
C _{iss}	Input Capacitance	— V _{DS} = 25V, V _{GS} = 0V, f = 1MHz		-	570	-	pF
C _{oss}	Output Capacitance			-	280	-	pF
C _{rss}	Reverse Transfer Capacitance			-	20	-	pF
R _g	Gate Resistance	f = 1MHz		-	1.9	-	Ω
Q _{g(ToT)}	Total Gate Charge	V_{GS} = 0 to 1		-	16	21	nC
Q _{g(th)}	Threshold Gate Charge	V_{GS} = 0 to 2	V I _D = 4.6A	-	1.0	-	nC
Q _{gs}	Gate-to-Source Gate Charge		-	-	3.2	-	nC
Q _{gd}	Gate-to-Drain "Miller" Charge			-	7.6	-	nC
	ng Characteristics						
Switchi	ng characteristics						
Switchi	Turn-On Time			-	-	84	ns
t _{on}		_		-	- 18	84 -	ns ns
t _{on}	Turn-On Time	V _{DD} = 300V	I _D = 4.6A,	-		84 - -	
t _{on} t _{d(on)}	Turn-On Time Turn-On Delay	V _{DD} = 300V V _{GS} = 10V,	, I _D = 4.6A, R _{GEN} = 25Ω	-	18	84 - - -	ns
t _{on} t _{d(on)} t _r	Turn-On Time Turn-On Delay Rise Time Turn-Off Delay Fall Time	V _{DD} = 300V V _{GS} = 10V,	l _D = 4.6A, R _{GEN} = 25Ω	-	18 19	84 - - - -	ns ns
$\frac{t_{on}}{t_{d(on)}}$ $\frac{t_{r}}{t_{d(off)}}$	Turn-On Time Turn-On Delay Rise Time Turn-Off Delay	V _{DD} = 300V, V _{GS} = 10V,	, I _D = 4.6A, R _{GEN} = 25Ω	-	18 19 48	84 - - - 178	ns ns ns
t _{on} t _{d(on)} t _r t _{d(off)} t _f t _{off}	Turn-On Time Turn-On Delay Rise Time Turn-Off Delay Fall Time	V _{DD} = 300V, V _{GS} = 10V,	l _D = 4.6A, R _{GEN} = 25Ω	-	18 19 48		ns ns ns ns
t _{on} t _{d(on)} t _r t _{d(off)} t _f t _{off}	Turn-On Time Turn-On Delay Rise Time Turn-Off Delay Fall Time Turn-Off Time	$V_{DD} = 300V_{OS}$ $V_{GS} = 10V_{OS}$	R _{GEN} = 25Ω	-	18 19 48		ns ns ns ns
t _{on} t _{d(on)} t _r t _{d(off)} t _f t _{off} Drain-S	Turn-On Time Turn-On Delay Rise Time Turn-Off Delay Fall Time Turn-Off Time ource Diode Characteristics	V _{GS} = 10V,	R _{GEN} = 25Ω / _{GS} = 0V .I _F = 4.6A,	-	18 19 48	- - - 178	ns ns ns ns

www.onsemi.com 4

ON Semiconductor and a presentation of the second s

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

www.onsemi.com