

Twelve Output Differential Buffer for PCIe Gen1/Gen2, QPI, and FBDIMM

9DB1200C

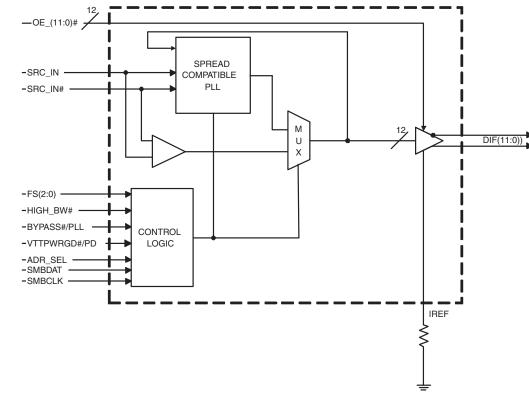
Description

DB1200 Rev 2.0 Intel Yellow Cover Device

General Description

The ICS9DB1200 is an Intel DB1200 Differential Buffer Specification device. This buffer provides 12 differential clocks at frequencies ranging from 100MHz to 400 MHz. The ICS9DB1200 is driven by a differential output from a CK410B+ or CK509B main clock generator.

Output Features


- 12 0.7V current-mode differential output pairs.
- Supports zero delay buffer mode and fanout mode.
- Bandwidth programming available.
- 100-400 MHz operation in PLL mode
- 33-400 MHz operation in Bypass mode

Features/Benefits

- 3 selectable SMBus addresses for easy system expansion
- Spread spectrum modulation tolerant, 0 to -0.5% down spread and +/- 0.25% center spread
- Supports undriven differential outputs in Power Down Mode for power management.

Key Specifications

- Output cycle-cycle jitter < 50ps.
- Output to output skew: 50ps
- Phase jitter: PCIe Gen2 < 3.1ps rms
- Phase jitter: QPI < 0.5ps rms
- 64-pin TSSOP Package
- Available in RoHS compliant packaging

Functional Block Diagram

Pin Configuration

64-TSSOP

** Indicates 120K ohm Pulldown

Frequency Select Table

FS∟2 B0b2	FS∟1 B0b1	FS∟0 B0b0	Input MHz	DIF_x; MHz		
0	0	0	266.66	266.66		
0	0	1	133.33	133.33		
0	1	0	200.00	200.00		
0	1	1	166.66	166.66		
1	0	0	333.33	333.33		
1	0	1	100.00	100.00		
1	1	0	400.00	400.00		
1	1	1	Hi-Z	Hi-Z		

1. $FS_L(2:0)$ are 3.3V tolerant low-threshold inputs.

Please see VIL_FS and VIH_FS specifications in

the Input/Supply/Common Output Parameters Table for correct values.

SMBus Address Selection (Pin 29)

ADR_SEL	Voltage	SMBus Adr (Wr/Rd)
Low	<0.8V	DC/DD
Mid	1.2 <vin<1.8v< td=""><td>D6/D7</td></vin<1.8v<>	D6/D7
High	Vin > 2.0V	D4/D5

Power Groups

Pin N	lumber	Description				
VDD	GND	Description				
1	4	DIF_IN/DIF_IN#				
8, 17, 24, 41,	9, 16, 25, 40,	DIF(11:0)				
48, 57	49, 56	Dii (11.0)				
N/A	63	IREF				
64	63	Analog VDD & GND				
04	05	for PLL core				

Note: Please treat pin 1 as an analog VDD.

Pin Description

PIN #	PIN NAME	TYPE	DESCRIPTION
1	VDD	PWR	Power supply, nominal 3.3V
2	DIF_IN	IN	0.7 V Differential TRUE input
3	DIF_IN#	IN	0.7 V Differential Complementary Input
4	GND	PWR	Ground pin.
_			Active low input for enabling DIF pair 0.
5	OE0#	IN	1 =disable outputs, 0 = enable outputs
6	DIF_0	OUT	0.7V differential true clock output
7	DIF_0#	OUT	0.7V differential Complementary clock output
8	VDD	PWR	Power supply, nominal 3.3V
9	GND	PWR	Ground pin.
10	OE1#	IN	Active low input for enabling DIF pair 1.
10			1 =disable outputs, 0 = enable outputs
11	DIF_1	OUT	0.7V differential true clock output
12	DIF_1#	OUT	0.7V differential Complementary clock output
13	OE2#	IN	Active low input for enabling DIF pair 2.
			1 =disable outputs, 0 = enable outputs
14	DIF_2	OUT	0.7V differential true clock output
15	DIF_2#	OUT	0.7V differential Complementary clock output
16	GND	PWR	Ground pin.
17	VDD	PWR	Power supply, nominal 3.3V
18	OE3#	IN	Active low input for enabling DIF pair 3.
			1 =disable outputs, 0 = enable outputs
19	DIF_3	OUT	0.7V differential true clock output
20	DIF_3#	OUT	0.7V differential Complementary clock output
21	OE4#	IN	Active low input for enabling DIF pair 4
22			1 =disable outputs, 0 = enable outputs
	DIF_4	OUT	0.7V differential true clock output
23	DIF_4#	OUT	0.7V differential Complementary clock output
24	VDD	PWR	Power supply, nominal 3.3V
25	GND	PWR	Ground pin.
26	OE5#	IN	Active low input for enabling DIF pair 5. 1 =disable outputs, 0 = enable outputs
27	DIF_5	OUT	0.7V differential true clock output
28	DIF_5#	OUT	0.7V differential Complementary clock output
20	# <u>6</u> _ ווס		This tri-level input selects one of 3 SMBus addresses. See the SMBus
29	**ADR_SEL	IN	Address Select Table for the addresses.
			3.3V input for selecting PLL Band Width
30	HIGH_BW#	IN	0 = High, 1 = Low
31	FS2	IN	Frequency select pin.
32	SMBCLK	IN	Clock pin of SMBUS circuitry, 5V tolerant

Pin Description

PIN #	PIN NAME	TYPE	DESCRIPTION
33	SMBDAT	I/O	Data pin of SMBUS circuitry, 5V tolerant
34	FS1	IN	3.3V Frequency select latched input pin.
35	BYPASS#/PLL	IN	Input to select Bypass(fan-out) or PLL (ZDB) mode
55	BTT ASO#/T EE		0 = Bypass mode, 1= PLL mode
			VTTPWRGD# is an active low input used to sample latched inputs and
36	VTTPWRGD#/PD	IN	allow the device to Power Up. PD is an asynchronous active high input
			pin used to put the device into a low power state. The internal clocks and PLLs are stopped.
37	DIF_6#	OUT	0.7V differential complement clock output
38	DIF_6	OUT	0.7V differential true clock output
			Active low input for enabling DIF pair 6.
39	OE6#	IN	1 = tri-state outputs, 0 = enable outputs
40	GND	PWR	Ground pin.
41	VDD	PWR	Power supply, nominal 3.3V
42	DIF_7#	OUT	0.7V differential complement clock output
43	DIF_7	OUT	0.7V differential true clock output
4.4	OE7#	INI	Active low input for enabling DIF pair 7.
44	0E7#	IN	1 = tri-state outputs, 0 = enable outputs
45	DIF_8#	OUT	0.7V differential complement clock output
46	DIF_8	OUT	0.7V differential true clock output
47	OE8#	IN	Active low input for enabling DIF pair 8.
			1 = tri-state outputs, 0 = enable outputs
48	VDD	PWR	Power supply, nominal 3.3V
49	GND	PWR	Ground pin.
50	DIF_9#	OUT	0.7V differential complement clock output
51	DIF_9	OUT	0.7V differential true clock output
52	OE9#	IN	Active low input for enabling DIF pair 9.
53	DIF_10#	OUT	1 = tri-state outputs, 0 = enable outputs 0.7V differential complement clock output
53	DIF_10#	OUT	0.7V differential complement clock output
54	DIF_10	001	Active low input for enabling DIF pair 10.
55	OE10#	IN	1 = tri-state outputs, 0 = enable outputs
56	GND	PWR	Ground pin.
57	VDD	PWR	Power supply, nominal 3.3V
58	DIF_11#	OUT	0.7V differential complement clock output
59	DIF_11	OUT	0.7V differential true clock output
60	 OE11#	INI	Active low input for enabling DIF pair 11.
60		IN	1 = tri-state outputs, 0 = enable outputs
61	FS0	IN	3.3V Frequency select latched input pin.
			This pin establishes the reference current for the differential current-
62	IREF	OUT	mode output pairs. This pin requires a fixed precision resistor tied to
			ground in order to establish the appropriate current. 475 ohms is the
63	AGND	PWR	standard value. Analog Ground pin for Core PLL
	VDDA	PWR	3.3V power for the PLL core.
64	VUUA	FVVR	S.SV power for the PLL core.

Absolute Max

Symbol	Parameter	Min	Max	Units
VDDA	3.3V Core Supply Voltage		4.6	V
VDD	3.3V Logic Supply Voltage		4.6	V
V _{IL}	Input Low Voltage	GND-0.5		V
V _{IH}	Input High Voltage		V_{DD} +0.5V	V
Ts	Storage Temperature	-65	150	°C
Tambient	Ambient Operating Temp	0	70	°C
Tcase	Case Temperature		115	°C
	Input ESD protection			
ESD prot	human body model	2000		V

Electrical Characteristics - Input/Supply/Common Output Parameters

 $T_A = 0 - 70^{\circ}C$; Supply Voltage $V_{DD} = 3.3 \text{ V} \pm -5\%$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Input High Voltage	V _{IH}	3.3 V +/-5%	2		V _{DD} + 0.3	V	1
Input Low Voltage	V _{IL}	3.3 V +/-5%	GND - 0.3		0.8	V	1
Input High Current	I _{IH}	$V_{IN} = V_{DD}$	-5		5	uA	1
Input Low Current	I_{IL1}	V _{IN} = 0 V; Inputs with no pull-up resistors	-5			uA	1
	$I_{\rm IL2}$	$V_{IN} = 0 V$; Inputs with pull-up resistors	-200			uA	1
Operating Supply Current	I _{DD3.3OP}	Full Active, $C_L = Full load;$			375	mA	1
Powerdown Current	I _{DD3.3PD}	all differential pairs tri-stated			24	mA	1
Input Frequency	F _{iPLL}	PLL Mode	100		400	MHz	1
input Frequency	F _{iBYPASS}	Bypass Mode	33		400	MHz	1
Pin Inductance	L _{pin}				7	nH	1
Capacitance	CIN	Logic Inputs	1.5		5	pF	1
Capacitance	C _{OUT}	Output pin capacitance			6	pF	1
PLL Jitter Peaking		Peaking when HIGH_BW#=0		1.5	2	dB	1
FLL JILLEI FEAKING	Јреак	Peaking when HIGH_BW#=1		1.5	2	dB	1
PLL Bandwidth	BW	PLL Bandwidth when HIGH_BW#=0	2	3	4	MHz	1
		PLL Bandwidth when HIGH_BW#=1	0.7	1	1.4	MHz	1
Clk Stabilization	T _{STAB}	From V _{DD} Power-Up and after input clock stabilization or de-assertion of PD# to 1st clock			1.8	ms	1,2
Modulation Frequency	f _{MOD}	Triangular Modulation	30		33	kHz	1
OE# Latency	t _{LATOE#}	DIF start after OE# assertion DIF stop after OE# deassertion	4		12	cycles	1,3
Tdrive_PD	t _{DRVPD}	DIF output enable after PD de-assertion			300	us	1,3
Tfall	t _F	Fall time of OE#			5	ns	1
Trise	t _R	Rise time of OE#			5	ns	1

¹Guaranteed by design and characterization, not 100% tested in production.

²See timing diagrams for timing requirements.

³Time from deassertion until outputs are >200 mV

IDT® Twelve Output Differential Buffer for PCIe Gen1/Gen2, QPI, and FBDIMM

© 2019 Renesas Electronics Corporation

Electrical Characteristics - Clock Input Parameters

	0 55						
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Input High Voltage - DIF_IN	V _{IHDIF}	Differential inputs (single-ended measurement)	600	800	1150	mV	1
Input Low Voltage - DIF_IN	V _{ILDIF}	Differential inputs (single-ended measurement)	V _{SS} - 300	0	300	mV	1
Input Common Mode Voltage - DIF_IN	V _{COM}	Common Mode Input Voltage	300		1000	mV	1
Input Amplitude - DIF_IN	V _{SWING}	Peak to Peak value	300		1450	mV	1
Input Slew Rate - DIF_IN	dv/dt	Measured differentially	0.4		8	V/ns	1,2
Input Leakage Current	I _{IN}	$V_{IN} = V_{DD}$, $V_{IN} = GND$	-5		5	uA	1
Input Duty Cycle	d_{tin}	Measurement from differential wavefrom	45		55	%	1
Input Jitter - Cycle to Cycle	J _{DIFIn}	Differential Measurement	0		125	ps	1

 $T_A = 0 - 70^{\circ}C$; Supply Voltage $V_{DD} = 3.3 \text{ V} + -5\%$

¹ Guaranteed by design and characterization, not 100% tested in production.

²Slew rate measured through Vswing min centered around differential zero

Electrical Characteristics - DIF 0.7V Current Mode Differential Pair

 $T_A = 0 - 70^{\circ}C; V_{DD} = 3.3 V + -5\%; C_L = 2pF, R_S = 33.2\Omega, R_P = 49.9\Omega, R_{REF} = 475\Omega$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Current Source Output Impedance	Zo ¹	$V_{O} = V_{x}$	3000			Ω	1
Voltage High	VHigh	Statistical measurement on single ended	660		850	mV	1,3
Voltage Low	VLow	signal using oscilloscope math function150 150	mv	1,3			
Max Voltage	Vovs	Measurement on single ended signal			1150	mV	1
Min Voltage	Vuds	using absolute value.	-300			mv	1
Crossing Voltage (abs)	Vcross(abs)		250		550	mV	1
Crossing Voltage (var)	d-Vcross	Variation of crossing over all edges			140	mV	1
Long Accuracy	ppm	see Tperiod min-max values			0	ppm	1,2
Rise Time	t _r	$V_{OL} = 0.175V, V_{OH} = 0.525V$	175		700	ps	1
Fall Time	t _f	V _{OH} = 0.525V V _{OL} = 0.175V	175		700	ps	1
Rise Time Variation	d-t _r				125	ps	1
Fall Time Variation	d-t _f				125	ps	1
Duty Cycle	d _{t3}	Measurement from differential wavefrom	45		55	%	1
Skew, Input to Output	t _{pdBYP}	Bypass Mode, $V_T = 50\%$	2.5		4.5	ps	1
	t _{pdPLL}	PLL Mode $V_T = 50\%$	-250		250	ps	1
Skew, Output to Output	t _{sk3}	V _T = 50%			50	ps	1
Jitter, Cycle to cycle	t.	PLL mode			50	ps	1,5
	t _{jcyc-cyc}	BYPASS mode as additive jitter			50	ps	1,5

¹Guaranteed by design and characterization, not 100% tested in production.

² All Long Term Accuracy specifications are guaranteed with the assumption that the input clock complies with

CK410B+/CK509B accuracy requirements. The 9DB1200 itself does not contribute to ppm error.

 ${}^{3}I_{REF} = V_{DD}/(3xR_{R})$. For $R_{R} = 475\Omega$ (1%), $I_{REF} = 2.32mA$. $I_{OH} = 6 \times I_{REF}$ and $V_{OH} = 0.7V @ Z_{O} = 50\Omega$.

⁴ Applies to Bypass Mode Only

⁵ Measured from differential waveform

IDT® Twelve Output Differential Buffer for PCIe Gen1/Gen2, QPI, and FBDIMM

© 2019 Renesas Electronics Corporation

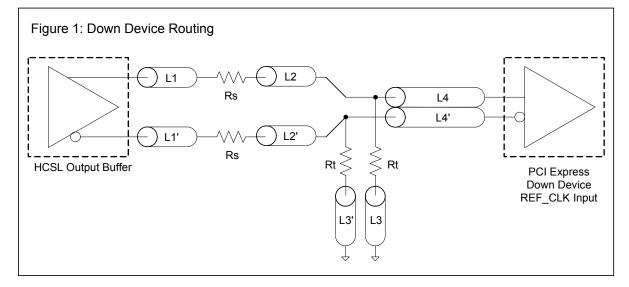
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP.	MAX	UNITS	NOTES
		PCIe Gen 1 REFCLK phase jitter (including PLL BW 8 - 16 MHz, $\zeta = 0.54$, Td=10 ns, Ftrk=1.5 MHz)		35	86	ps	1,2,3
Jitter, Phase	tjphase	PCIe Gen 2 REFCLK phase jitter (including PLL BW 8 - 16 MHz, ζ = 0.54, Td=12 ns) Lo-band content (10kHz to 1.5MHz)		1.1	3	ps rms	1,2
		PCIe Gen 2 REFCLK phase jitter (including PLL BW 8 - 16 MHz, ζ = 0.54, Td=12 ns) Hi-band content (1.5MHz to Nyquist)		2.3	3.1	ps rms	1,2
		QPI specs REFCLK phase jitter		0.25	0.5	ps rms	2,4

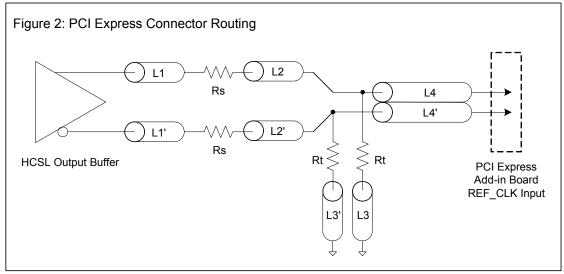
Electrical Characteristics - Phase Jitter

Notes on Phase Jitter:

¹ See http://www.pcisig.com for complete specs. Guaranteed by design and characterization, not tested in production.

² Device driven by 932S421BGLF or equivalent

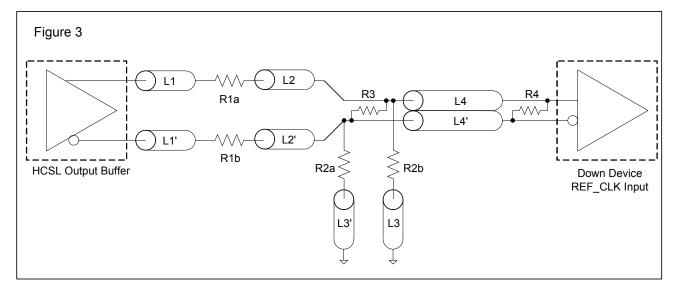

³ BER of 1E-9

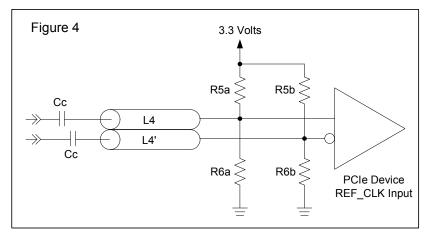

⁴ Measured at 133MHz using CSI_133_MHZ_6_4BG_12UI template in Intel supplied Clock Jitter Tool.

DIF Reference Clock						
Common Recommendations for Differential Routing	Dimension or Value	Unit	Figure			
L1 length, route as non-coupled 50ohm trace	0.5 max	inch	1			
L2 length, route as non-coupled 50ohm trace	0.2 max	inch	1			
L3 length, route as non-coupled 50ohm trace	0.2 max	inch	1			
Rs	33	ohm	1			
Rt	49.9	ohm	1			

Down Device Differential Routing			
L4 length, route as coupled microstrip 100ohm differential trace	2 min to 16 max	inch	1
L4 length, route as coupled stripline 100ohm differential trace	1.8 min to 14.4 max	inch	1

Differential Routing to PCI Express Connector			
L4 length, route as coupled microstrip 100ohm differential trace	0.25 to 14 max	inch	2
L4 length, route as coupled stripline 100ohm differential trace	0.225 min to 12.6 max	inch	2




	Alternative Termination for LVDS and other Common Differential Signals (figure 3)									
Vdiff	Vp-p	Vcm	R1	R2	R3	R4	Note			
0.45v	0.22v	1.08	33	150	100	100				
0.58	0.28	0.6	33	78.7	137	100				
0.80	0.40	0.6	33	78.7	none	100	ICS874003i-02 input compatible			
0.60	0.3	1.2	33	174	140	100	Standard LVDS			
R1a = F	R1a = R1b = R1									

R1a = R1b = R1

R2a = R2b = R2

Cable Connected AC Coupled Application (figure 4)								
Component	Value	Note						
R5a, R5b	8.2K 5%							
R6a, R6b	1K 5%							
Сс	0.1 µF							
Vcm	0.350 volts							

IDT® Twelve Output Differential Buffer for PCIe Gen1/Gen2, QPI, and FBDIMM

© 2019 Renesas Electronics Corporation

General SMBus serial interface information for the 9DB1200C

How to Write:

- Controller (host) sends a start bit.
- Controller (host) sends the write address DC (h)
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) sends the data byte count = X
- ICS clock will acknowledge
- Controller (host) starts sending Byte N through Byte N + X -1
- ICS clock will *acknowledge* each byte *one at a time*
- Controller (host) sends a Stop bit

Ind	ex Block W	/rit	e Operation
Cor	ntroller (Host)		ICS (Slave/Receiver)
Т	starT bit		
Slav	e Address DC _(h)		
WR	WRite		
		ACK	
Begi	nning Byte = N		
		ACK	
Data	Byte Count = X		
			ACK
Begir	ning Byte N		
			ACK
	\diamond	te	
	\diamond	X Byte	O
	\diamond	×	O
			0
Byte	e N + X - 1		
			ACK
Р	stoP bit		

How to Read:

- Controller (host) will send start bit.
- Controller (host) sends the write address DC (h)
- ICS clock will *acknowledge*
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) will send a separate start bit.
- Controller (host) sends the read address DD (h)
- ICS clock will *acknowledge*
- ICS clock will send the data byte count = X
- ICS clock sends *Byte N + X -1*
- ICS clock sends Byte 0 through byte X (if X_(h) was written to byte 8).
- Controller (host) will need to acknowledge each byte
- Controllor (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

Ind	ex Block Rea	ad	Operation		
Con	ntroller (Host)	IC	S (Slave/Receiver)		
Т	starT bit				
Slave	e Address DC _(h)				
WR	WRite				
		ACK			
Begi	nning Byte = N				
			ACK		
RT	Repeat starT				
Slave	e Address DD _(h)				
RD	ReaD				
		ACK			
		D	ata Byte Count = X		
	ACK				
			Beginning Byte N		
	ACK				
		'te	\diamond		
	\diamond	X Byte	\diamond		
	\diamond	×	\diamond		
\diamond					
			Byte N + X - 1		
N	Not acknowledge				
Р	stoP bit				

Note: Addresses show assumes pin 29 is low.

Byt	Byte 0 Pin # Name		Name	Control Function	Туре	0	1	PWD
Bit 7	- HIGH_BW#		HIGH_BW#	High or Low BW	RW	High BW	Low BW	Latch
Bit 6		-	BYPASS#/PLL	Bypass (non-PLL Mode) or PLL Mode	RW	Bypass	PLL	Latch
Bit 5		-	Reserved	Reserved	RW	Rese	Reserved	
Bit 4		-	Reserved	Reserved	RW	Reserved		Х
Bit 3		-	Reserved	Reserved	RW	Rese	erved	Х
Bit 2		-	FS2	Frequency Select 2	RW			Latch
Bit 1		-	FS1	Frequency Select 1	RW	See FS Table		Latch
Bit 0		-	FS0	Frequency Select 0	RW			Latch

SMBus Table: Frequency Select Register

SMBus Table: Output Control Register

Byt	e 1	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	43	3,42	DIF_7	Output Control (Disable = Hi-Z)	RW	Disable	Enable	1
Bit 6	38	8,37	DIF_6	Output Control (Disable = Hi-Z)	RW	Disable	Enable	1
Bit 5	2	7,28	DIF_5	Output Control (Disable = Hi-Z)	RW	Disable	Enable	1
Bit 4	22	2,23	DIF_4	Output Control (Disable = Hi-Z)	RW	Disable	Enable	1
Bit 3	19	9,20	DIF_3	Output Control (Disable = Hi-Z)	RW	Disable	Enable	1
Bit 2	14	4,15	DIF_2	Output Control (Disable = Hi-Z)	RW	Disable	Enable	1
Bit 1	1	1,12	DIF_1	Output Control (Disable = Hi-Z)	RW	Disable	Enable	1
Bit 0	(6,7	DIF_0	Output Control (Disable = Hi-Z)	RW	Disable	Enable	1

SMBus Table: Output Control Register

Byt	e 2	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7		-	Reserved	Reserved	RW	Rese	erved	0
Bit 6		-	Reserved	Reserved	RW	Rese	erved	0
Bit 5		-	Reserved	Reserved	RW	Rese	erved	0
Bit 4		-	Reserved	Reserved	RW	Reserved		0
Bit 3	58	3,59	DIF_11	Output Control (Disable = Hi-Z)	RW	Disable	Enable	1
Bit 2	53	3,54	DIF_10	Output Control (Disable = Hi-Z)	RW	Disable	Enable	1
Bit 1	50	0,51	DIF_9	Output Control (Disable = Hi-Z)	RW	Disable	Enable	1
Bit 0	45	5,46	DIF_8	Output Control (Disable = Hi-Z)	RW	Disable	Enable	1

SMBus Table: Output Enable Readback

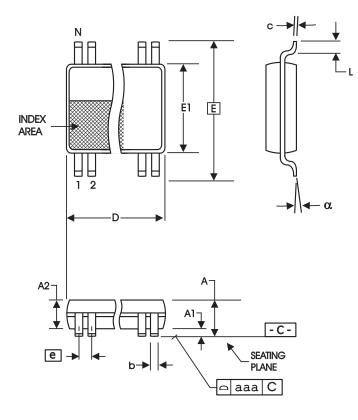
Byt	e 3	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	43	,42	OE7#	OE# Pin Readback	R	Enabled	Disabled	Х
Bit 6	38	,37	OE6#	OE# Pin Readback	R	Enabled	Disabled	Х
Bit 5	27	,28	OE5#	OE# Pin Readback	R	Enabled	Disabled	Х
Bit 4	22	.,23	OE4#	OE# Pin Readback	R	Enabled	Disabled	Х
Bit 3	19	,20	OE3#	OE# Pin Readback	R	Enabled	Disabled	Х
Bit 2	14	,15	OE2#	OE# Pin Readback	R	Enabled	Disabled	Х
Bit 1	11	,12	OE1#	OE# Pin Readback	R	Enabled	Disabled	Х
Bit 0	6	6,7	OE0#	OE# Pin Readback	R	Enabled	Disabled	Х

Byt	e 4	Pin #	Name	Control Function		0	1	PWD
Bit 7	- Reserved		Reserved	Reserved	R	Reserved		0
Bit 6	- Reserved		Reserved	Reserved	R	Rese	erved	0
Bit 5		-	Reserved	Reserved	R	Rese	Reserved	
Bit 4		-	Reserved	Reserved	R	Rese	Reserved	
Bit 3	58	3,59	OE11#	Output Control (Disable = Hi-Z)	R	Enabled Disabled		Х
Bit 2	53	3,54	OE10#	Output Control (Disable = Hi-Z)		Enabled	Disabled	Х
Bit 1	50),51	OE9#	Output Control (Disable = Hi-Z)	R	Enabled Disabled		Х
Bit 0	45	5,46	OE8#	Output Control (Disable = Hi-Z)	R	Enabled	Disabled	Х

SMBus Table: Output Enable Readback

Note: For an output to be enabled, BOTH the Output Enable Bit and the OE# pin must be enabled. This means that the Output Enable Bit must be '1' and the corresponding OE# pin must be '0'.

SMBus Table: Vendor & Revision ID Register


Byte	e 5 Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	-	RID3	REVISION ID	R	-	-	Х
Bit 6	-	RID2		R	-	-	Х
Bit 5	-	RID1		R	-	-	Х
Bit 4	-	RID0		R	-	-	Х
Bit 3	-	VID3		R	-	-	0
Bit 2	-	VID2		R	-	-	0
Bit 1	-	VID1	VENDOR ID	R	-	-	1
Bit 0	-	VID0		R	-	-	0

SMBus Table: DEVICE ID

Byte	6 Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	-		Device ID 7 (MSB)	RW			0
Bit 6	-		Device ID 6	RW			0
Bit 5	-		Device ID 5	RW			0
Bit 4	-		Device ID 4	RW	Dovido ID		0
Bit 3	-	Device ID 3		RW	Device ID is 0C Hex		1
Bit 2	-		Device ID 2	RW			1
Bit 1	-	Device ID 1 F		RW			0
Bit 0	-		Device ID 0	RW			0

SMBus Table: Byte Count Register

Byte	e7 Pin#	Name	Control Function	Туре	0	1	PWD
Bit 7	-	BC7		RW	-	-	0
Bit 6	-	BC6		RW	-	-	0
Bit 5	-	BC5		RW	-	-	0
Bit 4	-	BC4	Writing to this register configures how	RW	-	-	0
Bit 3	-	BC3	many bytes will be read back.	RW	-	-	0
Bit 2	-	BC2		RW	-	-	1
Bit 1	-	BC1		RW	-	-	1
Bit 0	-	BC0		RW	-	-	1

	(240 mil)	(20 mil)			
	In Milli	meters	In Inches		
SYMBOL	COMMON DIMENSIONS		COMMON DIMENSIONS		
	MIN	MAX	MIN	MAX	
A		1.20		.047	
A1	0.05	0.15	.002	.006	
A2	0.80	1.05	.032	.041	
b	0.17	0.27	.007	.011	
С	0.09	0.20	.0035	.008	
D	SEE VARIATIONS		SEE VARIATIONS		
E	8.10 BASIC		0.319 BASIC		
E1	6.00	6.20	.236	.244	
е	0.50 BASIC		0.020 BASIC		
L	0.45	0.75	.018	.030	
N	SEE VARIATIONS		SEE VARIATIONS		
α	0°	8°	0°	8°	
aaa		0.10		.004	

6.10 mm. Body, 0.50 mm. Pitch TSSOP

VARIATIONS

N	D mm.		D (inch)		
N	MIN	MAX	MIN	MAX	
64	16.90	17.10	.665	.673	

Reference Doc.: JEDEC Publication 95, MO-153

10-0039

Ordering Information

Part / Order Number	Shipping Packaging	Package	Temperature
9DB1200CGLF	Tubes	64-pin TSSOP	0 to +70°C
9DB1200CGLFT	Tape and Reel	64-pin TSSOP	0 to +70°C

"LF" after the package code denotes the Pb-Free configuration, RoHS compliant.

Revision History

Rev.	Issue Date	Description	Page #
		1. Updated SMBus Serial Interface Information.	
Α	12/18/2007	2. Release to Final.	10
В	4/7/2008	Added Input Clock Parameters	6
		1. Updated Phase Jitter Numbers	
		2. Added PLL BW and jitter peaking specs	
		3. Added input to output delay specs	
С	8/28/2008	5. Updated stabilization time to 1.8ms from 1.0ms	
		1. Corrected pin number references in SMBus Bytes 1 and 3	
D	9/15/2009	2. Added typical values to phase jitter table.	Various
E	11/4/2009	Changed CLK Stabilization spec from 1.0 to 1.8 ms	5
F	7/1/2010	Corrected power groups table for input clock,	2
G	8/15/2012	Updated Byte 5 VENDOR ID (bits 3 through 0) from 0001 to 0010	12

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. **Contact Information**

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: <u>www.renesas.com/contact/</u>