

N-channel 60 V 7.8 mΩ standard level MOSFET

Rev. 03 — 28 October 2010

Product data sheet

1. Product profile

1.1 General description

Standard level N-channel MOSFET in a TO-220 package qualified to 175 °C. This product is designed and qualified for use in a wide range of industrial, communications and domestic equipment.

1.2 Features and benefits

- High efficiency due to low switching and conduction losses
- Suitable for standard level gate drive sources

1.3 Applications

- DC-to-DC converters
- Load switching

- Motor control
- Server power supplies

1.4 Quick reference data

Table 1. Quick reference data

Parameter	Conditions	Min	Тур	Мах	Unit
drain-source voltage	T _j ≥ 25 °C; T _j ≤ 175 °C	-	-	60	V
drain current	T _{mb} = 25 °C; V _{GS} = 10 V; see <u>Figure 1</u>	-	-	92	A
total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>	-	-	149	W
acteristics					
drain-source on-state resistance	$\label{eq:VGS} \begin{array}{l} V_{GS} = 10 \text{ V}; \text{ I}_{D} = 25 \text{ A}; \\ T_{j} = 25 \ ^{\circ}\text{C}; \text{ see } \underline{\text{Figure } 13}; \\ \text{see } \underline{\text{Figure } 9} \end{array}$	-	5.9	7.8	mΩ
naracteristics					
gate-drain charge	$\label{eq:VGS} \begin{array}{l} V_{GS} = 10 \text{ V}; \text{ I}_{D} = 25 \text{ A}; \\ V_{DS} = 30 \text{ V}; \text{ see } \underline{\text{Figure 15}}; \\ \text{see } \underline{\text{Figure 14}} \end{array}$	-	10.6	-	nC
ruggedness					
non-repetitive drain-source avalanche energy		-	-	110	mJ
	drain-source voltage drain current total power dissipation acteristics drain-source on-state resistance maracteristics gate-drain charge ruggedness non-repetitive drain-source avalanche	drain-source voltage $T_j \ge 25 \text{ °C}; T_j \le 175 \text{ °C}$ drain current $T_{mb} = 25 \text{ °C}; V_{GS} = 10 \text{ V};$ see Figure 1total power dissipation $T_{mb} = 25 \text{ °C};$ see Figure 2acteristicsdrain-source on-state resistance $V_{GS} = 10 \text{ V}; I_D = 25 \text{ A};$ $T_j = 25 \text{ °C};$ see Figure 13; see Figure 9maracteristicsgate-drain charge $V_{GS} = 10 \text{ V}; I_D = 25 \text{ A};$ $V_{DS} = 30 \text{ V};$ see Figure 15; see Figure 14ruggednessnon-repetitive drain-source avalanche $V_{GS} = 10 \text{ V}; T_{j(init)} = 25 \text{ °C};$ $I_D = 92 \text{ A}; V_{sup} \le 100 \text{ V};$	$\begin{array}{ll} \mbox{drain-source voltage} & T_j \geq 25 \ {}^\circ\mbox{C}; \ T_j \leq 175 \ {}^\circ\mbox{C} & - \\ \mbox{drain current} & T_{mb} = 25 \ {}^\circ\mbox{C}; \ V_{GS} = 10 \ V; & - \\ \mbox{see Figure 1} & & \\ \mbox{total power dissipation} & T_{mb} = 25 \ {}^\circ\mbox{C}; \ \mbox{see Figure 2} & - \\ \mbox{acteristics} & & \\ \mbox{drain-source on-state} & V_{GS} = 10 \ V; \ I_D = 25 \ A; & - \\ \ T_j = 25 \ {}^\circ\mbox{C}; \ \mbox{see Figure 13}; & \\ \mbox{see Figure 9} & & \\ \mbox{aracteristics} & & \\ \mbox{gate-drain charge} & V_{GS} = 10 \ V; \ I_D = 25 \ A; & - \\ \ V_{DS} = 30 \ V; \ \mbox{see Figure 15}; & \\ \mbox{see Figure 14} & & \\ \mbox{ruggedness} & \\ \mbox{non-repetitive} & V_{GS} = 10 \ V; \ T_{j(init)} = 25 \ {}^\circ\mbox{C}; & - \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	drain-source voltage $T_j \ge 25 \text{ °C}; T_j \le 175 \text{ °C}$ -drain current $T_{mb} = 25 \text{ °C}; V_{GS} = 10 \text{ V};$ -drain current $T_{mb} = 25 \text{ °C}; \text{ see Figure 2}$ -total power dissipation $T_{mb} = 25 \text{ °C}; \text{ see Figure 2}$ -acteristicsdrain-source on-state $V_{GS} = 10 \text{ V}; I_D = 25 \text{ A};$ -resistance $T_j = 25 \text{ °C}; \text{ see Figure 13};$ see Figure 9maracteristicsgate-drain charge $V_{GS} = 10 \text{ V}; I_D = 25 \text{ A};$ - $V_{DS} = 30 \text{ V}; \text{ see Figure 15};$ see Figure 15;-see Figure 14ruggednessnon-repetitive $V_{GS} = 10 \text{ V}; T_{j(init)} = 25 \text{ °C};$ - $I_D = 92 \text{ A}; V_{sup} \le 100 \text{ V};$ -	drain-source voltage $T_j \ge 25 \text{ °C}; T_j \le 175 \text{ °C}$ 60drain current $T_{mb} = 25 \text{ °C}; V_{GS} = 10 \text{ V};$ see Figure 192total power dissipation $T_{mb} = 25 \text{ °C};$ see Figure 2149acteristicsdrain-source on-state resistance $V_{GS} = 10 \text{ V}; I_D = 25 \text{ A};$ $T_j = 25 \text{ °C};$ see Figure 13; see Figure 9-5.97.8aracteristicsgate-drain charge $V_{GS} = 10 \text{ V}; I_D = 25 \text{ A};$ $V_{DS} = 30 \text{ V};$ see Figure 15; see Figure 14-10.6-ruggednessnon-repetitive drain-source avalanche $V_{GS} = 10 \text{ V}; T_{j(init)} = 25 \text{ °C};$ $I_D = 92 \text{ A}; V_{sup} \le 100 \text{ V};$ -110

nexperia

N-channel 60 V 7.8 mΩ standard level MOSFET

2. Pinning information

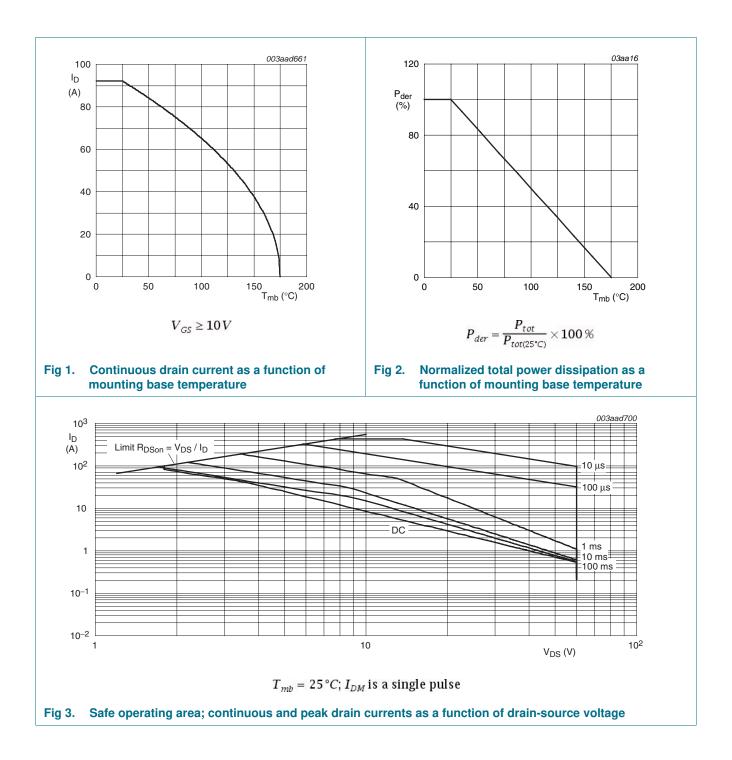
Table 2.	Pinning	information		
Pin	Symbol	Description	Simplified outline	Graphic symbol
1	G	gate		-
2	D	drain	mb	
3	S	source		
mb	D	mounting base; connected to drain		mbb076 S
			SOT78 (TO-220AB)	

3. Ordering information

Table 3. Ordering information

Type number	Package		
	Name	Description	Version
PSMN7R6-60PS	TO-220AB	plastic single-ended package; heatsink mounted; 1 mounting hole; 3-lead TO-220AB	SOT78

4. Limiting values


Table 4.Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{DS}	drain-source voltage	T _j ≥ 25 °C; T _j ≤ 175 °C	-	60	V
V _{DGR}	drain-gate voltage	$R_{GS} = 20 \text{ k}\Omega$	-	60	V
V _{GS}	gate-source voltage		-20	20	V
I _D	drain current	V_{GS} = 10 V; T_{mb} = 100 °C; see <u>Figure 1</u>	-	65	А
		V_{GS} = 10 V; T_{mb} = 25 °C; see <u>Figure 1</u>	-	92	А
I _{DM}	peak drain current	pulsed; $t_p \le 10 \ \mu s$; $T_{mb} = 25 \ ^{\circ}C$; see Figure 3	-	389	Α
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>	-	149	W
T _{stg}	storage temperature		-55	175	°C
Tj	junction temperature		-55	175	°C
Source-drai	in diode				
I _S	source current	T _{mb} = 25 °C	-	92	Α
I _{SM}	peak source current	pulsed; t _p ≤ 10 μs; T _{mb} = 25 °C	-	389	А
Avalanche i	ruggedness				
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	V_{GS} = 10 V; $T_{j(init)}$ = 25 °C; I_D = 92 A; $V_{sup} \le 100$ V; R_{GS} = 50 Ω ; unclamped	-	110	mJ

PSMN7R6-60	PS	
Product	data	sheet

PSMN7R6-60PS

10⁻²

10⁻³

Fig 4.

10⁻⁶

PSMN7R6-60PS

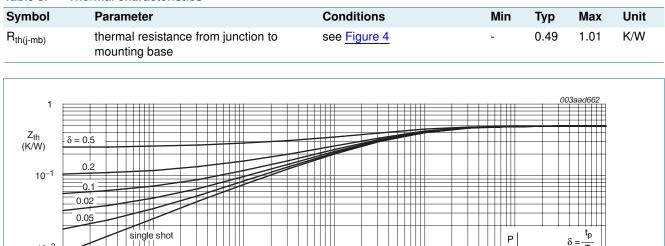
т

t

1.1.1

1

tp


t_p (s)

10⁻¹

N-channel 60 V 7.8 mΩ standard level MOSFET

5. Thermal characteristics

10⁻⁵

Transient thermal impedance from junction to mounting base as a function of pulse duration

10⁻³

Ħ

10⁻⁴

10-2

Table 5. Thermal characteristics

N-channel 60 V 7.8 mΩ standard level MOSFET

6. Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Static chara	cteristics					
V _{(BR)DSS}	drain-source breakdown voltage	$I_D = 250 \ \mu A; V_{GS} = 0 \ V; T_j = -55 \ ^{\circ}C$	54	-	-	V
		$I_D = 250 \ \mu\text{A}; \ V_{GS} = 0 \ V; \ T_j = 25 \ ^\circ\text{C}$	60	-	-	V
V _{GS(th)}	gate-source threshold voltage	$I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_j = 25 \text{ °C};$ see Figure 10; see Figure 11	2	3	4	V
V _{GSth}	gate-source threshold voltage	$I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_j = 175 \text{ °C};$ see <u>Figure 11</u>	1	-	-	V
		$I_D = 1 \text{ mA}; V_{DS} = V_{GS}; T_j = -55 \text{ °C};$ see Figure 11	-	-	4.6	V
I _{DSS}	drain leakage current	$V_{DS} = 60 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 25 \text{ °C}$	-	0.05	10	μA
		$V_{DS} = 60 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 125 \text{ °C}$	-	-	100	μA
I _{GSS}	gate leakage current	$V_{GS} = 20 \text{ V}; V_{DS} = 0 \text{ V}; T_j = 25 \text{ °C}$	-	2	100	nA
		V_{GS} = -20 V; V_{DS} = 0 V; T_j = 25 °C	-	2	100	nA
R _{DSon}	drain-source on-state resistance	V_{GS} = 10 V; I _D = 25 A; T _j = 175 °C; see <u>Figure 12</u>	-	13.3	18	mΩ
		$V_{GS} = 10 \text{ V}; I_D = 25 \text{ A}; T_j = 25 \text{ °C};$ see Figure 13; see Figure 9	-	5.9	7.8	mΩ
R _G	gate resistance	f = 1 MHz	-	0.98	-	Ω
Dynamic ch	aracteristics					
Q _{G(tot)}	total gate charge	$I_D = 25 \text{ A}; V_{DS} = 30 \text{ V}; V_{GS} = 10 \text{ V};$	-	38.7	-	nC
Q _{GS}	gate-source charge	see Figure 14; see Figure 15	-	12.9	-	nC
Q _{GS(th)}	pre-threshold gate-source charge		-	6.9	-	nC
Q _{GS(th-pl)}	post-threshold gate-source charge		-	6	-	nC
Q _{GD}	gate-drain charge	$I_D = 25 \text{ A}; V_{DS} = 30 \text{ V}; V_{GS} = 10 \text{ V};$ see Figure 15; see Figure 14	-	10.6	-	nC
V _{GS(pl)}	gate-source plateau voltage	$I_D = 25 \text{ A}; V_{DS} = 30 \text{ V}; \text{ see } \frac{\text{Figure}}{14}; \text{ see } \frac{\text{Figure } 15}{15}$	-	5.6	-	V
C _{iss}	input capacitance	$V_{DS} = 30 \text{ V}; V_{GS} = 0 \text{ V}; f = 1 \text{ MHz};$ $T_j = 25 \text{ °C}; \text{ see } \frac{\text{Figure 16}}{\text{Figure 8}}; \text{ see}$	-	2651	-	pF
C _{oss}	output capacitance	$\label{eq:VDS} \begin{array}{l} V_{DS} = 30 \text{ V}; V_{GS} = 0 \text{ V}; \text{f} = 1 \text{ MHz}; \\ T_{j} = 25 ^{\circ}\text{C}; \text{ see } \underline{\text{Figure 16}} \end{array}$	-	342	-	pF
S _{rss}	reverse transfer capacitance	$V_{DS} = 30 \text{ V}; V_{GS} = 0 \text{ V}; f = 1 \text{ MHz};$ $T_j = 25 \text{ °C}; \text{ see } \frac{\text{Figure 16}}{\text{Figure 8}}; \text{ see}$	-	183	-	pF
d(on)	turn-on delay time	$V_{DS} = 30 \text{ V}; \text{ R}_{L} = 1.2 \Omega; \text{ V}_{GS} = 10 \text{ V};$	-	19	-	ns
r	rise time	$R_{G(ext)} = 4.7 \Omega$	-	21	-	ns
d(off)	turn-off delay time		-	37	-	ns
t _f	fall time		-	13	-	ns

Symbol

PSMN7R6-60PS

Max

Unit

Тур

N-channel 60 V 7.8 mΩ standard level MOSFET

Min

ource-drai	n diode					
SD	source-drain voltage	I _S = 25 A; V _{GS} = 0 V; T _j = 25 °C; see <u>Figure 17</u>	-	0.86	1.2	V
	reverse recovery time	$I_{S} = 25 \text{ A}; \text{ d}I_{S}/\text{d}t = 100 \text{ A}/\mu\text{s};$	-	40.4	-	ns
r	recovered charge	V_{GS} = 0 V; V_{DS} = 30 V	-	56	-	nC
100	C	003aad663			03aad669	
ID	15 11 6.0	06				
(A)	10 5.5	6 (S)				
80 -		120				
				\neg		
60						
	5.0	80 80				
40 -						
20 —		40				
	$V_{GS}(V) = 4.5$					
。						
	$T_j = 25$ °C; $t_p = 300 \ \mu s$ tput characteristics: drain cu	v _{DS} (V) ² 0 20 Irrent as a Fig 6. Forward t	40 60 ransconductar	nce as a	I _D (A)	
ig 5. Ou	$T_j = 25 ^{\circ}\text{C}; t_p = 300 \mu s$	v _{DS} (V) ² 0 20 Irrent as a Fig 6. Forward t		nce as a	I _D (A)	
Fig 5. Ou fun	$T_j = 25$ °C; $t_p = 300 \ \mu s$ tput characteristics: drain cu iction of drain-source voltage	V _{DS} (V) ² 0 20 Irrent as a e; typical values Fig 6. Forward t drain curr	ransconductar	nce as a lues	I _D (A)	
-ig 5. Ou	$T_j = 25$ °C; $t_p = 300 \ \mu s$ tput characteristics: drain cu iction of drain-source voltage	V _{DS} (V) ² 0 20 Fig 6. Forward t drain curr 003aad665 11 4000	ransconductar	nce as a lues	I _D (A)	
Fig 5. Ou fun 100 I _D (A)	$T_j = 25$ °C; $t_p = 300 \ \mu s$ tput characteristics: drain cu iction of drain-source voltage	V _{DS} (V) ² 0 20 Irrent as a b; typical values VDS (V) ² Fig 6. Forward t drain curr 4000	ransconductar	nce as a lues	I _D (A)	
Fig 5. Ou fun	$T_j = 25$ °C; $t_p = 300 \ \mu s$ tput characteristics: drain cu iction of drain-source voltage	V _{DS} (V) ² 0 20 Fig 6. Forward t drain curr 003aad665 4000 C	ransconductar	nce as a lues	I _D (A)	
Fig 5. Ou fun	$T_j = 25$ °C; $t_p = 300 \ \mu s$ tput characteristics: drain cu iction of drain-source voltage	V _{DS} (V) ² 0 20 Fig 6. Forward t drain curr 003aad665 4000 C (pF) C Ciss	ransconductar	nce as a lues	I _D (A)	
Fig 5. Ou fun	$T_j = 25$ °C; $t_p = 300 \ \mu s$ tput characteristics: drain cu iction of drain-source voltage	V _{DS} (V) ² 0 ²⁰ Fig 6. Forward t drain curr 003aad665 4000 C (pF) 3000 Crss	ransconductar	nce as a lues	I _D (A)	
Fig 5. Ou fun	$T_j = 25$ °C; $t_p = 300 \ \mu s$ tput characteristics: drain cu iction of drain-source voltage	V _{DS} (V) ² 0 ²⁰ Fig 6. Forward t drain curr 003aad665 4000 C (pF) 3000	ransconductar	nce as a lues	I _D (A)	
Fig 5. Ou fun	$T_j = 25$ °C; $t_p = 300 \ \mu s$ tput characteristics: drain cu iction of drain-source voltage	V _{DS} (V) ² 0 ²⁰ Fig 6. Forward t drain curr 003aad665 4000 C (pF) 3000 Crss	ransconductar	nce as a lues	I _D (A)	
Fig 5. Ou fun	$T_j = 25 \text{ °C}; t_p = 300 \ \mu s$ tput characteristics: drain cu iction of drain-source voltage	V _{DS} (V) ² 0 ²⁰ Fig 6. Forward t drain curr 003aad665 4000 C (pF) 3000 2000	ransconductar	nce as a lues	I _D (A)	
Fig 5. Ou fun	$T_j = 25 \text{ °C}; t_p = 300 \ \mu s$ tput characteristics: drain cu iction of drain-source voltage	V _{DS} (V) ² 0 ²⁰ Fig 6. Forward t drain curr 003aad665 4000 C (pF) 3000 Crss	ransconductar	nce as a lues	I _D (A)	
Fig 5. Ou fun	$T_j = 25 \text{ °C}; t_p = 300 \ \mu s$ tput characteristics: drain cu iction of drain-source voltage	V _{DS} (V) ² 0 ²⁰ Fig 6. Forward t drain curr 003aad665 4000 C (pF) 3000 2000	ransconductar	nce as a lues	I _D (A)	
Fig 5. Ou fun	$T_j = 25 \text{ °C}; t_p = 300 \ \mu s$ tput characteristics: drain cu inction of drain-source voltage	$V_{DS}(V)^{2} \qquad 0 \qquad 20$ Fig 6. Forward t drain curr	ransconductar rent; typical val			
Fig 5. Ou fun	$T_j = 25 \text{ °C}; t_p = 300 \ \mu s$ tput characteristics: drain cu inction of drain-source voltage	$V_{DS}(V)^{2} = 0^{20}$ Fig 6. Forward t drain curr $\frac{003aad665}{C}$ $\frac{4000}{C}$ $\frac{C}{(pF)}$ 3000 $\frac{C}{(rss)}$ $\frac{2000}{1000}$	ransconductar		I _D (A)	
Fig 5. Ou fun	$T_j = 25 \text{ °C}; t_p = 300 \ \mu s$ tput characteristics: drain cu inction of drain-source voltage	$V_{DS}(V)^{2}$ $V_{DS}(V)^{2}$ Fig 6. Forward t drain curr $V_{DS}(V)^{2}$ Fig 6. Forward t drain curr $V_{DS}(V)^{0}$ $V_{DS}(V)^{0}$ $V_{DS}(V)^{2}$ Fig 6. Forward t drain curr $V_{DS}(V)^{0}$ $V_{DS}(V)^{0}$ $V_{DS}(V)^{0}$ $V_{DS}(V)^{0}$ $V_{DS}(V)^{0}$ Fig 6. Forward t drain curr $V_{DS}(V)^{0}$ $V_{DS}(V)^{0}$ V_{D	ransconductar rent; typical val			
Fig 5. Ou fun	$T_j = 25 \text{ °C}; t_p = 300 \ \mu s$ tput characteristics: drain curce voltage	$V_{DS}(V)^{2}$ Fig 6. Forward t drain curr $V_{DS}(V)^{2}$ Fig 6. Forward t drain curr $V_{DS}(V)^{2}$ Fig 6. Forward t drain curr $V_{DS}(V)^{2}$ $V_{DS}(V)^{2}$ Fig 6. Forward t drain curr $V_{DS}(V)^{2}$ $V_{DS}(V)^{2}$ $V_{DS}(V)^{2}$ Fig 6. Forward t drain curr $V_{DS}(V)^{2}$ $V_{DS}(V)^{2}$ Fig 6. Forward t drain curr $V_{DS}(V)^{2}$ $V_{DS}(V)^{2}$ Fig 6. Forward t drain curr $V_{DS}(V)^{2}$ $V_{DS}(V)^{2}$ $V_{DS}(V)^{2}$ Fig 6. Forward t drain curr $V_{DS}(V)^{2}$ $V_{DS}(V)^{2}$ $V_{DS}(V)^{2$	ransconductar ent; typical val	nce as a lues	I _D (A)	n of

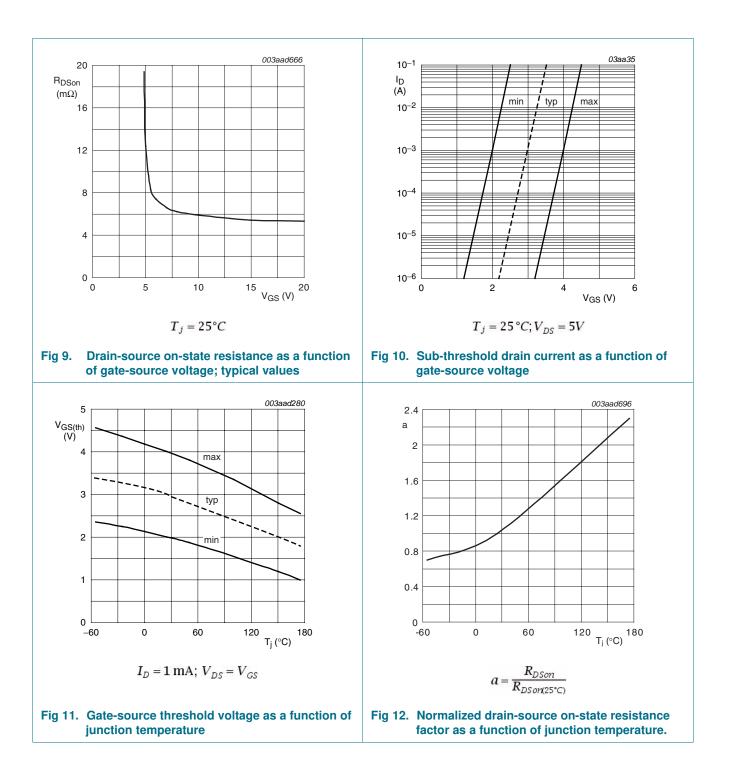
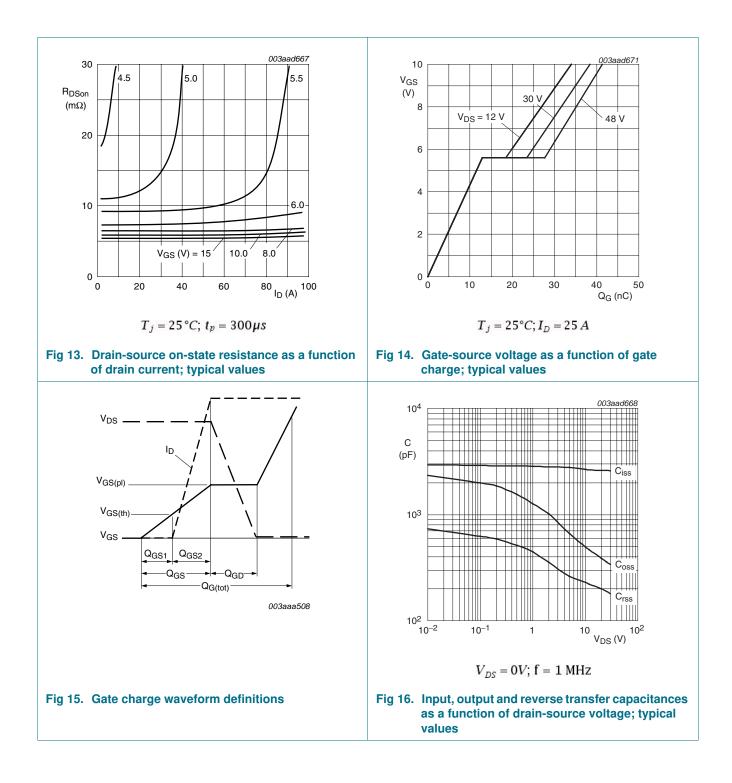
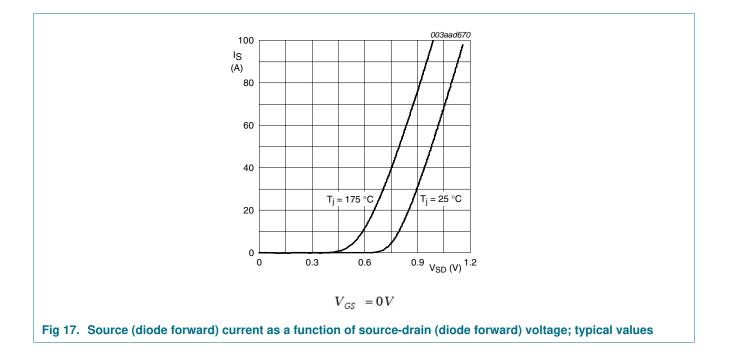

Conditions

Table 6. Characteristics ...continued


Parameter

PSMN7R6-60PS Product data sheet


PSMN7R6-60PS

PSMN7R6-60PS

PSMN7R6-60PS

N-channel 60 V 7.8 mΩ standard level MOSFET

Package outline 7.

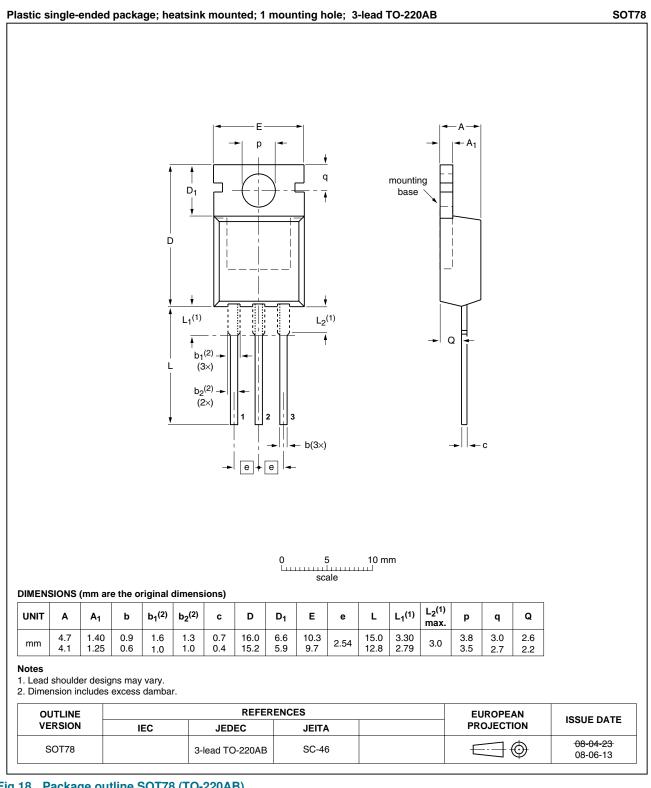


Fig 18. Package outline SOT78 (TO-220AB)

PSMN7R6-60PS **Product data sheet**

N-channel 60 V 7.8 mΩ standard level MOSFET

8. Revision history

Table 7.Revision h	nistory			
Document ID	Release date	Data sheet status	Change notice	Supersedes
PSMN7R6-60PS v.3	20101028	Product data sheet	-	PSMN7R6-60PS v.2
Modifications:	Various change	s to content.		
PSMN7R6-60PS v.2	20100122	Product data sheet	-	-

N-channel 60 V 7.8 mΩ standard level MOSFET

9. Legal information

9.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <u>http://www.nexperia</u>.com.

9.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and

customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

9.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia accepts no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale - Nexperia

products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective

Product data sheet

N-channel 60 V 7.8 mΩ standard level MOSFET

agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the

10. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: <u>salesaddresses@nexperia.com</u>

product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

9.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

sheet

Rev. 03 — 28 October 2010

N-channel 60 V 7.8 mΩ standard level MOSFET

11. Contents

1	Product profile1
1.1	General description1
1.2	Features and benefits1
1.3	Applications1
1.4	Quick reference data1
2	Pinning information2
3	Ordering information2
4	Limiting values2
5	Thermal characteristics4
6	Characteristics5
7	Package outline10
8	Revision history11
9	Legal information12
9.1	Data sheet status
9.2	Definitions12
9.3	Disclaimers
9.4	Trademarks
10	Contact information13