
Test Procedure for the NCP4305 Put-In Board D2PAK DN05070

02/03/2015

The following steps describe the test procedure for all these boards:

Required Equipment:

DC voltage source (e.g. STATRON 2229)	1pc
DC Amp-Meter (e.g. KEITHLEY 2000)	1pc
Function generator (e.g. AFG3252)	1pc
2 channel oscilloscope1	pc

Test Procedure:

- 1. Connect the test setup as shown in figure 1.
- 2. Apply an supply voltage, $V_{CC} = 12 \text{ V}$
- 3. Apply pulse from generator (pulse, f = 100 kHz, DC = 50%, $V_{LOW} = -1 \text{ V}$, $V_{HIGH} = 9 \text{ V}$, output impedance = high Z)
- 4. Check that $I_{CC} = 9.4$ mA, waveforms look like in figure 2 (DRV pulse may oscillate between 1.5 us and 5 us)
- 5. Set DC to 17%

- 6. Check that $I_{CC} = 1.4$ mA, waveforms look like in figure 3 (no DRV pulses)
- 7. Set DC to 90%
- 8. Check that I_{CC} = 9.4 mA, waveforms look like in figure 4 (DRV pulses width is 1.5 us)
- 9. Set DC to 97%, frequency to 5 kHz
- 10. Check that $I_{CC} = 1.4 \text{ mA}$, waveforms look like in figure 5 (DRV pulses width is ~5 us, DRV amplitude decrease to ~5 V)
- 11. Set DC to 99%, frequency to 1 kHz, $V_{CC} = 9 \text{ V}$
- 12. Check that $I_{CC} = 75$ uA, waveforms look like in figure 6 (no DRV pulses)
- 13. Turn off V_{CC}
- 14. End of the test

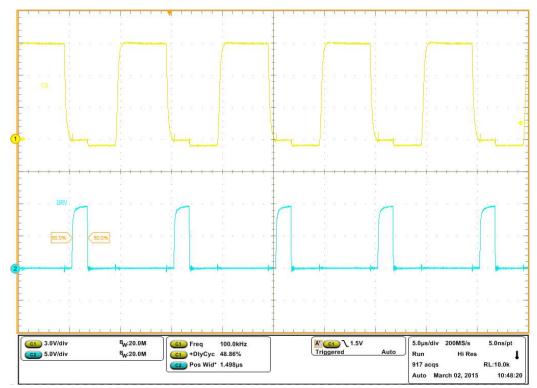


Figure 2: $V_{CC} = 12 \text{ V}$, f = 100 kHz, DC = 50%, $V_{LOW} = -1 \text{ V}$, $V_{HIGH} = 9 \text{ V}$

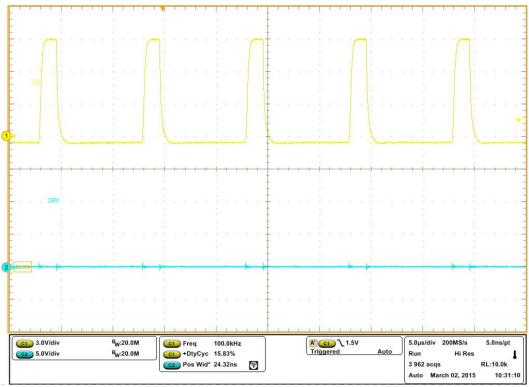


Figure 3: $V_{CC} = 12 \text{ V}$, f = 100 kHz, DC = 17%, $V_{LOW} = -1 \text{ V}$, $V_{HIGH} = 9 \text{ V}$

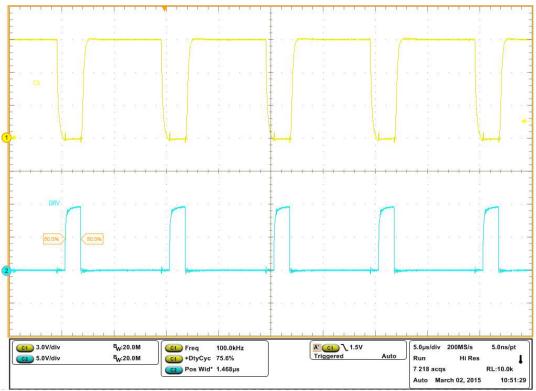


Figure 4: $V_{CC} = 12 \text{ V}$, f = 100 kHz, DC = 90%, $V_{LOW} = -1 \text{ V}$, $V_{HIGH} = 9 \text{ V}$

Figure 5: $V_{CC} = 12 \text{ V}$, f = 5 kHz, DC = 97%, $V_{LOW} = -1 \text{ V}$, $V_{HIGH} = 9 \text{ V}$

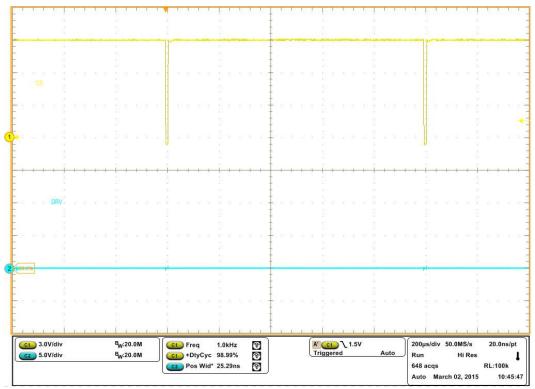


Figure 6: $V_{CC} = 9 \text{ V}$, f = 1 kHz, DC = 99%, $V_{LOW} = -1 \text{ V}$, $V_{HIGH} = 9 \text{ V}$