Document Number: A3I35D012WN Rev. 0, 11/2018

RF LDMOS Wideband Integrated Power Amplifiers

The A3I35D012WN wideband integrated circuit is designed for cellular base station applications requiring very wide instantaneous bandwidth capability. This circuit includes on-chip matching that makes it usable from 3200 to 4000 MHz. Its multi-stage structure is rated for 20 to 32 V operation and covers all typical cellular base station modulation formats.

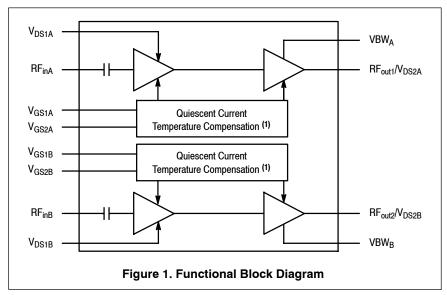
3500 MHz

Typical Single-Carrier W-CDMA Characterization Performance:
 V_{DD} = 28 Vdc, I_{DQ1(A+B)} = 36 mA, I_{DQ2(A+B)} = 138 mA, P_{out} = 1.8 W Avg.,
 Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. (1)

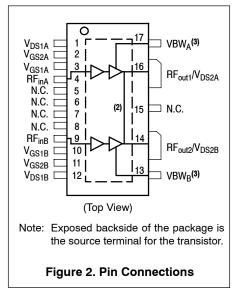
Frequency	G _{ps} (dB)	PAE (%)	ACPR (dBc)
3400 MHz	28.3	16.5	-45.2
3500 MHz	28.0	17.3	-45.1
3600 MHz	27.9	17.8	-44.8
3700 MHz	27.8	17.8	-44.5
3800 MHz	27.8	17.5	-44.7

A3I35D012WNR1 A3I35D012WGNR1

3200-4000 MHz, 1.8 W AVG., 28 V AIRFAST RF LDMOS WIDEBAND INTEGRATED POWER AMPLIFIERS



Features


- Designed for wide instantaneous bandwidth applications
- On-chip matching (50 ohm input, DC blocked)
- Integrated quiescent current temperature compensation with enable/disable function ⁽²⁾
- Designed for digital predistortion error correction systems
- · Optimized for Doherty applications

- 1. All data measured in fixture with device soldered to heatsink.
- 2. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family, and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to https://www.nxp.com/RF and search for AN1977 or AN1987.

- 2. Pin connections 14 and 16 are DC coupled and RF independent.
- 3. Device can operate with V_{DD} current supplied through pin 13 and pin 17.

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +65	Vdc
Gate-Source Voltage	V _{GS}	-0.5, +10	Vdc
Operating Voltage	V _{DD}	32, +0	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature Range	T _C	-40 to +150	°C
Operating Junction Temperature Range (4,5)	T _J	-40 to +225	°C
Input Power	P _{in}	26	dBm

Table 2. Thermal Characteristics

Characteristic	Symbol	Value (5,6)	Unit
Thermal Resistance, Junction to Case	$R_{ heta JC}$		°C/W
Case Temperature 71°C, 1.8 W, 3600 MHz			
Stage 1, 28 Vdc, I _{DQ1(A+B)} = 36 mA		7.7	
Stage 2, 28 Vdc, I _{DQ2(A+B)} = 138 mA		2.9	

Table 3. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JS-001-2017)	1B
Charge Device Model (per JS-002-2014)	C2A

Table 4. Moisture Sensitivity Level

Test Methodology	Rating	Package Peak Temperature	Unit
Per JESD22-A113, IPC/JEDEC J-STD-020	3	260	°C

- 4. Continuous use at maximum temperature will affect MTTF.
- 5. MTTF calculator available at http://www.nxp.com/RF/calculators.
- 6. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955.

Table 5. Electrical Characteristics ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Stage 1 - Off Characteristics ⁽¹⁾					•
Zero Gate Voltage Drain Leakage Current (V _{DS} = 65 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	10	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 32 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	5	μAdc
Gate-Source Leakage Current (V _{GS} = 1.5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	_	1	μAdc
Stage 1 - On Characteristics					•
Gate Threshold Voltage (1) $(V_{DS} = 10 \text{ Vdc}, I_D = 2 \mu \text{Adc})$	V _{GS(th)}	1.9	2.3	2.7	Vdc
Gate Quiescent Voltage (V _{DS} = 28 Vdc, I _{DQ1(A+B)} = 36 mAdc)	V _{GS(Q)}	_	3.6	_	Vdc
Fixture Gate Quiescent Voltage (V _{DD} = 28 Vdc, I _{DQ1(A+B)} = 36 mAdc, Measured in Functional Test)	$V_{GG(Q)}$	6.0	7.2	8.0	Vdc
Stage 2 - Off Characteristics					
Zero Gate Voltage Drain Leakage Current (2) (V _{DS} = 65 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	10	μAdc
Zero Gate Voltage Drain Leakage Current (2) (V _{DS} = 32 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	_	_	5	μAdc
Gate-Source Leakage Current (1) (V _{GS} = 1.5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	_	_	1	μAdc
Stage 2 - On Characteristics	•		•	•	*
Gate Threshold Voltage (1) $(V_{DS} = 10 \text{ Vdc}, I_D = 10 \mu \text{Adc})$	V _{GS(th)}	1.9	2.3	2.7	Vdc
Gate Quiescent Voltage (V _{DS} = 28 Vdc, I _{DQ2(A+B)} = 138 mAdc)	V _{GS(Q)}	_	2.8	_	Vdc
Fixture Gate Quiescent Voltage (V _{DD} = 28 Vdc, I _{DQ2(A+B)} = 138 mAdc, Measured in Functional Test)	$V_{GG(Q)}$	5.0	5.5	6.0	Vdc
Drain-Source On-Voltage (2) (V _{GS} = 10 Vdc, I _D = 192 mAdc)	V _{DS(on)}	0.05	0.16	0.3	Vdc

(continued)

Each side of device measured separately.
 Side A and Side B are tied together for these measurements.

Table 5. Electrical Characteristics (T_A = 25°C unless otherwise noted) (continued)

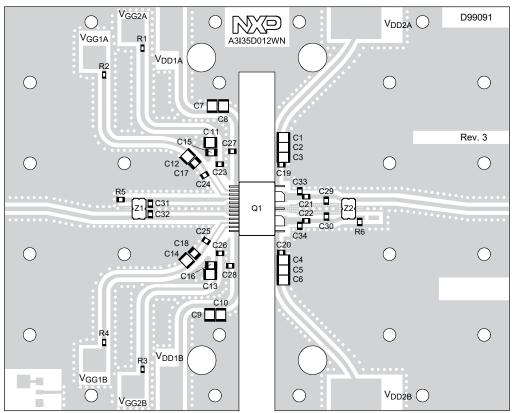
Characteristic	Symbol	Min	Тур	Max	Unit
----------------	--------	-----	-----	-----	------

Functional Tests (1,2,3) (In NXP Production Test Fixture, 50 ohm system) V_{DD} = 28 Vdc, I_{DQ1(A+B)} = 36 mA, I_{DQ2(A+B)} = 138 mA, P_{out} = 1.8 W Avg., f = 3800 MHz, Single-Carrier W-CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset.

Power Gain	G _{ps}	26.5	27.8	30.5	dB
Power Added Efficiency	PAE	16.5	17.5	_	%
Adjacent Channel Power Ratio	ACPR	_	-44.7	-43.0	dBc
Pout @ 3 dB Compression Point, CW	P3dB	14.8	16.5	_	W

Load Mismatch (In NXP Production Test Fixture, 50 ohm system) I_{DQ1(A+B)} = 36 mA, I_{DQ2(A+B)} = 138 mA, f = 3600 MHz

VSWR 10:1 at 32 Vdc, 10.7 W CW Output Power	No Device Degradation
(3 dB Input Overdrive from 8.7 W CW Rated Power)	


Typical Performance ⁽⁴⁾ (In NXP Characterization Test Fixture, 50 ohm system) V_{DD} = 28 Vdc, I_{DQ1(A+B)} = 36 mA, I_{DQ2(A+B)} = 138 mA, 3400–3800 MHz Bandwidth

Pout @ 3 dB Compression Point (5)	P3dB	_	18.6	_	W
AM/PM (Maximum value measured at the P3dB compression point across the 3400–3800 MHz frequency range.)	Φ	_	-11	_	0
VBW Resonance Point (IMD Third Order Intermodulation Inflection Point)	VBW _{res}	=	860	_	MHz
Quiescent Current Accuracy over Temperature $^{(6)}$ with 2.2 k Ω Gate Feed Resistors (–40 to 85°C) Stage 1 with 2.2 k Ω Gate Feed Resistors (–40 to 85°C) Stage 2	Δl _{QT}		0.47 4.32		%
Gain Flatness in 400 MHz Bandwidth @ P _{out} = 1.8 W Avg.	G _F	_	0.2	_	dB
Gain Variation over Temperature (-40°C to +85°C)	ΔG	_	0.04	_	dB/°C
Output Power Variation over Temperature (–40°C to +85°C)	ΔP1dB	_	0.008	_	dB/°C

Table 6. Ordering Information

Device	Tape and Reel Information	Package
A3I35D012WNR1	R1 Suffix = 500 Units, 44 mm Tape Width, 13-inch Reel	TO-270WB-17
A3I35D012WGNR1		TO-270WBG-17

- 1. Second stage drains (V_{DD2A} and V_{DD2B}) must be tied together and powered by a single DC power supply.
- 2. Part internally input and output matched.
- 3. Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing (GN) parts.
- 4. All data measured in fixture with device soldered to heatsink.
- P3dB = P_{avg} + 7.0 dB where P_{avg} is the average output power measured using an unclipped W-CDMA single-carrier input signal where output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF.
- 6. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family, and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.nxp.com/RF and search for AN1977 or AN1987.

aaa-032287

Note 1: All data measured in fixture with device soldered to heatsink. Production fixture does not include device soldered to heatsink.

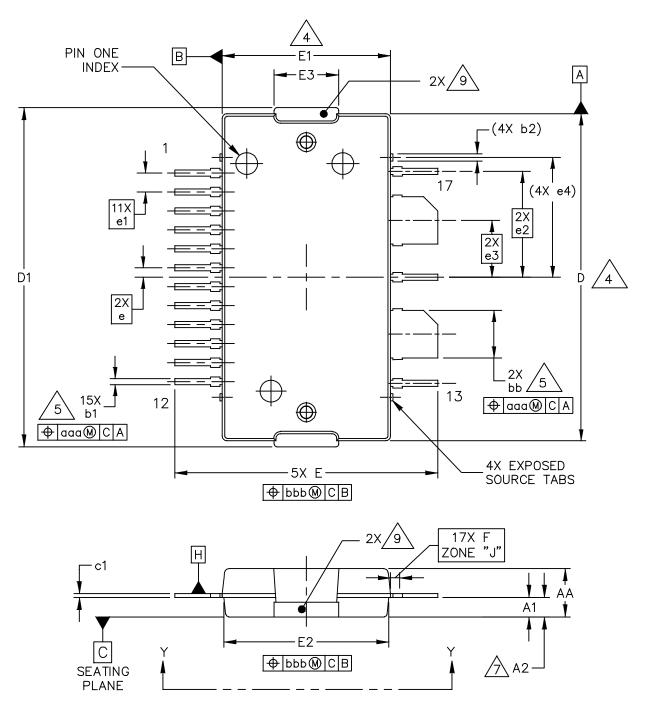
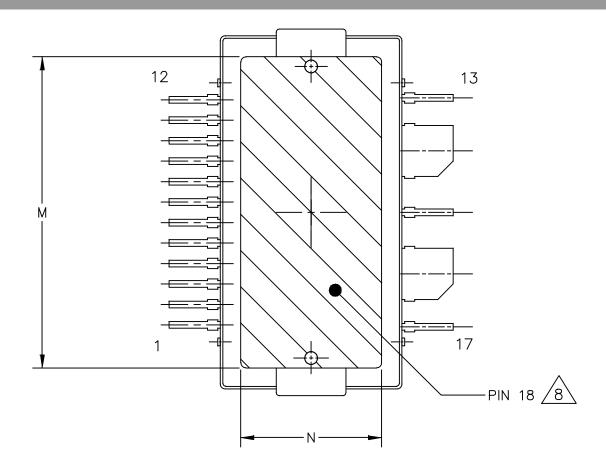

Note 2: Second stage drains (V_{DD2A} and V_{DD2B}) must be tied together and powered by a single DC power supply.

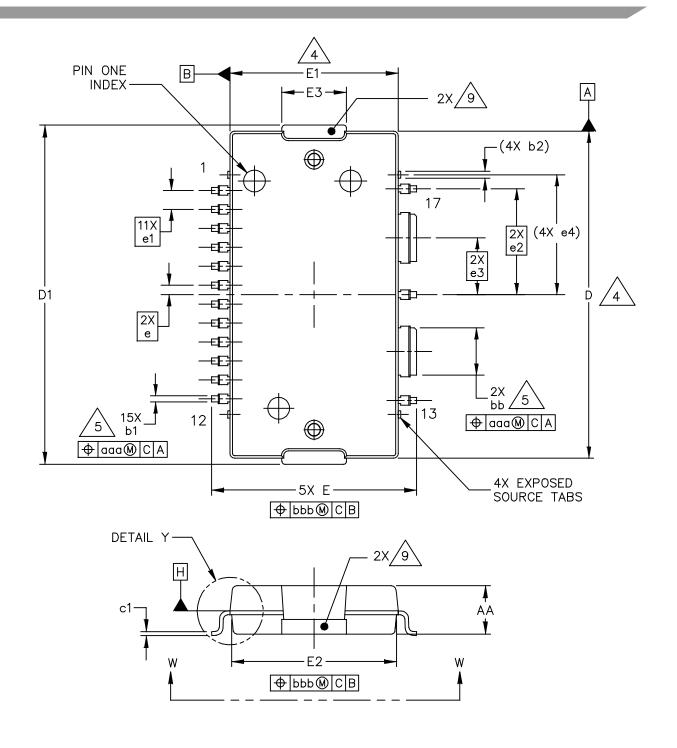
Figure 3. A3I35D012WNR1 Characterization Test Circuit Component Layout — 3400–3800 MHz


Table 7. A3I35D012WNR1 Characterization Test Circuit Component Designations and Values — 3400–3800 MHz

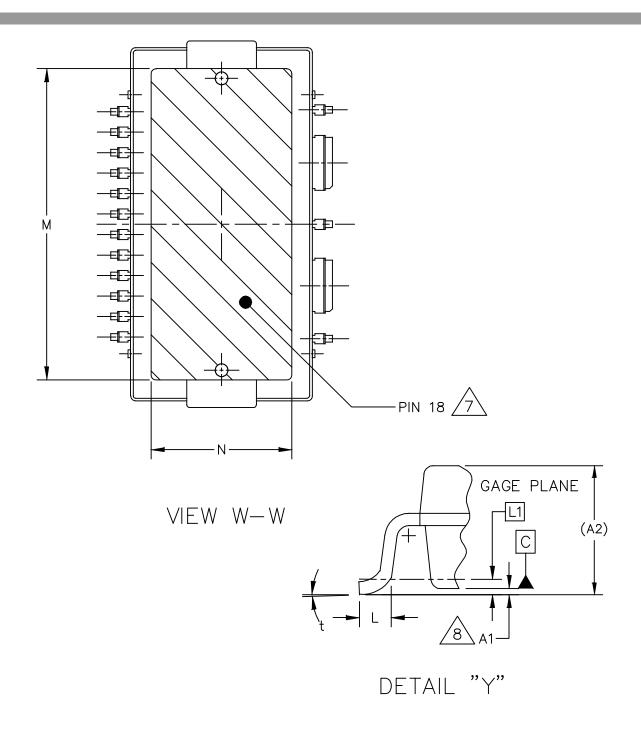
Part	Description	Part Number	Manufacturer
C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14	10 μF Chip Capacitor	C3225X7S1H106M250AB	TDK
C15, C16, C17, C18	10 nF Chip Capacitor	C0805C103K5RAC	Kemet
C19, C20, C21, C22, C23, C24, C25, C26, C27, C28	3.3 pF Chip Capacitor	ATC600S3R3BT250XT	ATC
C29, C30	0.3 pF Chip Capacitor	ATC600S0R3BT250XT	ATC
C31, C32	0.4 pF Chip Capacitor	ATC600S0R4BT250XT	ATC
C33, C34	0.2 pF Chip Capacitor	ATC600S0R2BT250XT	ATC
Q1	RF Power LDMOS Transistor	A3I35D012WN	NXP
R1, R2, R3, R4	2.2 kΩ, 1/8 W Chip Resistor	CRCW08052K20JNEA	Vishay
R5, R6	50 Ω, 8 W Termination Chip Resistor	C8A50Z4B	Anaren
Z1, Z2	3300-3800 MHz Band, 90°, 3 dB Hybrid Coupler	X3C35F1-03S	Anaren
PCB	Taconic RF35A2, 0.020", $\varepsilon_{\rm r}$ = 3.50	D99091	MTL

PACKAGE DIMENSIONS

© NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE	
TITLE:		DOCUME	NT NO: 98ASA00583D	REV: B
TO-270WB-1	STANDAF	RD: NON-JEDEC		
		S0T1730	- 1 2	21 JAN 2016


VIEW Y-Y

©	NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED	MECHANICAL OU	TLINE	PRINT VERSION NO	T TO SCALE
TITLE:			DOCUME	NT NO: 98ASA00583D	REV: B
	TO-270WB-17	7	STANDAF	RD: NON-JEDEC	
			S0T1730	 1	21 JAN 2016


NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE H IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- DIMENSIONS D AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 INCH (0.15 MM) PER SIDE. DIMENSIONS D AND E1 DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.
- DIMENSIONS 66 AND 61 DO NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 INCH (0.13 MM) TOTAL IN EXCESS OF THE 66 AND 61 DIMENSIONS AT MAXIMUM MATERIAL CONDITION.
- 6. DATUMS A AND B TO BE DETERMINED AT DATUM PLANE H.
- $ilde{\Delta}$ dimension a2 applies within zone J only.
- ALTCHING REPRESENTS THE EXPOSED AND SOLDERABLE AREA OF THE HEAT SLUG. DIMENSIONS M AND N REPRESENT THE VALUES BETWEEN THE TWO OPPOSITE POINTS ALONG THE EDGES OF EXPOSED AREA OF THE HEAT SLUG.
- THESE SURFACES OF THE HEAT SLUG ARE NOT PART OF THE SOLDERABLE SURFACES AND MAY REMAIN UNPLATED.

	IN	CH	MILL	 .IMETER		INCH		MILLI	METER	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX	
AA	.099	.105	2.51	2.67	bb	.097	.103	2.46	2.62	
A1	.039	.043	0.99	1.09	b1	.010	.016	0.25	0.41	
A2	.040	.042	1.02	1.07	b2		.019		0.48	
D	.688	.692	17.48	17.58	c1	.007	.011	0.18	0.28	
D1	.712	.720	18.08	18.29	е	.02	20 BSC	0.5	1 BSC	
Ε	.551	.559	14.00	14.20	e1	.04	.040 BSC		2 BSC	
E1	.353	.357	8.97	9.07	e2	.22	.223 BSC		5.66 BSC	
E2	.346	.350	8.79	8.89	e3	.12	.120 BSC		3.05 BSC	
E3	.132	.140	3.35	3.56	e4	.253	.253 INFO ONLY		IFO ONLY	
F	.025	5 BSC	0.6	4 BSC	aaa		.004	0	.10	
М	.600		15.24		bbb		.008	0.	.20	
N	.270		6.86							
© NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED MECHANICAL					AL OU	TLINE	PRINT VEF	RSION NOT	TO SCALE	
TITLE:						DOCUME	NT NO: 98ASA	.00583D	REV: B	
TO-270WB-17						STANDAF	RD: NON-JEDE	EC		
						S0T1730	- 1	2	1 JAN 2016	

© NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED	MECHANICAL OU	TLINE	PRINT VERSION NO	T TO SCALE
TITLE:		DOCUME	NT NO: 98ASA00729D	REV: B
TO-270WBG-	STANDAF	RD: NON-JEDEC		
		S0T1730	-2	12 JAN 2016

NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED	MECHANICAL OU	TLINE	PRINT VERSION NOT 1	O SCALE
TITLE:		DOCUME	NT NO: 98ASA00729D	REV: B
TO-270WBG-	STANDAF	RD: NON-JEDEC		
		S0T1730	-2 12	JAN 2016

NOTES:

- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE H IS LOCATED AT THE TOP OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE.
- /4), DIMENSIONS D AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS .006 INCH (0.15 MM) PER SIDE. DIMENSIONS D AND E1 DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.
- /5), DIMENSIONS 66 AND 61 DO NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .005 INCH (0.13 MM) TOTAL IN EXCESS OF THE bb AND b1 DIMENSIONS AT MAXIMUM MATERIAL CONDITION.
- 6. DATUMS A AND B TO BE DETERMINED AT DATUM PLANE H.
- $\overline{/ 7 \lambda}$ hatching represents the exposed and solderable area of the heat slug. DIMENSIONS M AND N REPRESENT THE VALUES BETWEEN THE TWO OPPOSITE POINTS ALONG THE EDGES OF EXPOSED AREA OF THE HEAT SLUG.
- /8). DIMENSION A1 IS MEASURED WITH REFERENCE TO DATUM C. THE POSITIVE VALUE IMPLIES THAT THE BOTTOM OF THE PACKAGE IS HIGHER THAN THE BOTTOM OF THE LEAD.
- 9) THESE SURFACES OF THE HEAT SLUG ARE NOT PART OF THE SOLDERABLE SURFACES AND MAY REMAIN LINE ATED

	MAT KEMA	IN UNPLATE	.D.							
	IN	CH	MIL	LIMETER		INCH		MILLI	METER	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX	
AA	.099	.105	2.51	2.67	bb	.097	.103	2.46	2.62	
A1	.001	.004	0.03	0.10	b1	.010	.016	0.25	0.41	
A2	(.1	05)	((2.67)	b2		.019		0.48	
D	.688	.692	17.48	17.58	c1	.007	.011	0.18	0.28	
D1	.712	.720	18.08	18.29	е	.02	O BSC	0.51	BSC	
E	.429	.437	10.90	11.10	e1	.04	.040 BSC		1.02 BSC	
E1	.353	.357	8.97	9.07	e2	.223 BSC		5.66 BSC		
E2	.346	.350	8.79	8.89	e3	.12	.120 BSC		5 BSC	
E3	.132	.140	3.35	3.56	e4	.253	NFO ONLY	6.43 IN	FO ONLY	
L	.018	.024	0.46	0.61	t	2.	8.	2.	8.	
L1	.010) BSC	0.	25 BSC	aaa	ļ ,	.004	0.10		
М	.600		15.24		bbb		.008	0.	20	
N	.270		6.86							
© NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED MECHANICAL						TLINE	PRINT VEF	RSION NOT	TO SCALE	
TITLE:						DOCUME	NT NO: 98ASA	.00729D	REV: B	
	TO-270WBG-17						RD: NON-JEDE	:C		
 						-				

SOT1730-2 12 JAN 2016

PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following resources to aid your design process.

Application Notes

- AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages
- AN1955: Thermal Measurement Methodology of RF Power Amplifiers
- AN1977: Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family
- · AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family

Engineering Bulletins

• EB212: Using Data Sheet Impedances for RF LDMOS Devices

Software

- Electromigration MTTF Calculator
- · RF High Power Model
- · .s2p File

Development Tools

· Printed Circuit Boards

To Download Resources Specific to a Given Part Number:

- 1. Go to http://www.nxp.com/RF
- 2. Search by part number
- 3. Click part number link
- 4. Choose the desired resource from the drop down menu

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	Nov. 2018	Initial release of data sheet

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo and Airfast are trademarks of NXP B.V. All other product or service names are the property of their respective owners.

© 2018 NXP B.V.

Document Number: A3I35D012WN Rev. 0, 11/2018