

#### **Murata Power Solutions**



- +1500W continuous output power (no derating across full DC input range)
- 93% efficiency
- 12V Main output
- 3.3V; 5V or 12V Standby voltage options
- 1U height: 2.15" x 12.65" x 1.57"
- > 35 Watts per cubic inch density
- N+1 redundancy, hot plug/swap (up to 8 modules in parallel)
- Active current sharing on 12V main output; Integral ORing /isolation device MOSFET
- Internal cooling fan (variable speed) Overvoltage, overcurrent, overtemperature protection
- PMBus<sup>TM</sup>/I<sup>2</sup>C interface with LED status indicator
- RoHS compliant
- Two Year Warranty



















## D1U54-D-1500-12-HxxC Series

#### 54mm 1U Front Fnd DC-DC Power Converter

## PRODUCT OVERVIEW

D1U54-D-1500-12-HxxC series of 1500 watt DC-DC highly efficient front end power converter modules provide a 12V main and a standby output. The power module is able to current share with up to eight (8) other power converter modules of the same type operating in parallel or N+1 redundancy. This series may be hot plugged and include integral output isolation devices, and are fully protected from overload and overvoltage and auto-recover from temperature faults. A Status LED is provided on the front panel and additional control and status reporting is provided by hardware logic signals and via a PMBus™ digital interface.

The low profile sub 1U height enclosure with power density of >35W/in3 make this an excellent choice for delivering reliable, efficient power to servers, workstations, storage systems and other 12V distributed power systems including direct operation from intermediate bus converters.

| Ordering Guide       |                   |                        |             |                |               |  |  |
|----------------------|-------------------|------------------------|-------------|----------------|---------------|--|--|
| Part Number          | Internal MPN      | Power Output           | Main Output | Standby Output | Airflow       |  |  |
| D1U54-D-1500-12-HC4C | M1900             |                        |             | 3.3V           |               |  |  |
| D1U54-D-1500-12-HA4C | M1897             |                        | 5V          | Back to Front  |               |  |  |
| D1U54-D-1500-12-HB4C | M1903             | 1500W<br>-48 to -60Vdc | 12V         | 12V            |               |  |  |
| D1U54-D-1500-12-HC3C | M1901             | -46 to -60vac<br>45°C  | IZV         | 3.3V           |               |  |  |
| D1U54-D-1500-12-HA3C | M1898             | 40 0                   | +5 0        | 5V             | Front to Back |  |  |
| D1U54-D-1500-12-HB3C | 500-12-HB3C M1902 | 12V                    |             |                |               |  |  |

| INPUT CHARACTERISTICS            |                                                       |        |      |       |     |       |  |
|----------------------------------|-------------------------------------------------------|--------|------|-------|-----|-------|--|
| Parameter                        | Conditions                                            |        | Min  | Nom.  | Max | Units |  |
| DC Input Voltage Operating Range |                                                       |        | -40  | -4860 | -72 |       |  |
| Turn-on Input Voltage            | Ramp Up                                               |        | -39  | -40   | -41 | Vdc   |  |
| Turn-off Input Voltage           | Ramp Down                                             |        | -35  | -36   | -37 |       |  |
| Maximum Current                  | 1500W, Vin = $-48$ Vdc to $-60$ Vdc                   |        |      |       | 44  | Adc   |  |
| DC Input Inrush Peak Current     | Cold start between 0 to 200ms                         | -48Vdc |      |       | 50  | Apk   |  |
| Do input in usir reak ourient    |                                                       | -72Vdc |      |       | 100 | Apr   |  |
|                                  | 20% FL                                                |        | 91.5 | 92    |     |       |  |
| Efficiency <sup>4</sup>          | 50% FL                                                |        | 92.5 | 93    |     | %     |  |
| Lindency                         | 100% FL                                               |        | 88   | 90    |     |       |  |
| Reverse polarity protection      | Withstand Reversed input<br>no internal/external fuse |        | +40  |       | +72 | Vdc   |  |

| OUTPUT VOLI    | AGE CHARACTERISTICS                   |                                     |      |      |        |        |
|----------------|---------------------------------------|-------------------------------------|------|------|--------|--------|
| Output Voltage | Parameter                             | Conditions                          | Min. | Nom. | Max.   | Units  |
| Main 12V       | Voltage Set Point                     |                                     |      | 12   |        | Vdc    |
|                | Line & Load Regulation                | Combined, measured at remote sense  | -1   |      | +1.5   | %      |
|                | Ripple & Noise <sup>1,2</sup>         | 20MHz Bandwidth                     |      |      | 120    | mV P-P |
|                | Output Current                        | -40Vdc to -72Vdc DC input           | 0    |      | 125A   | А      |
|                | Load Capacitance                      |                                     |      |      | 30,000 | μF     |
|                | Voltage Set Point                     |                                     |      | 3.3  |        |        |
|                | Line & Load Regulation                | Combined regulation                 | 3.14 |      | 3.46   | Vdc    |
| 3.3 VSB        | Ripple Voltage & Noise <sup>1,3</sup> | 20MHz Bandwidth                     |      |      | 120    | mV P-P |
|                | Output Current                        |                                     | 0    |      | 4      | А      |
|                | Load Capacitance                      |                                     |      |      | 3,000  | μF     |
|                | Voltage Set Point                     |                                     |      | 5.0  |        |        |
|                | Line & Load Regulation                |                                     | 4.76 |      | 5.24   | Vdc    |
| 5 VSB          | Ripple Voltage & Noise <sup>1,3</sup> | 20MHz Bandwidth                     |      |      | 120    | mV P-P |
|                | Output Current                        |                                     | 0    |      | 4      | Α      |
|                | Load Capacitance                      |                                     |      |      | 3,000  | μF     |
|                | Voltage Set Point                     |                                     |      | 12.0 |        |        |
|                | Line & Load Regulation                |                                     | 11.4 |      | 12.6   | Vdc    |
| 12 VSB         | Ripple Voltage & Noise <sup>1,3</sup> | 20MHz Bandwidth                     |      |      | 120    | mV P-P |
|                | Output Current                        |                                     | 0    |      | 2.5    | Α      |
|                | Load Capacitance                      | of coromic consoitance and 10 UE of |      |      | 1,000  | μF     |

 $<sup>^{1}</sup>$  Ripple and noise are measured with 0.1  $\mu$ F of ceramic capacitance and 10  $\mu$ F of tantalum capacitance on each of the power supply outputs. A short coaxial cable to the measurement 'scope input, is used.

<sup>&</sup>lt;sup>2</sup> Minimum load 5A

<sup>3</sup> Minimum load 0.25A

<sup>&</sup>lt;sup>4</sup>Vin: -48Vdc; Fan is off; Tambient = 25°C



| Parameter                                                               | Conditions                                                                 | Min.                                          | Typ.      | Max. | Units |  |
|-------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------|-----------|------|-------|--|
| Remote Sense (Main Output)                                              | Overall compensation at full load; +VE & -VE connections                   |                                               |           | 120  | mV    |  |
| Output Rise (Monotonic)                                                 | 10% to 95% rise time                                                       | No positive voltage excursion above set point |           |      |       |  |
|                                                                         | DC Ramp Up                                                                 |                                               |           | 3    | S     |  |
| Startup Time                                                            | PS_ON activation                                                           |                                               | 200       |      | ms    |  |
| Fransient Response                                                      | 12V, 10%-60% and 50-100% or 60%-10% and 100-50% step load; 1A/µs slew rate |                                               | ±600      |      | mV    |  |
| •                                                                       | 3.3/5VSB 50-100% or 100-50% step load 1A/µs slew rate                      |                                               | ±165/±250 |      |       |  |
| Current Sharing Accuracy (between sharing nodules; up to 8 in parallel) | At 100% load                                                               |                                               |           | ±10  | %     |  |
| Hot Swap Transients                                                     |                                                                            |                                               |           | 5    | %     |  |
| Iold Un Timo1                                                           | FL (Full Load); 48VDC nominal input prior to hold up                       | 1                                             |           |      | ms    |  |
| Hold Up Time <sup>1</sup>                                               | HL (Half Load); 48VDC nominal input prior to hold up                       | 2                                             |           |      | ms    |  |

<sup>&</sup>lt;sup>1</sup>Assumes deployment within systems utilizing dual redundant "A" and "B" DC input feeds

| D .                                               | 0 89                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.41   | _                    |       | 11. **  |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------|-------|---------|
| Parameter                                         | Conditions                                                                                                                                                                                                                                                                                                                                                                                                                | Min.   | Тур.                 | Max.  | Units   |
| Storage Temperature Range                         | Non-Condensing                                                                                                                                                                                                                                                                                                                                                                                                            | -40    |                      | 70    |         |
| Operating Temperature Range <sup>1</sup>          | 1500W Output Power; See Derating Curve                                                                                                                                                                                                                                                                                                                                                                                    | -5     |                      | 45    | °C      |
| Operating Humidity                                | Non-Condensing                                                                                                                                                                                                                                                                                                                                                                                                            | 5      |                      | 90    |         |
| Storage Humidity                                  |                                                                                                                                                                                                                                                                                                                                                                                                                           | 5      |                      | 95    | %       |
| Altitude (no derating ≤40°C)                      |                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                      | 3000  | m       |
| Shock                                             | Non-Operating                                                                                                                                                                                                                                                                                                                                                                                                             |        |                      | 30    | G       |
| Sinusoidal Vibration                              | Non-operating, 0.5G; 5-500Hz                                                                                                                                                                                                                                                                                                                                                                                              |        |                      |       |         |
| MTBF (Target)                                     | Telcordia SR-332 M1C1 @ 40°C                                                                                                                                                                                                                                                                                                                                                                                              | 452    |                      |       | K Hours |
|                                                   | IEC 60950-1:2005, IEC 60950-1:2005/AMD1:2009, IEC 60950-1:2005/AMD2<br>EN 60950-1:2006+A11:2009+A1:2010+A12:2011+A2:2013 [SELF-DECLARA                                                                                                                                                                                                                                                                                    |        |                      |       |         |
| Safety Approvals (Standards)                      | EN 60950-1:2006+A11:2009+A1:2010+A12:2011+A2:2013 [SELF-DECLARA CAN/CSA-C22.2 No. 62368-1:14 [CSA] UL 62368-1 2nd Ed. [CSA] IEC 62368-1:2014 [CSA] EN 62368-1:2014 [SELF-DECLARATION] GB17625.1-2012, GB4943.1-2011, GB/T9254-2008 (Class A) [CQC] IS 13252(Part 1):2010/ IEC 60950-1 : 2005 [BIS] K60950-1(2011-12) [KCC] AS/NZS 60950.1:2015 [RCM]                                                                      | ATION] |                      | NING. |         |
|                                                   | EN 60950-1:2006+A11:2009+A1:2010+A12:2011+A2:2013 [SELF-DECLARA  CAN/CSA-C22.2 No. 62368-1:14 [CSA] UL 62368-1 2nd Ed. [CSA] IEC 62368-1:2014 [CSA] EN 62368-1:2014 [SELF-DECLARATION]  GB17625.1-2012, GB4943.1-2011, GB/T9254-2008 (Class A) [CQC] IS 13252(Part 1):2010/ IEC 60950-1:2005 [BIS] K60950-1(2011-12) [KCC] AS/NZS 60950.1:2015 [RCM]  ДСТУ EN 60950-1:2015 (Safety) & ДСТУ EN 55032:2014, ДСТУ EN 61000-4 | ATION] | 4-3:2007 (EMC) [UKR/ | AINE] |         |
| Safety Approvals (Standards)  Input Fusing Weight | EN 60950-1:2006+A11:2009+A1:2010+A12:2011+A2:2013 [SELF-DECLARA CAN/CSA-C22.2 No. 62368-1:14 [CSA] UL 62368-1 2nd Ed. [CSA] IEC 62368-1:2014 [CSA] EN 62368-1:2014 [SELF-DECLARATION] GB17625.1-2012, GB4943.1-2011, GB/T9254-2008 (Class A) [CQC] IS 13252(Part 1):2010/ IEC 60950-1 : 2005 [BIS] K60950-1(2011-12) [KCC] AS/NZS 60950.1:2015 [RCM]                                                                      | ATION] | 4-3:2007 (EMC) [UKR/ | AINE] | lbs/kg  |

| ISOLATION CHARACTERISTICS             |                                        |      |      |      |       |
|---------------------------------------|----------------------------------------|------|------|------|-------|
| Parameter                             | Conditions                             | Min. | Тур. | Max. | Units |
| Insulation Safety Rating/Test Voltage | Input to Outputs                       |      | 1500 |      | Vdc   |
| Isolation                             | Output to Chassis (Ground), functional |      | 500  |      | Vdc   |



| PROTECTION CH  | IARACTERISTICS                    |                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |      |      |       |
|----------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|-------|
| Output Voltage | Parameter                         | Conditions                                                                                                                                                                                                                                                                                                                                                                                                                            | Min. | Тур. | Max. | Units |
|                | Over-Temperature <sup>1,2,3</sup> | Air inlet temperature; Auto re-start                                                                                                                                                                                                                                                                                                                                                                                                  | 60   |      | 82   | °C    |
|                | Over-Voltage                      | Latching; toggle PS_ON or recycle DC input to reset                                                                                                                                                                                                                                                                                                                                                                                   | 13   |      | 14   | V     |
| 12V (Main)     | Over-Current                      | For slow overload events a constant current will be sustained for 1sec followed by a latch off that will auto reset in 5secs.  For hard (short circuit) events the output will shut down within 50ms and auto restart within 200ms. This cycle will be repeated ten times at which point the output will permanently latch off. The power module will require to be reset by recycling the incoming DC source or by "toggling" PS_ON. | 140  |      | 160  | А     |
| 3.3VSB         | Over-Voltage                      | Latching; toggle PS_ON or recycle DC input to reset                                                                                                                                                                                                                                                                                                                                                                                   | 3.4  |      | 4.0  | V     |
| 3.3V3D         | Over-Current                      | Shutdown followed by auto-recovery                                                                                                                                                                                                                                                                                                                                                                                                    | 4.5  |      | 6    | Α     |
| 5VSB           | Over-Voltage                      | Latching; toggle PS_ON or recycle DC input to reset                                                                                                                                                                                                                                                                                                                                                                                   | 5.4  |      | 6.0  | V     |
| SVSD           | Over-Current                      | Shutdown followed by auto-recovery                                                                                                                                                                                                                                                                                                                                                                                                    | 4.5  |      | 6    | А     |
| 12VSB          | Over-Voltage                      | Latching; toggle PS_ON or recycle DC input to reset                                                                                                                                                                                                                                                                                                                                                                                   | 13.0 |      | 14.5 | V     |
| IZVOD          | Over-Current                      | Shutdown followed by auto-recovery                                                                                                                                                                                                                                                                                                                                                                                                    | 2.75 |      | 3.75 | Α     |

Operating the power supply above the maximum operating temperature specified in "ENVIRONMENTAL CHARACTERISTICS" is considered an abnormal condition and may negatively impact power supply life and is not recommended.

| EMISSIONS AND IMMUNITY                    |                                        |                                             |
|-------------------------------------------|----------------------------------------|---------------------------------------------|
| Characteristic                            | Standard                               | Compliance                                  |
| Conducted Emissions                       | FCC 47 CFR Part 15<br>CSIPR 22/EN55022 | Class A with 6dB margin                     |
| ESD Immunity                              | IEC/EN 61000-4-2;                      | Level 4; Criteria A                         |
| Radiated Field Immunity                   | IEC/EN 61000-4-3                       | Level 2; Criteria B                         |
| Electrical Fast Transients/Burst Immunity | IEC/EN 61000-4-4                       | Level 2; Criteria A                         |
| Surge Immunity                            | IEC/EN 61000-4-5                       | Level 2; Criteria A                         |
| RF Conducted Immunity                     | IEC/EN 61000-4-6                       | Level 2; Criteria A                         |
| Magnetic Field Immunity                   | IEC/EN 61000-4-8                       | 3A/m; Criteria B                            |
| Voltage Dips & Interruptions              | NEBS GR-1089-CORE Issue                | Relevant sections and compliance levels TBD |

| LED STATUS INDICATOR                                                                             |                                     |                          |  |  |  |  |
|--------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------|--|--|--|--|
| A single bi-colour (Amber/Green) LED provides hardware status indication of following conditions |                                     |                          |  |  |  |  |
| Condition                                                                                        | Green led status (power) led status | Amber led status (fault) |  |  |  |  |
| No incoming DC supply present; power module is completely off.                                   | LED not illuminated                 | LED not illuminated      |  |  |  |  |
| Standby Rail ON; Main Output OFF; DC input present & correct                                     | Blinking                            | -                        |  |  |  |  |
| Standby Rail ON; Main Output ON                                                                  | Solid Green                         | -                        |  |  |  |  |
| Main Output overcurrent; undervoltage, overvoltage warning                                       | -                                   | Solid Amber              |  |  |  |  |
| FAN_FAULT; overtemperature; standby rail overcurrent, Main Output overcurrent or overvoltage     | -                                   | Solid Amber              |  |  |  |  |
| Power Module Warning Event                                                                       | -                                   | Blinking                 |  |  |  |  |

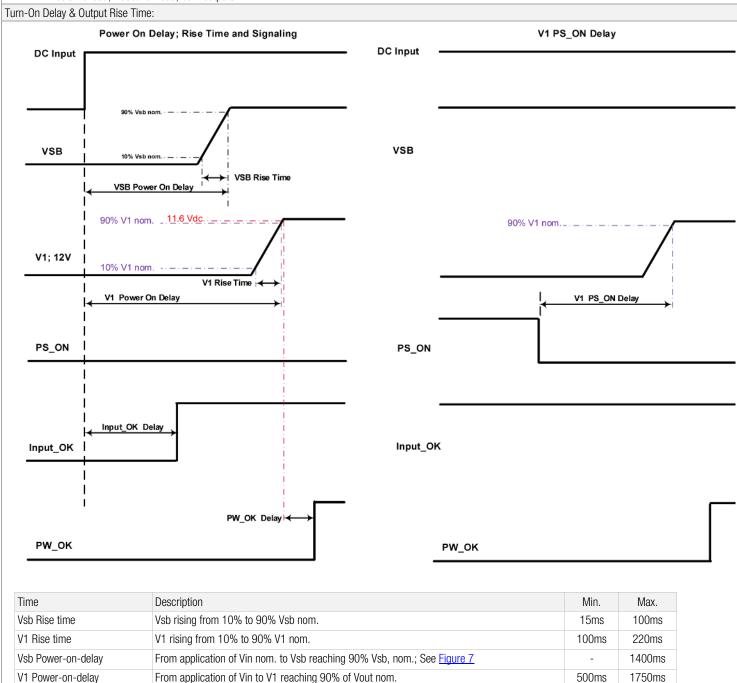
| ADDR ADDRESS SELECTION                   |                                                  |                                                  |
|------------------------------------------|--------------------------------------------------|--------------------------------------------------|
| ADDR pin (A3) resistor to GND (Kohm ±5%) | Power Supply Main Controller PMbus Slave address | Power Supply External EEPROM PMbus Slave address |
| 0.82                                     | 0xB0                                             | 0xA0                                             |
| 2.7                                      | 0xB2                                             | 0xA2                                             |
| 5.6                                      | 0xB4                                             | 0xA4                                             |
| 8.2                                      | 0xB6                                             | 0xA6                                             |
| 15                                       | 0xB8                                             | 0xA8                                             |
| 27                                       | 0xBA                                             | 0xAA                                             |
| 56                                       | 0xBC                                             | 0xAC                                             |
| 180                                      | 0xBE                                             | 0xAE                                             |

As detected and reported by the PMBus™ air intake temperature sensor, operated as a component in free air. Airflow conditions imposed by Host/System may impact results. A gradient between PMBus™ intake air temperature reported and that of an external thermocouple may be observed due to the difference in sensor locations. Refer to ACAN-67 PMbus™ application notes for additional details.

2 Warning indication (PMbus™ status register bits, SMB\_ALERT and Amber LED status) occurs at approximately 75°C and recovers at approximately 70°C as detected by the PMBus™ intake air temperature sensor; fault indication and shutdown engages at approximately 80°C nominal and recovers at approximately 75°C nominal



| STATUS AND CONTRO                        | L SIGNALS                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                        |
|------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Signal Name                              | 1/0                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Interface Details                                                                                                                                      |
| INPUT_OK (DC Source)                     | Output                    | The signal output is driven high when the input source is available and within acceptable limits.  The output is driven low to indicate loss of input power.  There is a minimum of 0.5ms pre-warning time before the signal is driven low prior to the PWR_OK signal going low. The power supply must ensure that this interface signal provides accurate status when input source is lost.                                                                                                                                                                                                                                                   | Pulled up internally via 10K to VDD <sup>1</sup> .  A logic high >2.0Vdc  A logic low <0.8Vdc  Driven low by internal CMOS buffer (open drain output). |
| PW_OK (Output OK)                        | Output                    | The signal is asserted (driven high) by the power supply to indicate that all outputs are valid. If any of the outputs fail then this output will be hi-Z or driven low. The output is driven low to indicate that the Main output is outside of lower limit of regulation (11.4Vdc).                                                                                                                                                                                                                                                                                                                                                          | Pulled up internally via 10K to VDD¹. A logic high >2.0Vdc A logic low <0.8Vdc Driven low by internal CMOS buffer (open drain output).                 |
| SMB_ALERT<br>(FAULT/WARNING)             | Output                    | The signal output is driven low to indicate that the power supply has detected a warning or fault and is intended to alert the system. This output must be driven high when the power is operating correctly (within specified limits).  The signal will revert to a high level when the warning/fault stimulus (that caused the alert) is removed.                                                                                                                                                                                                                                                                                            | Pulled up internally via 10K to VDD <sup>1</sup> . A logic high >2.0Vdc A logic low <0.8Vdc Driven low by internal CMOS buffer (open drain output).    |
| PRESENT_L<br>(Power Supply Absent)       | Output                    | The signal is used to detect the presence (installed) of a module by the host system. The signal is connected to PSU logic SGND within the power module.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Passive connection to +VSB_Return.<br>A logic low <0.8Vdc                                                                                              |
| PS_ON<br>(Power Supply<br>Enable/Disable | Input                     | This signal is pulled up internally to the internal housekeeping supply (within the power supply). The power supply main 12Vdc output will be enabled when this signal is pulled low to +VSB_Return. In the low state the signal input shall not source more than 1mA of current. The 12Vdc output will be disabled when the input is driven higher than 2.4V, or open circuited. Cycling (toggling) this signal shall clear latched fault conditions.                                                                                                                                                                                         | Pulled up internally via 10K to VDD <sup>1</sup> .  A logic high >2.0Vdc A logic low <0.8Vdc Input is via CMOS Schmitt trigger buffer.                 |
| PS_KILL                                  | Input                     | This signal is used internally by power module during hot swap to disable both outputs when module is extracted during hot swap. The signal is provided on a short (lagging pin) and should be permanently connected to +VSB_Return within the host/system                                                                                                                                                                                                                                                                                                                                                                                     | Pulled up internally via 10K to VDD <sup>1</sup> .  A logic high >2.0Vdc  A logic low <0.8Vdc  Input is via CMOS Schmitt trigger buffer.               |
| ADDR (Address Select)                    | Input                     | An analog input that is used to set the address of the internal slave devices (EEPROM and microprocessor) used for digital communications.  Connection of a suitable resistor to +VSB_Return, in conjunction with an internal resistor divider chain, will configure the required address.                                                                                                                                                                                                                                                                                                                                                     | DC voltage between the limits of 0 and +3.3Vdc.                                                                                                        |
| SCL (Serial Clock)                       | Both                      | A serial clock line compatible with PMBus <sup>™</sup> Power Systems Management Protocol Part 1 – General Requirements Rev 1.1.  No additional internal capacitance is added that would affect the speed of the bus.  The signal is provided with a series isolator device to disconnect the internal power supply bus in the event that the power module is unpowered.                                                                                                                                                                                                                                                                        | VIL is 0.8V maximum<br>VOL is 0.4V maximum when sinking 3mA<br>VIH is 2.1V minimum                                                                     |
| SDA (Serial Data)                        | Both                      | A serial data line compatible with PMBus™ Power Systems Management Protocol Part 1 – General Requirements Rev 1.1.  The signal is provided with a series isolator device to disconnect the internal power supply bus in the event that the power module is unpowered,                                                                                                                                                                                                                                                                                                                                                                          | VIL is 0.8V maximum<br>VOL is 0.4V maximum when sinking 3mA<br>VIH is 2.1V minimum                                                                     |
| V1_SENSE<br>V1SENSE_RTN                  | Input                     | Remote sense connections intended to be connected at and sense the voltage at the point of load.  The voltage sense will interact with the internal module regulation loop to compensate for voltage drops due to connection resistance between the output connector and the load.  If remote sense compensation is not required then the voltage can be configured for local sense by:  1. V1_SENSE directly connected to power blades 6 to 10 (inclusive)  2. V1_SENSE_RTN directly connected to power blades 1 to 5 (inclusive)                                                                                                             | Compensation for up to 0.12Vdc total connection drop (output and return connections).                                                                  |
| ISHARE                                   | Bi-<br>Directional<br>Bus | The current sharing signal is connected between sharing units (forming an ISHARE bus). It is an input and/or an output (bi-directional bus) as the voltage on the line controls the current share between sharing units. A power supply will respond to a change in this voltage; however a power supply can also change the voltage depending on the load drawn from it. On a single unit the voltage on the pin (and the common ISHARE bus would read 8VDC at 100% load (module capability). For two identical units sharing the same 100% load this would read 4VDC for perfect current sharing (i.e. 50% module load capability per unit). | Analogue voltage:<br>+8V maximum; 10K to +12V_RTN                                                                                                      |


<sup>1</sup> VDD is an internal voltage rail derived from VSB and an internal housekeeping rail ("diode ORed"); this rail is compatible with the voltage levels of TTL and CMOS logic families.



#### **TIMING SPECIFICATIONS**

Unless otherwise specified, the following notes apply to all timing specifications:

- 1. Ta= 25°C, Vin & Vin nom. = -48V
- 2. Resistive load, 100% full load, both outputs



From PS\_ON signal edge to V1 reaching 90% of Vout nom.; See Figure 9

From V1 reaching 11.6V (Typ.) to asserted PW\_OK signal; See Figure 3

From application of Vin to assertion of Input\_OK Signal edge; See Figure 1

V1 PS\_ON delay

V1 PW\_OK delay

Input\_OK delay

500ms

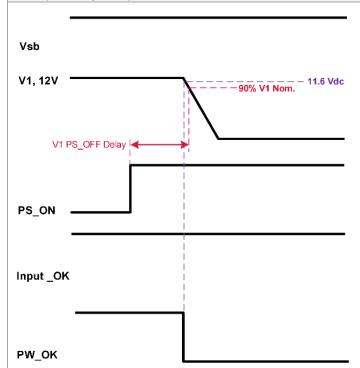
500ms

1200ms

50ms

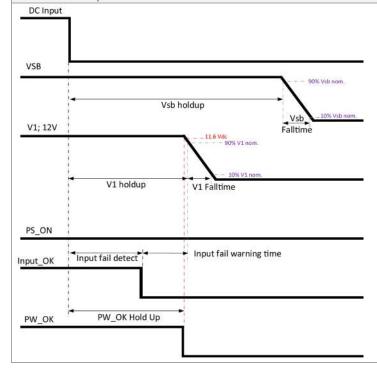
500ms



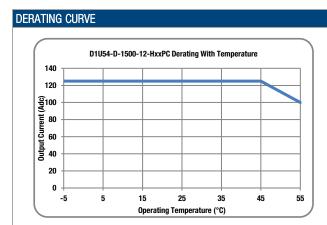

## (CONTINUED)

## TIMING SPECIFICATIONS

Unless otherwise specified, the following notes apply to all timing specifications:


- 1. Ta= 25°C, Vin & Vin nom. = -48V
- 2. Resistive load, 100% full load, both outputs

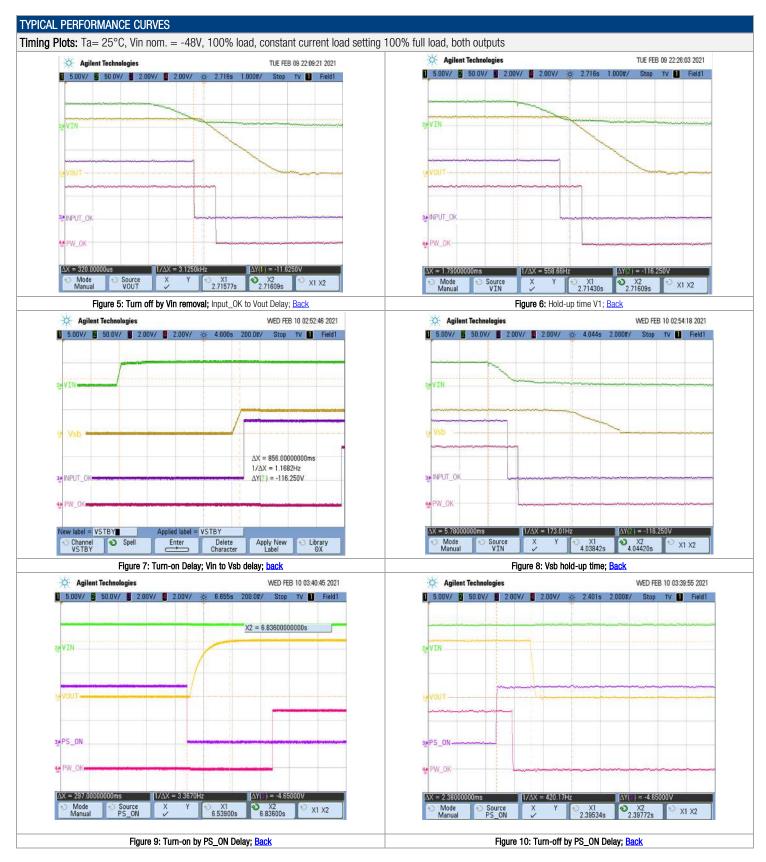
Turn-Off (Shutdown by PS\_ON)

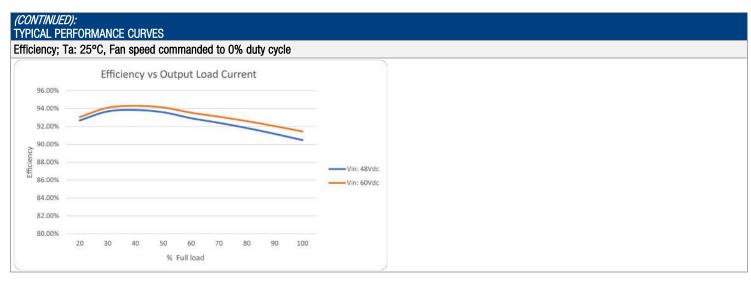


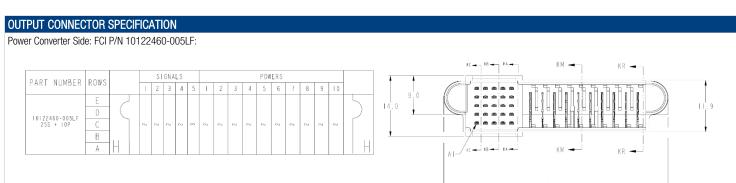

| Turn-Off Timing | Description                                                                        | Min. | Тур.  | Max. |
|-----------------|------------------------------------------------------------------------------------|------|-------|------|
| V1 PS_OFF delay | From the rising edge of PS_ON signal to V1 falling below 90% V1 nom. See Figure 10 | 0ms  | 2.5ms | 6ms  |

#### Power Removal Holdup



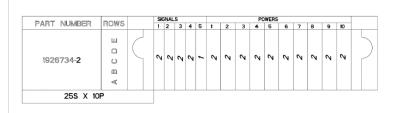

| Power Removal Timing           | Description                                                                         | Min   | Max |
|--------------------------------|-------------------------------------------------------------------------------------|-------|-----|
| Vsb holdup                     | From loss of Vin to Vsb falling to 90% Vsb nom.; See Figure 8                       | 3ms   | -   |
| V1 holdup (Total<br>Effective) | From loss of Vin to V1 falling to 90%<br>Vout nom.; See <u>Figure 6</u>             | 1ms   | -   |
| Input fail detect              | From loss of Vin to falling edge of Input_OK signal; See Figure 4                   | -     | 2ms |
| Input fail warning time        | From falling edge of Input_fail detect to V1 falling to 90% Vout nom.; See Figure 5 | 250us | -   |
| PW OK Hold Up                  | Negates when V1 falls to 11.6V (Typ.)                                               | 1ms   | -   |

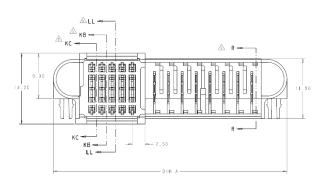




NOTE: The D1U54-D-1500-12-HxxPC power supply has an internal variable speed, automatically controlled to achieve the required cooling airflow based on strategically located internal airflow and hotspot sensors prevailing operating temperature/conditions and output loading. The fan speed can also be manually controlled via PMBus<sup>TM</sup>, refer to the PMBus<sup>TM</sup> ACAN for additional details









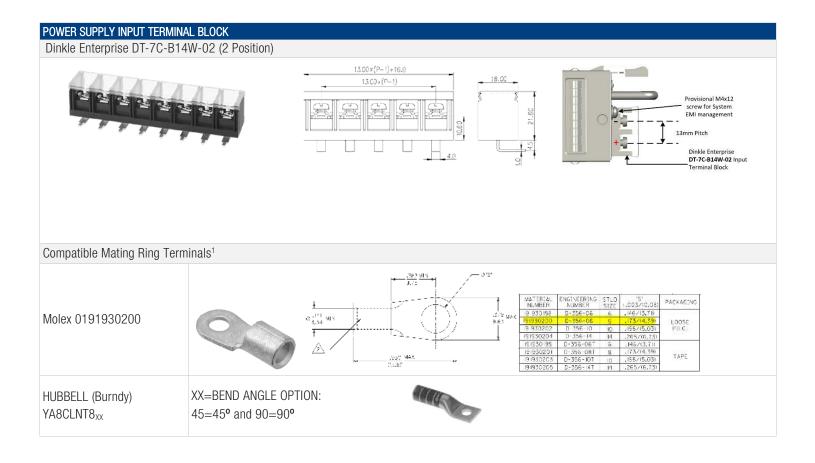

Note "2" refers to the longest signal pin/power blade & "3" is the "shortest" signal pin such that the "shortest" is the "last to make, first to break" in the mating sequence.

Alternate Power Converter Side: connector TE Connectivity P/N 1926734-2:





Note "2" refers to the longest signal pin/power blade & "1" is the "shortest" signal pin such that the "shortest" is the "last to make, first to break" in the mating sequence.


Mating (system side) Part Numbers:

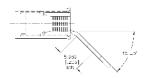
FCI 10108888-R10253SLF

TE Connectivity PN 2-1926739-5



| CONNECTOR INTERFACE PIN ASSIGNMENTS, POWER CONVERTER SIDE |                  |                         |     |            |                                 |  |
|-----------------------------------------------------------|------------------|-------------------------|-----|------------|---------------------------------|--|
| Pin                                                       | Function         | Description             | Pin | Function   | Description                     |  |
| 6, 7, 8, 9,<br>10                                         | V1 (+12V0UT)     | +12V Main Output        | C3  | SDA        | I2C Serial Data Line            |  |
| 1, 2, 3, 4,<br>5                                          | +12V<br>RTN/PGND | +12V Main Output Return | D3  | V1_SENSE_R | Remote Sense Return (-VE)       |  |
| A1                                                        | +VSB             | Standby Output          | E3  | V1_SENSE   | Remote Sense (+VE)              |  |
| B1                                                        | +VSB             | Standby Output          | A4  | SCL        | I2C Serial Clock Line           |  |
| C1                                                        | +VSB             | Standby Output          | B4  | PS_ON_L    | Remote On/Off (Enable/Disable)  |  |
| D1                                                        | +VSB             | Standby Output          | C4  | SMBALERT#  | Alert signal to host system     |  |
| E1                                                        | +VSB             | Standby Output          | D4  | Unused     | No End User Connection          |  |
| A2                                                        | +VSB_Return      | Standby Output Return   | E4  | INPUT_OK   | DC Input Source Present & "OK"  |  |
| B2                                                        | +VSB_Return      | Standby Output Return   | A5  | PS_KILL    | Power Supply "kill"; short pin  |  |
| C2                                                        | Unused           | No End User Connection  | B5  | ISHARE     | Current Share bus; short pin    |  |
| D2                                                        | Unused           | No End User Connection  | C5  | PW_OK      | Power "OK"; short pin           |  |
| E2                                                        | Unused           | No End User Connection  | D5  | Unused     | No End User Connection          |  |
| A3                                                        | ADDR             | I2C Address             | E5  | PRESENT_L  | Power Module Present; short pin |  |
| В3                                                        | Unused           | No End User Connection  |     |            |                                 |  |

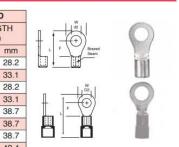




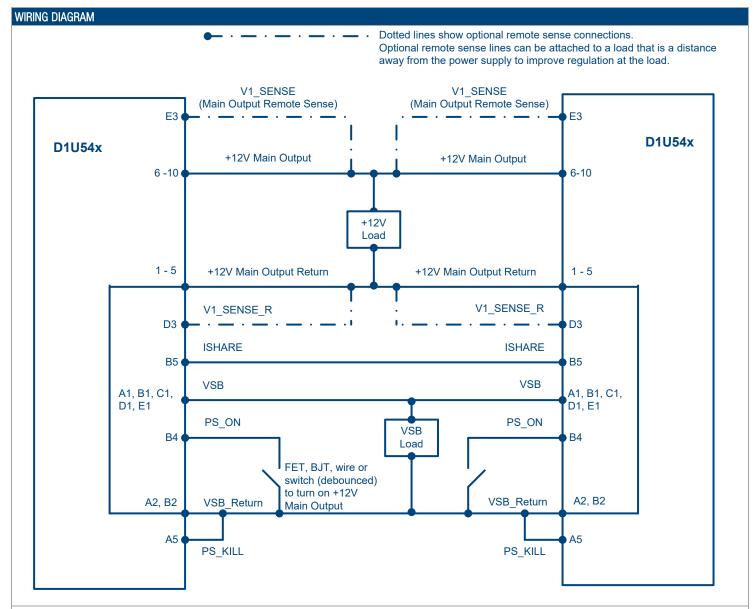

54mm 1U Front End DC-DC Power Converter

# (CONTINUED): POWER SUPPLY INPUT TERMINAL BLOCK Dinkle Enterprise DT-7C-B14W-02 (2 Position)

SUPPLY SU


TE Connectivity 195845-1

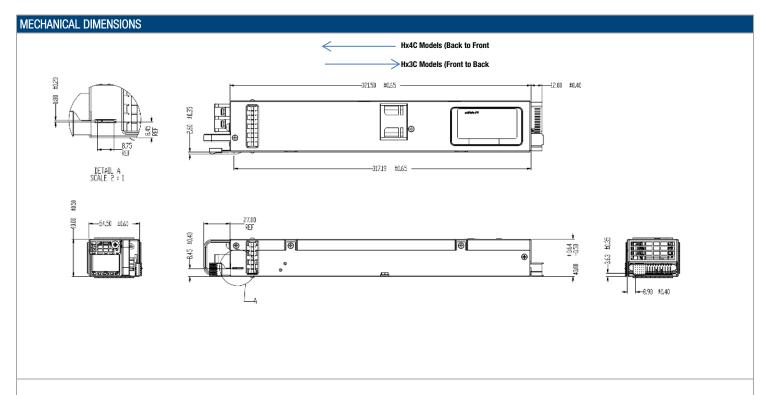



#### 8 AWG RING TERMINALS (8 mm²)

Etlin Daniels 8-NK4

| DIMENSIONS   |      |              | NON-INSULATED     |      |             | NYLON INSULATED |      |                               |               |      |
|--------------|------|--------------|-------------------|------|-------------|-----------------|------|-------------------------------|---------------|------|
| STUD<br>SIZE |      | GUE<br>H (W) | STUD CLEAR<br>(F) |      | BRAZED SEAM | LENGTH (L)      |      | WITH TIN PLATED COPPER SLEEVE | LENGTH<br>(L) |      |
| (d2)         | in   | mm           | in                | mm   | PART NUMBER | in              | mm   | PART NUMBER                   | in            | mm   |
| #8           | 0.35 | 8.6          | 0.22              | 5.4  | 8-NK4       | 0.65            | 15.9 | FN8-NK4                       | 1.15          | 28.2 |
| #8           | 0.47 | 11.5         | 0.36              | 8.8  | 8-S4        | 0.93            | 22.8 | FN8-S4                        | 1.35          | 33.1 |
| #10          | 0.35 | 8.6          | 0.22              | 5.4  | 8-NK5       | 0.65            | 15.9 | FN8-NK5                       | 1.15          | 28.2 |
| #10          | 0.47 | 11.5         | 0.36              | 8.8  | 8-S5        | 0.93            | 22.8 | FN8-S5                        | 1.35          | 33.1 |
| 1/4"         | 0.47 | 11.5         | 0.36              | 8.8  | 8-S6        | 0.93            | 22.8 | FN8-S6                        | 1.58          | 38.7 |
| 5/16"        | 0.59 | 14.5         | 0.54              | 13.2 | 8-8         | 1.17            | 28.7 | FN8-8                         | 1.58          | 38.7 |
| 3/8"         | 0.59 | 14.5         | 0.54              | 13.2 | 8-9         | 1.17            | 28.7 | FN8-9                         | 1.58          | 38.7 |
| 1/2"         | 0.78 | 19.1         | 0.59              | 14.5 | 8-13        | 1.32            | 38.5 | FN8-13                        | 1.73          | 42.4 |




Wire selection for the DC source to power converter input terminal is dependent upon several factors that may vary with each deployment location, application to application. Factors that should be considered by end user when selecting the wire include the distance from power converter module to DC source (impacts voltage drop and therefore gauge), strand count, and insulation requirements including material or type, temperature and voltage ratings, and applicable local safety standards. The ring terminal options listed above are intended to provide a helpful starting point for the end user / system designer in selecting the wire that best meets the needs of each application, and any applicable local safety requirements.



- 1. Main 12VDC Output: Active share bus. The ISHARE bus (Pin B5 or D4) must be connected on all sharing modules. It is not required that the SENSE signals are connected to the remote load for current share to operate correctly.
- 2. Up to eight (8) power modules can be connected in parallel (non-redundant) or N+1 configuration. The current share bus is bi-directional (can source or sink current from the
- 3. The voltage of the bus would measure approximately 8VDC for a single power module at 100% load; for two (2) modules sharing a common load the ISHARE bus voltage would be approximately 4V for a perfect 50/50 current share scenario.
- 4. The VSB (Standby Output) output of the power module can also be connected in parallel; internal output isolation devices are provided however the combined available power is limited to that available from a single power module (3.3V @ 13.2W or 5V @ 20W; 12V @ 30W) irrespective of the number of modules connected in parallel.
- 5. The maximum output current during power-up should not exceed that of a single unit during power up. After PWOK signal is driven high the load can be increased.



54mm 1U Front End DC-DC Power Converter



- This drawing is only for mechanical dimensions; a graphic representation of actual product and may not show all fine details, patterns, colours such as screw face pattern, fan surface 1.
- 2. The M4 pan head screw connection (located above terminal block) intended for host/System EMI connection.
- Reference File: D1U54-D-1500\_SPEC, 7/22/2019

| OPTIONAL ACCESSORIES                           |                |  |  |  |
|------------------------------------------------|----------------|--|--|--|
| Description                                    | Part Number    |  |  |  |
| D1U54P-12-CONC Output Interface Connector Card | D1U54P-12-CONC |  |  |  |

| APPLICATION NOTES |                                                |                          |  |  |  |
|-------------------|------------------------------------------------|--------------------------|--|--|--|
| Document Number   | Description                                    | Link                     |  |  |  |
| ACAN-64           | D1U54P-12-CONC Output Interface Connector Card | URL Link to the document |  |  |  |
| ACAN-67           | D1U54-D-12 Communications Protocol             | URL Link to the document |  |  |  |

Murata Power Solutions, Inc. 129 Flanders Rd. Westborough, Ma 01581, USA. ISO 9001 and 14001 REGISTERED



This product is subject to the following operating requirements and the Life and Safety Critical Application

Sales Policy: Refer to: <a href="https://www.murata-ps.com/requirements/">https://www.murata-ps.com/requirements/</a>
Murata Power Solutions, Inc. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infring upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith Specifications are subject to change without notice.

©2021Murata Power Solutions, Inc.