
C2000 Gang Programmer (C2000-GANG)

User's Guide

Literature Number: SPRUHS0C

February 2014–Revised March 2016

2 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Contents

Contents

Preface .. 6

1 Introduction... 7

1.1 Software Installation .. 9

1.2 Driver Installation ... 10

1.3 Hardware Installation .. 10

2 Operation .. 11

2.1 Programming C2000 Flash Devices Using the C2000 Gang Programmer .. 11

2.1.1 Programming Using Interactive Mode ... 12

2.1.2 Programming >From Image ... 16

2.1.3 Programming From Script ... 19

2.1.4 Programming in Standalone Mode ... 26

2.1.5 Memory Setup for GO, Erase, Program, Verify, and Read ... 29

2.1.6 Creating and Using Images ... 29

2.1.7 Programming >From Image File .. 33

2.1.8 Programming >From SD Card... 35

2.1.9 File Extensions .. 35

2.1.10 Checksum Calculation... 35

2.2 Data Viewers.. 36

2.3 Status Messages .. 39

2.4 Self Test ... 43

2.5 Label ... 49

2.6 Benchmarks... 50

2.6.1 Benchmark for C28035 ... 50

3 Firmware ... 51

3.1 Commands ... 51

3.2 Firmware Interface Protocol... 52

3.3 Synchronization Sequence.. 52

3.4 Command Messages .. 52

3.4.1 Frame Structure ... 52

3.4.2 Checksum .. 54

3.5 Detailed Description of Commands ... 54

3.5.1 General .. 54

3.5.2 Commands Supported by the BOOT Loader .. 54

3.5.3 Commands Supported by Application Firmware .. 58

3.5.4 API Firmware Commands That Should Not be Used .. 62

4 Dynamic Link Library for C2000 Gang Programmer .. 66

4.1 C2000-GANG.dll Description ... 66

4.1.1 C2000GANG_GetDataBuffers_ptr .. 67

4.1.2 C2000GANG_SetGangBuffer, C2000GANG_GetGangBuffer .. 68

4.1.3 C2000GANG_GetDevice... 69

4.1.4 C2000GANG_LoadFirmware .. 70

4.1.5 C2000GANG_InitCom .. 70

4.1.6 C2000GANG_ReleaseCom.. 70

4.1.7 C2000GANG_GetErrorString .. 71

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

www.ti.com

3SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Contents

4.1.8 C2000GANG_SelectBaudrate ... 71

4.1.9 C2000GANG_GetDiagnostic .. 71

4.1.10 C2000GANG_MainProcess... 72

4.1.11 C2000GANG_InteractiveProcess .. 72

4.1.12 C2000GANG_Interactive_Open_Target_Device... 72

4.1.13 C2000GANG_Interactive_Close_Target_Device .. 73

4.1.14 C2000GANG_Interactive_DefReadTargets... 73

4.1.15 C2000GANG_Interactive_ReadTargets... 73

4.1.16 C2000GANG_Interactive_ReadWords .. 74

4.1.17 C2000GANG_Interactive_WriteWord_to_RAM .. 74

4.1.18 C2000GANG_Interactive_WriteWords_to_RAM ... 75

4.1.19 C2000GANG_Interactive_WriteWords_to_FLASH .. 76

4.1.20 C2000GANG_Interactive_Copy_Gang_Buffer_to_RAM .. 76

4.1.21 C2000GANG_Interactive_Copy_Gang_Buffer_to_FLASH ... 77

4.1.22 C2000GANG_Interactive_EraseSectors .. 77

4.1.23 C2000GANG_Interactive_BlankCheck .. 78

4.1.24 C2000GANG_SelectImage ... 79

4.1.25 C2000GANG_EraseImage.. 79

4.1.26 C2000GANG_CreateGangImage .. 79

4.1.27 C2000GANG_LoadImageBlock .. 80

4.1.28 C2000GANG_VerifyPSAImageBlock .. 80

4.1.29 C2000GANG_ReadImageBlock.. 80

4.1.30 C2000GANG_Read_Code_File .. 81

4.1.31 C2000GANG_Save_Config, C2000GANG_Load_Config, C2000GANG_Default_Config.............. 81

4.1.32 C2000GANG_SetConfig, C2000GANG_GetConfig ... 82

4.1.33 C2000GANG_GetNameConfig, C2000GANG_SetNameConfig ... 86

4.1.34 C2000GANG_SetTmpGANG_Config.. 87

4.1.35 C2000GANG_GetLabel ... 87

4.1.36 C2000GANG_GetInfoMemory, C2000GANG_SetInfoMemory .. 88

4.1.37 C2000GANG_Get_qty_MCU_Family, C2000GANG_Get_MCU_FamilyName,
C2000GANG_Check_MCU_Name, C2000GANG_Get_MCU_Name...................................... 89

4.1.38 C2000GANG_Set_MCU_Name .. 90

4.1.39 C2000GANG_HW_devices ... 90

4.1.40 C2000GANG_GetProgressStatus.. 91

4.1.41 C2000GANG_GetAPIStatus .. 93

4.1.42 C2000GANG_Set_IO_State .. 94

5 Schematics.. 96

6 Supported MCU List.. 103

6.1 F28x Fixed Point MCU .. 103

6.2 Piccolo™ F280x .. 103

6.3 Delfino F283xx ... 103

6.4 C28x + ARM® ... 103

Revision History .. 104

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

www.ti.com

4 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

List of Figures

List of Figures

1-1. Top View of the C2000 Gang Programmer .. 9

2-1. Main C2000 Gang Programmer Dialog GUI, Interactive Mode .. 12

2-2. Memory Options .. 13

2-3. Reset Options... 14

2-4. Flash Memory Data .. 16

2-5. Main C2000 Gang Programmer Dialog GUI, From Image Mode .. 17

2-6. Main C2000 Gang Programmer Dialog GUI, From Image Mode and Custom Configuration Enabled 19

2-7. Main C2000 Gang Programmer Dialog GUI, From Script .. 20

2-8. Main C2000 Gang Programmer Dialog GUI, Standalone Mode ... 26

2-9. Image Option.. 27

2-10. Target Enable or Disable Option ... 28

2-11. Image Name Configuration Screen .. 31

2-12. Image File Security Options .. 32

2-13. Hardware Fingerprint of Computer in Use .. 33

2-14. Programming From Image File ... 34

2-15. Password for Image File... 34

2-16. Code File Data.. 37

2-17. Comparison of Code and Flash Memory Data of the Target Microcontroller 38

2-18. Self Test ... 44

2-19. Information About the C2000 Gang Programmer .. 49

5-1. C2000 Gang Programmer Simplified Schematic (1 of 3) ... 97

5-2. C2000 Gang Programmer Simplified Schematic (2 of 3) ... 98

5-3. C2000 Gang Programmer Simplified Schematic (3 of 3) ... 99

5-4. C2000 Gang Splitter rev. 0 Schematic... 100

5-5. C2000 Gang Splitter rev.1 Schematic ... 102

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

www.ti.com

5SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

List of Tables

List of Tables

2-1. Benchmark Results – C28035, 64 kwords (128kB) Code .. 50

3-1. Data Frame for Firmware Commands ... 53

5-1. Gang Splitter rev. 0 Bill of Materials (BOM) ... 101

5-2. Gang Splitter rev. 1 Bill of Materials (BOM) ... 103

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

6 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Read This First

Preface
SPRUHS0C–February 2014–Revised March 2016

Read This First

If You Need Assistance

If you have any feedback or questions, support for the C2000™ devices and the C2000 Gang
Programmer is provided by the Texas Instruments Product Information Center (PIC) and the TI E2E
Forum (http://e2e.ti.com/support/microcontrollers/c2000/default.aspx). Contact information for the PIC can
be found on the TI web site at support.ti.com. Additional device-specific information is on the C2000 web
site at www.ti.com/c2000.

Related Documentation from Texas Instruments

The primary sources of C2000 information are the device-specific data sheets and user's guides. The
most current information is on the C2000 web site at www.ti.com/c2000.

Information specific to the C2000 Gang Programmer is at www.ti.com/c2000-gang.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C
http://e2e.ti.com/support/microcontrollers/c2000/default.aspx
http://support.ti.com
http://www.ti.com/c2000
http://www.ti.com/c2000
http://www.ti.com/c2000-gang

NOTE:

Warning:

This equipment has been tested and found to comply with the limits for a Class B digital devices, pursuant
to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference
in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not
installed and used in accordance with the instruction manual, may cause harmful interference to radio
communications. However, there is no guarantee that interference will not occur in a particular installation. If this
equipment does cause harmful interference to radio or television reception, which can be determined by turning the
equipment off and on, the user is encouraged to try to correct the interference by one of more of the following
measures:
* Reorient or relocate the receiving antenna
* Increase the separation between the equipment and receiver
* Connect the equipment into an outlet on a circuit different from that to which the receiver is connected
* Consult the dealer or an experienced radio/TV technician for help.

Changes or modifications not expressly approved by Texas Instruments Inc. could void the user’s
authority to operate the equipment.

This device complies with Part 15 of the FCC Rules.
Operation is subject to the following two conditions:
(1) this device may not cause harmful interference and
(2) this device must accept any interference received,

including interference that may cause undesired
operation.

This Class B digital apparatus meets all requirements of the Canadian
Interference-Causing Equipment Regulations.

Cet appereil numerique de la classe B respecte toutes les exigences du
Reglement sur le material brouilleur du Canada.

7SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Read This First

Chapter 1
SPRUHS0C–February 2014–Revised March 2016

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

Related Documentation from Texas Instruments www.ti.com

8 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Introduction

Introduction

The C2000 Gang Programmer is a C2000 device programmer that can program up to eight identical
C2000 devices at the same time. The C2000 Gang Programmer connects to a host PC using a standard
RS-232 or USB connection and provides flexible programming options that allow the user to fully
customize the process. A top-level view of the C2000 Gang Programmer can be seen in Figure 1-1.

The C2000 Gang Programmer is not a gang programmer in the traditional sense, in that there are not
eight sockets provided to program target devices. Instead, the C2000 Gang Programmer is designed to
connect to target devices in-circuit (that is, target devices are mounted in the final circuit or system). The
C2000 Gang Programmer accesses target devices using connectors that use JTAG signals.

The C2000 Gang Programmer is provided with an expansion board, called the Gang Splitter, that
implements the interconnections between the C2000 Gang Programmer and multiple target devices. Eight
cables are provided that connect the expansion board to eight target devices (via JTAG connectors).

Chapter 2 describes in detail how to use the C2000 Gang Programmer to program target devices. Various
modes of operation are described, and they allow the user to choose the most convenient method of
programming. In addition, this chapter describes the various windows that are used to configure the
programming procedure for a specific target device.

Chapter 3 describes firmware commands that can be used to control the programming process at fine
granularity. Firmware commands can be received over an RS-232 or USB port and correspond to specific
actions that the programmer can perform. Take great care in using these commands, because they must
often be used in groups for proper behavior, and the order in which they are executed affects the result.

Chapter 5 contains an I/O schematic that shows how signals from the C2000 Gang Programmer can be
brought out to each of the target devices via a C2000-standard JTAG connector. The user can easily
modify the circuit to connect the signals to the target device pins directly (via a socket) if a traditional gang
programmer setup is desired.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

www.ti.com Software Installation

9SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Introduction

Figure 1-1. Top View of the C2000 Gang Programmer

1.1 Software Installation

TI recommends that you use the latest software version, which can be downloaded from the C2000
website at www.ti.com/tool/c2000-gang.

To install C2000 Gang Programmer software:

1. Download C2000-GANG software from TI website - see link above. Unzip file and run setup.exe file.

2. Follow the instructions in the installation process.

3. When the setup program is complete, C2000 Gang Programmer icons are available in the selected
folder. Click the C2000 Gang Programmer Read Me First icon to obtain important information about
the C2000 Gang Programmer.

4. The setup program also adds a program group and icons to the Windows desktop.

5. To start the C2000 Gang Programmer software, click the newly created icon.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C
http://www.ti.com/tool/c2000-gang

Driver Installation www.ti.com

10 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Introduction

1.2 Driver Installation

To install the required drivers:

1. Connect the C2000 Gang Programmer to a USB port on the PC. When the Windows Wizard starts,
follow instructions provided by wizard. When the wizard asks for the USB driver location, browse to the
CD-ROM drive. Drivers are located in the main CD-ROM directory location and also in the following
directory:

C:\Program Files\Texas Instruments\C2000-GANG\Driver

2. If the RS-232 interface is used for communication with C2000 Gang Programmer, then the additional
driver is not required. Check the Device Manager for the COM port number to use with communication
via RS-232.

1.3 Hardware Installation

To install the C2000 Gang Programmer hardware:

1. Attach the expansion board (Gang Splitter) to the 100-pin connector on the C2000 Gang Programmer.

The expansion board provides connectivity for up to eight targets using the included 14-pin cables. The
target C2000 flash devices can be in standalone sockets or can be on an application's PCB. These
devices can be accessed by JTAG signals.

NOTE: The C2000-GANG Programmer rev 1.04 should use software rev. 1.5 or higher and splitter

rev.1, while lower revisions of C2000-GANG Programmer can use any software revision, but

should continue to use the older C2000-GANG Splitter rev.0

2. Connect the C2000 Gang Programmer hardware to a computer's USB port using a USB A-B cable.

The C2000 Gang Programmer's internals can be supplied from the computer's USB port (5 V, 0.5 A),
but an external power supply is needed for programming target devices. Target devices can be
powered independently or from the C2000 Gang Programmer's 6-10V power supply connector. In this
case the external power supply must provide a voltage between 6 V and 10 V DC and must be
capable of providing a minimum current of 1.5 A. The center post of the power supply connector on the
C2000 Gang Programmer is the positive-voltage terminal. The programmer indicates the status of the
power supply connection by using system LEDs and the LCD back light. The programmer can also be
connected to a serial port (COM1 to COM255) using a 9-pin Sub-D connector, if the computer does not
have a USB port.

3. An external power supply is required to power the C2000 Gang Programmer if it is not connected via
USB port.

NOTE: Maximum Signal Path Length: 50 cm

The maximum length of a signal path between the 14-pin JTAG connector on the Gang

Splitter and the target device is 50 cm.

4. The C2000 Gang Programmer can supply power at 3.3 V, 160_mA to each target device separately
(pin 5 on each 14-pin JTAG cable), provided that the external power supply is attached to the C2000
Gang Programmer. The C2000 Gang Programmer consumes 150 mA by itself.

5. The C2000 Gang Programmer can be supplied from an external power supply connected to the dc
connector or via a gang splitter (not populated J10 connector). Because the J10 and dc connectors are
connected in parallel, make sure that only one connector provides an external power supply to the
C2000 Gang Programmer.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

11SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Operation

Chapter 2
SPRUHS0C–February 2014–Revised March 2016

Operation

This chapter describes how to use the C2000 Gang Programmer to program target devices. Various
modes of operation, which allow the user to choose the most convenient method of programming, are
described. In addition, this chapter describes the various windows that are used to configure the
programming procedure for a specific target device. The explanations in this chapter assume that the user
has properly installed the C2000 Gang Programmer hardware and software as described in Chapter 1.

2.1 Programming C2000 Flash Devices Using the C2000 Gang Programmer

The C2000 Gang Programmer is capable of quickly and reliably programming C2000 flash devices using
an RS-232 or USB interface. There are four ways to use the programmer to achieve this task and these
include:

• Interactive

• From Image

• From Script

• Standalone

The Interactive mode is selected by default, and is the easiest to get started with, because it requires the
least amount of preparation. After the user has mastered the Interactive mode it can be used to create
images and script files, which can then be used with the From Image and From Script modes,
respectively. Images and scripts are ready-to-go setups than can run with minimal user input. They are
very useful for repetitive programming, for example in a production environment, because they ensure
consistency (because of the re-use of images or scripts, we highly encourage the user to thoroughly test
their images or scripts for correctness before committing them to production). The C2000 Gang
Programmer can also be run in Standalone mode to program target devices without a PC. To do this, first
create an image to use for programming, and then save it to internal memory of the C2000 Gang
Programmer. Creating images is described in Section 2.1.6.

The following sections describe how to use these modes of operation.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

Programming C2000 Flash Devices Using the C2000 Gang Programmer www.ti.com

12 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Operation

2.1.1 Programming Using Interactive Mode

Use the following sequence to start the C2000 Gang Programmer GUI and program C2000 Flash Devices
using the Interactive Mode:

1. Click on the C2000 Gang Programmer icon located in the program group that was specified during
installation.Figure 2-1 shows the C2000 Gang Programmer GUI in the Interactive Mode (see the Mode
group in the top left corner). This window is used to select the target microcontroller, code file used for
programming, power supply options, communication interface, and more. This window also shows the
result of programming and any errors, if they occur.

Figure 2-1. Main C2000 Gang Programmer Dialog GUI, Interactive Mode

2. Select a target device using the MCU Type menu (select MCU group and then desired MCU type).

3. Select the code file to be programmed into the devices using the Open Code File button or pulldown
menu: File→Open Code File. The formats supported for the code file are TI (.txt), Intel (.hex) and
Motorola (.s19, .s28, .s37). Code size and checksum appear on the right side (for details on how the
checksum is calculated, seeSection 2.1.10).

4. MCUs provide a method of disabling JTAG by programming a password to flash memory. The
password should be specified as data to be programmed to MCU The code file must contain password
contents if you intend to lock JTAG using the password feature after programming. If the MCU is
already locked using a previously programmed code file, then you must provide the password section
(or entire old code file) using the Open Password File button if and only if the password section is
different. Functionally, if the MCU is locked by password, the code file’s password section is first used

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

www.ti.com Programming C2000 Flash Devices Using the C2000 Gang Programmer

13SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Operation

to attempt to unlock the MCU. If that fails, then the password file’s contents are used to attempt to
unlock the MCU. If both attempts fail, the MCU remains locked and JTAG access fails. Password file
contents are not used to program the MCU.

5. In the Target power group, select if the target is supplied from the C2000 Gang Programmer or from
an external power supply. The voltage or current is not customizable because of strict requirements for
flash programming.

6. In the Results group, select desired target devices to be programmed. After programming has
concluded, a green checkmark or lights appear for successful operations for each target.

7. In the Interface selector, choose the desired communication speed for JTAG (fast, medium or slow).

8. In the Memory Options dialog (pulldown menu: Setup→Memory options) shown in Figure 2-2, select
desired memory space to be programmed. By default, the selected option is OTP and Flash Memory
and it is correct for most programming tasks (Section 2.1.5 describes how to use the memory
configuration window).

NOTE: The user can select which segments of memory are written to or read from.

Figure 2-2. Memory Options

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

Programming C2000 Flash Devices Using the C2000 Gang Programmer www.ti.com

14 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Operation

9. In the Reset Options dialog (pulldown menu: Setup→Device Reset) shown in Figure 2-3, select the
duration of the reset pulse and the delay after reset. By default it is 10 ms, but other options are
available if required by the hardware.

NOTE: This window lets the user specify the duration of the reset pulse coming from the C2000 Gang

Programmer to the target device. Depending on the hardware implementation, a longer reset pulse might be

required.

Figure 2-3. Reset Options

10. If selecting dual-core MCUs (that is, Concerto™, Delfino™), select Core 1 and Core 2 (press Core 1
or Core 2 button) separately to choose configuration options and code file for each core. To enable
programming of both cores using the GO procedure, check-in the Program all Cores enable (GO
button) checkbox

Following these steps creates a working setup that can program target devices using the C2000 Gang
Programmer. Click the Save Project As button to save this configuration settings. These settings can be
loaded again later and modified, if necessary (one project holds one configuration). After saving the
project, use the buttons described in the following sections to perform the desired actions.

2.1.1.1 GO

Click the GO button in the Main Dialog GUI (or F9 key on the keyboard) to start programming. The
progress and completion of the operation are displayed in the Results group. The result is shown as one
of the following:

Idle status

Test in progress. For power on or off, dc voltage is correct.

Access enabled

Access denied (for example, the fuse is blown)

Device action has been finished successfully

Device action has been finished, but result failed

2.1.1.2 Erase

Click the Erase button in the Main Dialog GUI to erase a segment of memory (sets each word to 0xFFFF).
Use the Memory Options configuration screen shown in Figure 2-2 to specify which addresses should be
erased (Section 2.1.5 describes in detail how to use the memory configuration window). This action
succeeds after the programmer has attempted to erase the specified memory segment. Use the Blank
Check function to verify that this segment has been properly erased.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

www.ti.com Programming C2000 Flash Devices Using the C2000 Gang Programmer

15SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Operation

2.1.1.3 Blank Check

Click the Blank Check button in the Main Dialog GUI to check that the contents of specified memory have
been properly erased. This function is best used after erasing the same segment of memory using the
button described in Section 2.1.1.2. Use the same Memory Options configuration screen shown in
Figure 2-2 to specify which addresses should be erased (Section 2.1.5 describes in detail how to use the
memory configuration window). This function succeeds when the specified memory segments are set to
0xFFFF, and fails otherwise.

2.1.1.4 Program

Click the Program button in the Main Dialog GUI to write the contents of a code files to flash memory on
the target device. Addresses specified in the code files are used to determine where the program is
written. Make sure that the regions of memory corresponding to the addresses in the code file are enabled
for writing in the Memory Options configuration screen shown in Figure 2-2 (Section 2.1.5 describes in
detail how to use the memory configuration window).

Configuration conflicts may arise during programming. It is possible that the code the user has chosen is
too big to fit in the flash memory of the target MCU, or the appropriate memory segments have not been
enabled in the Memory Options configuration screen. If this is the case, a warning message appears to
notify the user of insufficient memory; however, the user is still allowed to proceed. If the user proceeds
despite the warning, only the portion of code that fits within the MCU's enabled flash memory is written.
This function succeeds after the programmer has attempted to write code to the specified memory
addresses. Use the Verify function to ensure that the code has been correctly copied to flash on the target
MCU.

2.1.1.5 Verify

Click the Verify button in the Main Dialog GUI to verify that the contents of the target MCU's flash memory
have been properly programmed. This function is best used after programming the same segment of
memory, as performed using the button described above. Make sure that the same memory segments are
enabled in the Memory Options configuration window shown in Figure 2-2, as during programming
described above, to ensure all programmed segments are verified (Section 2.1.5 describes in detail how
to use the memory configuration window).

If configuration conflicts arose during programming that indicated that the MCU did not contain sufficient
memory for the code to be programmed (either enabled segments or total memory was too small), then
the Verify function verifies only the code that was programmed and ignores the code that could not fit in
memory. This function succeeds if the code in flash matches the code file, and fail otherwise.

2.1.1.6 Read

Click the Read button in the Main Dialog GUI to read the contents of the target MCU's flash memory. Use
the Memory Options configuration screen shown in Figure 2-2 to specify which addresses should be read
(Section 2.1.5 describes in detail how to use the memory configuration window).

Once used, data is displayed in the Flash Memory Data window as shown in Figure 2-4. This window can
be selected in the View→Flash Memory Data pulldown menu. The Flash Memory Data viewer, shown in
Figure 2-4, displays the code address on the left side, data in hex format in the central column, and the
same data in ASCII format in the right column. The contents of the code viewer can be converted to TI
(*.txt) or Intel (*.hex) file format by clicking on the "TI hex" or "INTEL" button.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

Programming C2000 Flash Devices Using the C2000 Gang Programmer www.ti.com

16 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Operation

NOTE: This window displays the code addresses on the left side, data in hex format in the center column, and the

same data in ASCII format in the right column.

Figure 2-4. Flash Memory Data

2.1.2 Programming >From Image

A programming configuration like the one created in Section 2.1.1 can be stored in the form of an image.
The advantage of an image is that it contains both the configuration options necessary for programming
as well as the code files that are flashed to target devices. Moreover, only images can be saved to internal
C2000 Gang Programmer memory and used in Standalone mode, in which the programmer can operate
without being connected to a PC. Using the From Image mode allows the user to test images with full GUI
support before committing them to production.

After an image has been created, it can be used to greatly simplify programming by using the procedure
described in Section 2.1.6. Figure 2-5 shows the main dialog GUI where the From Image option is
selected for programming (top left corner). Here the user can load an image from C2000 Gang
Programmer internal memory. An image can be created in Interactive Mode and saved to the
programmer. One of 16 different images can be selected from internal memory, or one image from each
external SD-Card can be used.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

www.ti.com Programming C2000 Flash Devices Using the C2000 Gang Programmer

17SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Operation

NOTE: C2000 Gang Programmer internal memory and SD-Card are mutually exclusive.

To avoid confusion during programming, connecting an SD-Card to the C2000 Gang

Programmer disables its internal memory used for other images. Therefore, when an SD-

Card is connected to the programmer only the image on the SD-Card is usable or

accessible. If the SD-Card is empty, or contains a corrupted image, then it must be

disconnected before C2000 Gang Programmer internal memory can be used.

NOTE: This figure shows the From Image Mem. mode (see the Mode section near the top left corner). The user

can load an image from C2000 Gang Programmer internal memory. Saved images contain all configuration

necessary for programming and all code files. An image can be created using the Interactive Mode and

saved to the programmer. One of 16 different images can be selected from internal memory, or one image

from each external SD-Card can be used.

Figure 2-5. Main C2000 Gang Programmer Dialog GUI, From Image Mode

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

Programming C2000 Flash Devices Using the C2000 Gang Programmer www.ti.com

18 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Operation

Figure 2-5 highlights several parts of the GUI. The dropdown menu in the Programmer's Internal Image
Memory group (top right) is used to select which image is used for programming, because up to 16
different images might be available. In the same group, the Config. from Image option is enabled, meaning
that all configurations options, such as which devices are enabled or power options are being taken from
the image.

Sometimes it is useful to use the basic files from an image, such as the MCU type and code files, but also
make a few minor modifications to test a different configuration.Figure 2-6 shows the additional
configuration options available when the Config. from Image button is disabled. These are highlighted in
red and include which devices are enabled for programming, target VCC, interface, communication, and
security. However, these changes cannot be committed to the image. If the user wishes to change the
current image's configuration or code files then the image needs to be recreated using the original project
file and procedure described inSection 2.1.6.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

www.ti.com Programming C2000 Flash Devices Using the C2000 Gang Programmer

19SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Operation

NOTE: This figure shows the From Image Mem. mode (top left corner). The Config. from Image option is disabled

in this example, allowing the user to change various but not all configuration settings from the image. The

configuration options that can be changed are highlighted in red. One of the options that cannot be changed,

for example, is the target processor type.

Figure 2-6. Main C2000 Gang Programmer Dialog GUI, From Image Mode and Custom Configuration
Enabled

2.1.3 Programming From Script

Use this option to create a script file to automate more complicated programming procedures. Scripts can
create functions that open message boxes, target devices, change code files, and any other sequences of
reconfigurations up to a total of 1000 commands. Repeated series of instructions can be encompassed
into functions for easier programming. The stack supports a call depth of up to 50 CALLs (CALL inside
CALL inside CALL, and so on), which is sufficient for most nonrecursive programs.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

Programming C2000 Flash Devices Using the C2000 Gang Programmer www.ti.com

20 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Operation

Figure 2-7 shows the main dialog GUI where the From Script option is selected for programming (top left
corner). A script file is selected using the Open Script File button and it specifies all configuration options,
and the code files to be used for programming. A script can be created using any text editor and saved in
a simple text file. Follow these guidelines to create a script.

NOTE: This figure shows the From Script mode (see the Mode section near the top left corner). A script file is

selected using the Open Script File button and it specifies all configuration options, and the code files to be

used for programming. In addition, the script can call individual functions, such as Program or Verify, in the

order specified by the programmer.

Figure 2-7. Main C2000 Gang Programmer Dialog GUI, From Script

2.1.3.1 Script Limitations

• Up to a total of 1000 command lines can be used. Empty lines and comments are ignored.

• The stack supports a call depth of up to 50 CALLs (CALL inside CALL inside CALL, and so on).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

www.ti.com Programming C2000 Flash Devices Using the C2000 Gang Programmer

21SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Operation

2.1.3.2 Command Syntax

• White spaces before instructions, labels, and comments are ignored.

• ; – Start of a comment. All characters in the same line after the start of a comment are ignored.

NOTE: A comment cannot be placed after a filename.

For example, when specifying a config file to be loaded, a path to a file must be given. This

filename cannot be followed by a comment.

• > – Start of a label. Place the label name after the character with no spaces in between.

NOTE: A line with a label cannot also contain a command or another label.

For example, this would be illegal:

>START VCCOFF

2.1.3.3 Instructions

MESSAGE – Message declaration. Contents must be placed between quotes below a message
declaration. Maximum of 50 content lines. Example:

MESSAGE
"Hello."
"This is my script."

GUIMSGBOX setting – Enable or disable pop-up message boxes in the GUI (warning and errors). Setting
can be either ENABLE or DISABLE.

IFGUIMSGBOXPRESS option – Apply the option when a message box created by GUI is generated.
Option can be OK or CANCEL.

MESSAGEBOX type – Create a pop-up message box with buttons. Contents must be placed between
quotes below message declaration. Maximum of 50 content lines. Message box types are:

• OK – One button: OK.

• OKCANCEL – Two buttons: OK and CANCEL

• YESNO – Two buttons: YES and NO

• YESNOCANCEL – Three buttons: YES, NO, and CANCEL

Example:

MESSAGE YESNOCANCEL
"You have three choices:"
"Press yes, no, or cancel."

GOTO label – Jump to instruction immediately following the label.

SLEEP number – Pause a number of milliseconds, between 1 and 100000.

F_FROMIMAGEMODE – Switch to Image mode.

CALL label – Call procedure starting at the instruction immediately following the label. Stack saves return
address.

RETURN – Return from CALL.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

Programming C2000 Flash Devices Using the C2000 Gang Programmer www.ti.com

22 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Operation

IF condition operation – Test condition and if true then perform operation. The condition can be one of
the following:

• BUTTONOK – OK button is pressed in the message box.

• BUTTONYES – YES button is pressed in the message box.

• BUTTONNO – NO button is pressed in the message box.

• BUTTONCANCEL – CANCEL button is pressed in the message box.

• DONE – Previous process (for example, GO or Read File) finished successfully.

• FAILED – Previous process (for example, GO or Read File) failed.

The operation can be one of the following:

• GOTO label

• CALL label SLEEP number – Pause a number of milliseconds, between 1 and 100000.

F_LOADCFGFILE filename – Load configuration file. Provide a full path and filename.

F_LOADCODEFILE filename – Load code file. Provide a full path and filename.

F_APPENDCODEFILE filename – Append code file. Provide a full path and file name.

F_VCCOFF – Turn VCC OFF from programming adapter to target device.

F_VCCON – Turn VCC ON from programming adapter to target device.

NOTE: VCC from FPA must be enabled first using configuration file.

F_RESET – Perform RESET function from main dialogue screen.

F_GO – Perform GO function from main dialogue screen.

F_ERASEFLASH – Perform ERASE FLASH function from main dialogue screen.

F_BLANKCHECK – Perform BLANK CHECK function from main dialogue screen.

F_WRITEFLASH – Perform WRITE FLASH function from main dialogue screen.

F_VERIFYFLASH – Perform VERIFY FLASH function from main dialogue screen.

F_SECURE– Perform Secure Device function from main dialogue screen.

NOTE: Blows fuse regardless of enable option.

If the F_SECURE command is used, then security is enabled even if the Write CSM enable

option is disabled.

F_SETIMAGENUMBER number – Choose image number between 1 and 16 from C2000 Gang
Programmer internal memory.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

www.ti.com Programming C2000 Flash Devices Using the C2000 Gang Programmer

23SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Operation

F_INTERACTIVEMODE – Switch to Interactive mode.

F_NEWRESULTFILENAME – Provide a full path and name of the result file.

F_APPENDRESULTFILENAME – Provide a full path and name of the file where the result should be
appended.

F_COMMENTTOFILE – Add a comment at the beginning of the result stream.

F_RESULTTOFILE – Save result to the result file specified by F_NEWRESULTFILENAME or
F_APPENDRESULTFILENAME. The following data is saved:

Finished task mask: HHHH (16 bits task mask)
Cumulative target mask: HH (8 bits target mask - 0x01-target-1,.. 0x80-target-8);
Requested target mask: HH (8 bits target mask - 0x01-target-1,.. 0x80-target-8);
Connected target mask: HH (8 bits target mask - 0x01-target-1,.. 0x80-target-8);

Erased target mask: HH (8 bits target mask - 0x01-target-1,.. 0x80-target-8);
Blank Check target mask: HH (8 bits target mask - 0x01-target-1,.. 0x80-target-8);
Programmed target mask: HH (8 bits target mask - 0x01-target-1,.. 0x80-target-8);
Verified target mask: HH (8 bits target mask - 0x01-target-1,.. 0x80-target-8);
Secured target mask: HH (8 bits target mask - 0x01-target-1,.. 0x80-target-8);
error_no: error number

VTIO in mV: VTio in mV
Vcc
Error target mask: HH (8 bits target mask - 0x01-target-1,.. 0x80-target-8);
Vcc Cumulative Err mask: HH (8 bits target mask - 0x01-target-1,.. 0x80-target-8);

JTAG Init target mask: HH (8 bits target mask - 0x01-target-1,.. 0x80-target-8);
Already Secured mask: HH (8 bits target mask - 0x01-target-1,.. 0x80-target-8);

Wrong MCU ID mask: HH (8 bits target mask - 0x01-target-1,.. 0x80-target-8);

TRACEOFF – Disable tracing.

TRACEON – Enable tracing and log to the Trace-Scr.txt file in the current working directory. This option is
useful for debugging. The trace file contains the sequence of all executed commands from the script file
annotated with line numbers. Line numbers are counted without empty lines and without lines containing
only comments.

END – End of script.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

Programming C2000 Flash Devices Using the C2000 Gang Programmer www.ti.com

24 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Operation

The following example script executes this sequence of commands:

1. Label START is created.

2. VCC from programmer to target device is turned OFF.

3. Message box notifies the user of VCC setting and asks for permission to proceed with buttons OK and
CANCEL. The program halts here until a button is pressed.

4. If CANCEL was pressed then GOTO finish label (ends the script).

5. If CANCEL was not pressed (in this case this implies that OK was pressed) then load configuration file
test-A.c2000cfg to the C2000 Gang Programmer. Configuration file test-A.c2000cfg should be
prepared before running this script using Interactive mode.

6. Message box asks the user to proceed. The program halts until OK is pressed.

7. The C2000 Gang Programmer programs the target device using the GO function.

8. Message box asks the user if the test succeeded giving a YES or NO choice.

9. If NO was pressed then GOTO START label (start of script).

10. If NO was not pressed (in this case this implies that YES was pressed) then load configuration file
finalcode.c2000cfg to the C2000 Gang Programmer.

11. The C2000 Gang Programmer programs the target device using the GO function. The new
configuration changes the code file.

12. Script jumps to the beginning using GOTO START. This can be used to wait for the next target device
to be connected.

13. Label finish is created.

14. Script ends.

;===
; Script file - demo program
;---
>START
VCCOFF
MESSAGEBOX OKCANCEL
"VCC if OFF now. Connect the test board."
"When ready press the button:"
" "
"OK - to test the board"
"CANCEL - to exit from program"

IF BUTTONCANCEL GOTO finish
F_LOADCFGFILE C:\Elprotronic\Project\Cpp-Net\C2000\test-A.c2000cfg
MESSAGEBOX OK
"Press OK to download the test program."

F_GO
MESSAGEBOX YESNO
"Press YES when the test finished successfully."
"Press NO when the test failed."

IF BUTTONNO GOTO START
F_LOADCFGFILE C:\Elprotronic\Project\Cpp-Net\C2000\finalcode.c2000cfg
F_GO
GOTO START

>finish
END
;===

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

www.ti.com Programming C2000 Flash Devices Using the C2000 Gang Programmer

25SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Operation

2.1.3.4 Commands Combined With the Executable File

Programming executable file can be opened with the following commands:

-prj project file with file name or full path and name.

-sf script file with file name or full path and name.-
prj project file with file name or full path and name.
For example:
C2000-GANG.exe -sf test.c2000gangsf
or
C2000-GANG.exe -prj test1.c2000gangproj
or
C2000-GANG.exe -prj test1.c2000gangproj -sf test.c2000gangsf

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

Programming C2000 Flash Devices Using the C2000 Gang Programmer www.ti.com

26 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Operation

2.1.4 Programming in Standalone Mode

The C2000 Gang Programmer supports a Standalone mode of programming target devices. In this mode
the C2000 Gang Programmer can only use images for programming because they contain a complete
configuration and code files necessary for the procedure. If the user has not already created an image
then follow the procedure outlined in Section 2.1.6. When viewed from the GUI, Figure 2-8 shows that all
GUI options are disabled and the C2000 Gang Programmer hardware buttons have to be used for
programming.

NOTE: This figure uses the Standalone mode (see the Mode section near the top-left corner). All GUI options are

disabled; the C2000 Gang Programmer can only be operated using physical controls on the programmer

itself. Standalone mode allows the user to program a target device using an image either from internal

memory (up to 16 different images), or an external SD-Card, without the use of a desktop or laptop computer.

Figure 2-8. Main C2000 Gang Programmer Dialog GUI, Standalone Mode

After images have been downloaded to the internal memory or after an SD card with a valid image is
connected to the C2000 Gang Programmer, proceed with programming in Standalone mode. In
Standalone mode, control the programmer using the arrows and buttons on the actual C2000 Gang
programmer, not the GUI on the PC. Use the arrow buttons (up and down) and the enter button to select a
desired image for programming. A description of the selected image is displayed on the bottom line, and it
is the same description that was created in the GUI when the Save Image button was pressed (see
Figure 2-9).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

www.ti.com Programming C2000 Flash Devices Using the C2000 Gang Programmer

27SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Operation

Figure 2-9. Image Option

After the desired image has been selected, press the GO button on the C2000 Gang Programmer
hardware to start programming. This button operates the same way as the GO button on the GUI.
Progress of the operation in Standalone mode is indicated by a flashing yellow LED and displayed on the
LCD display. The result status is represented by green and red LEDs on the C2000 Gang Programmer
and details are displayed on the LCD display. If a green LED is ON only, then all targets have been
programmed successfully. If only the red LED is displaying, that all results failed. If red and green LEDs
are on, then result details should be checked on top of the LCD display. The LCD display shows target
numbers 1 to 8 and marks to indicate failure or success: X for failure and V for success. When an error is
reported, the bottom line repeatedly displays an error number followed by a short description with time
intervals of approximately two seconds.

The selected image contains all necessary configuration options and code files required for programming;
however, the user can change the number of target devices being programmed using onboard buttons.
On the main display of the C2000 Gang Programmer (see Figure 2-10), use the up or down arrow buttons
to find the Target En/Dis option. Press the OK button to enter this menu. A sliding cursor appears below
the numbers representing each device at the top of the main display. Use the arrow buttons to underline
the device to enable or disable. Press OK to toggle the devices; press Esc to exit to the main menu. Press
GO to use the selected image to program the selected devices. If another image is selected or the current
image is selected again, the Enable and Disable options reset to what has been configured in the image.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

Programming C2000 Flash Devices Using the C2000 Gang Programmer www.ti.com

28 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Operation

Figure 2-10. Target Enable or Disable Option

In addition to the these options that control programming, the contrast of the LCD display can be changed.
Select the Contrast option in the main menu, and press OK. Then use the up and down arrow buttons to
adjust the screen contrast. Changes to contrast reset after power down, unless the contrast setting has
been set via the GUI on the host computer.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

www.ti.com Programming C2000 Flash Devices Using the C2000 Gang Programmer

29SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Operation

2.1.5 Memory Setup for GO, Erase, Program, Verify, and Read

The GO, Erase, Program, Verify, and Read operations shown in Figure 2-1 use addresses specified in the
Memory Options dialog screen shown in Figure 2-2. The memory setup used by these operations has five
main options:

1. Update only – When this option is selected, the GO operation does not erase memory contents.
Instead contents of code data taken from the code file are downloaded to flash memory. This option is
useful when a relatively small amount of data, such as calibration data, needs to be added to flash
memory. Other address ranges should not be included in the code file, meaning that the code file
should contain ONLY the data which is to be programmed to flash memory. For example, if the code
file contains data as shown in TI format:

@3F0000
25CA 8040 39E3 F802
@3F4000
4835 5972 ACB8
q

Then four words of data are written starting at location 0x3F0000 and three words of data starting at
location 0x3F4000. The specified addresses should be blank before writing (contain a value of 0xFF).
Before the writing operation is actually performed, the C2000 Gang Programmer automatically verifies
if this part of memory is blank and proceeds to program the device only if verification is successful.

2. OTP and Flash Memory – This is the most frequently used option during programming. All flash
memory is erased before programming, and all contents from the code file are downloaded to the
target microcontroller's flash memory. When the microcontroller contains an OTP (One-Time
Programmable) segment (for example TMS320F2801, address range 0x3D7800 to 0x3F7BFF), then
OTP is modified if data for it was provided in the code file. If the code file does not contain data
addressed to the OPT segment, then OTP memory is not modified. Once programmed, OTP memory
cannot be erased. Flash memory can be reprogrammed as long as the MCU is not locked.

3. Flash Memory only – Only Flash memory is programmed, OTP segments are not touched. Contents of
OTP memory from the code file are ignored.

4. OTP Memory only – Only OTP segments are programmed, Flash memory is not touched. Contents of
Flash memory from the code file are ignored.

5. Used by Code File – This option allows main memory segments and OTP memory segments to be
modified when specified by the code file. Other flash memory segments are not touched. This option is
useful if only some data, like calibration data, needs to be replaced.

6. User defined – This option is functionally similar to options described before, but memory segments
are explicitly chosen by the user. When this option is selected, then on the right side of the memory
group, the OTP Memory and Flash Memory dialog screens are enabled. The check boxes allow the
user to select OTP and flash memory segments to be enabled (erased (not OTP), programmed,
verified). Edit lines allow the user to specify the address range (start and stop addresses) for each type
of memory. The start address should specify the first word in the segment, and the stop address
should specify the last word in the segment (last word is programmed). Depending on the segment
size in the chosen MCU, for example 0x1000, the start address should be a multiple of 0x1000; for
example, 0x3F0000 or 0x3F1000. The stop address should specify the last word of the segment to be
written. Therefore, it should be greater than the start address and point to a word that immediately
precedes a memory segment boundary; for example, 0x3F0FFF or 0x3F1FFF.

2.1.6 Creating and Using Images

An image contains the code files and the configuration options necessary for programming of a target
device. Images can be stored as a binary file (".c2000gangbin") in internal C2000 Gang Programmer
memory (or SD card), or as an image file (".c2000gangimage") on disk for redistribution. Image files
intended for redistribution can be encrypted with additional security features described later in this section.

Creating an image is done in Interactive Mode by following the same steps described in Section 2.1.4
followed by pressing the "Save Image File As…" or "Save to Image" buttons. The first button saves the
code files and configuration options as a binary file and image file locally on disk, and the second button
saves this information directly to the C2000 Gang Programmer internal memory. Note that to use the
C2000 Gang Programmer in Standalone mode, you need to program at least one image to internal
memory or read a binary file from an SD card (via the SD card connector on the C2000 Gang

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

Programming C2000 Flash Devices Using the C2000 Gang Programmer www.ti.com

30 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Operation

Programmer). If you intend to modify the contents of an image at a later date, it is advisable to save the
configuration options as a project. Because an image is read-only, reading a project file is the only way to
recreate images easily without reentering the configuration options from scratch. After the project is
loaded, a change can be made and a new image with the same name can be created to overwrite the
previous one.

In total, 16 different images can be saved internally in the C2000 Gang Programmer or one image can be
saved on an SD card. Each image can be selected at any time to program the target devices. The C2000
Gang Programmer also allows the image to be saved in a file, either to be saved on an SD card or to be
sent to a customer. In order for the image file to be usable from the SD card, copy only the binary file
(".spgangbin") to the SD card and preserve the proper extension (Note that binary files are not encrypted).
For redistribution to a customer, the image file can be sent and encrypted with additional security features.

When a new image is saved to a file or to a C2000 Gang Programmer internal memory, an image
configuration screen appears (see Figure 2-11). Enter any name up to 16 characters. This name is
displayed in the GUI image selector (see Figure 2-1) on the bottom line of the C2000 Gang Programmer
LCD screen when the corresponding image is selected. Press OK when the name is entered.

After you have created a programming setup using the steps mentioned above, it is useful to store it in the
form of an image. The advantage of an image is that it contains both the configuration options necessary
for programming as well as the code files that are flashed to target devices. Moreover, only images can be
saved to internal C2000 Gang Programmer memory and used in Standalone mode, where the
programmer can operate without being connected to a PC.

Before the user proceeds to making images; however, it is advisable to save the C2000 Gang
Programmer setup as a project first. This is recommended because images cannot be modified after they
are created; they can only be overwritten. Therefore, if the user wants to change an image that has
already been created without recreating the whole configuration from scratch, then it is necessary to load
the corresponding project file. After the project is loaded, a change can be made, and a new image with
the same name can be created to overwrite the old one.

Images can be saved to the programmer's internal memory or on an external SD-Card. A total of 16
different images can be saved internally, or one image can be saved on an SD-Card. Each image can be
selected at any time to program the target devices. The C2000 Gang Programmer also allows the image
to be saved in a file, either to be saved on an SD-Card or to be sent to a customer. When the code file
and configuration are ready to be saved, press the Save Image button to save to C2000 Gang
Programmer internal memory, or the Save Image to file button to save to a file.

Whether the new image being created is saved to a file or to C2000 Gang Programmer internal memory,
an image configuration screen appears (see Figure 2-11). Enter any name up to 16 characters. This name
is displayed in the GUI image selector (see Figure 2-1), and it is displayed on the bottom line of the C2000
Gang Programmer LCD screen when the corresponding image is selected. Press OK after entering the
name.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

www.ti.com Programming C2000 Flash Devices Using the C2000 Gang Programmer

31SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Operation

NOTE: The image name is limited to 16 characters. This name is shown on the LCD display of the C2000 Gang

Programmer and Image pulldown menu in the GUI.

Figure 2-11. Image Name Configuration Screen

The screen shown in Figure 2-12 allows the user configure what type of security is used to protect the
image file. Three options are available; however, for all three options, the contents of the code file are
always encrypted and cannot be read.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

Programming C2000 Flash Devices Using the C2000 Gang Programmer www.ti.com

32 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Operation

NOTE: During project creation, the user can select to protect project information using various methods.

Figure 2-12. Image File Security Options

1. Any PC – Configuration can be opened on any computer using C2000 Gang Programmer software. It
can be used for programming only.

2. Any PC - Password protected – Configuration can be opened on any computer using the C2000
Gang Programmer software, but only after the desired password has been entered.

3. Selected PC - Hardware Fingerprint number – Image can be opened only on the dedicated
computer with the same hardware fingerprint number as the number entered in the edited line above.
Figure 2-13 shows a window with the hardware fingerprint number. An example usage scenario would
involve calling an intended user to provide the hardware fingerprint number of their computer and
entering it within this configuration window. This restricts opening this image to only the dedicated
computer running C2000 Gang Programmer software.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

www.ti.com Programming C2000 Flash Devices Using the C2000 Gang Programmer

33SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Operation

NOTE: The fingerprint can be used to secure the project where, for example, only a computer with a matching

hardware fingerprint can be used to view and edit the project.

Figure 2-13. Hardware Fingerprint of Computer in Use

The image file can be copied to internal C2000 Gang Programmer memory and used for programming
target devices. Select the desired image number in the GUI and press the Load Image from File button
(see Figure 2-1). This selected image is subsequently be used for programming target devices.

2.1.7 Programming >From Image File

An image file can be used to program target devices from a self-contained read-only file that has all the
necessary configuration options and code files already included. By selecting the "From Image File" Mode,
you can use an image file created using the steps described in Section 2.1.6. If the image is password
protected, you are prompted to enter the password before you can use the image. Alternatively, if the
image is restricted to be used on a specific PC, you are unable to use the image unless your PC matches
the hardware fingerprint (for instructions on how to use images from C2000 Gang Programmer internal
memory see Section 2.1.2).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

Programming C2000 Flash Devices Using the C2000 Gang Programmer www.ti.com

34 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Operation

Figure 2-14. Programming From Image File

Figure 2-15. Password for Image File

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

www.ti.com Programming C2000 Flash Devices Using the C2000 Gang Programmer

35SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Operation

2.1.8 Programming >From SD Card

The C2000 Gang Programmer can program target devices with an image loaded from an external SD
card. To program from an external SD card, copy a binary file (".c2000gangbin") created using steps
described in Section 2.1.6 to the root directory of the SD card (preserve the original extension
".c2000gangbin"). If multiple binary files are present in the root directory of the SD card, the first one found
is used (the first one found is not necessarily the first one alphabetically). To ensure that the desired
binary file is used, verify that only one binary file with the proper extension .c2000gangbin is present in the
root directory. The name of the selected file is displayed on the LCD screen of the C2000 Gang
Programmer.

When the SD card is connected to the C2000 Gang Programmer, internal memory is disabled, and an
image can only be read from the SD card. This mechanism has been deliberately implemented to aid in
production, because inserting an SD card to the C2000 Gang Programmer leaves the user with only one
option for programming a target device and, therefore, less possibility for misconfiguration errors.

2.1.9 File Extensions

C2000 Gang Programmer software accepts the following file extensions:

Code hex files

*.txt Texas Instruments

.s19,.s28,*.s37 Motorola

*.hex Intel

Image files

*.c2000gangbin binary file, used for saving data in SD card

*.c2000gangimag
e

image file, can be password protected for distribution

Script files

*.c2000gangsf script file

Project configuration files

*.c2000gangproj keep all configuration, file names and data for used project

2.1.10 Checksum Calculation

The checksum (CS) that is displayed on the side of the code file name is used for internal verification. The
CS is calculated as the 32-bit arithmetic sum of the 16-bit unsigned words in the code file, without
considering the flash memory size or location.

The following formula is used.

DWORD CS;
DWORD XL, XH;

CS = 0;
for(addr = 0; addr < ADDR_MAX; addr = addr + 2)
{
if((valid_code[addr]) || (valid_code[addr+1]))
{

if(valid_code[addr])
XL = (DWORD) code[addr];

else
XL = 0xFF;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

Data Viewers www.ti.com

36 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Operation

if(valid_code[addr+1])
XH = ((DWORD) code[addr+1])<<8;

else
XH = 0xFF00;

CS = CS + XH + XL;
}

}

As an example, refer to the code file below, which is in the TI hex file (*.txt format).

--
@3E8000
40F2

@3E8090
0228 9268 3BDB 8038 0005 FF58
q
--

The CS is calculated as shown below:

CS = 0x40F2 + 0x0228 + 0x9268 + 0x3BDB + 0x8038 + 0x0005 + 0xFF58 = 0x000290F2

2.2 Data Viewers

Data from code files and from flash memory can be viewed and compared in data viewers. Contents of
the selected file can be viewed by selecting the View→Code File Data option from the dropdown menu.
The Code data viewer, shown in Figure 2-16, displays the code address on the left side, data in hex
format in the central column, the same data in ASCII format in the right column. Data in hex format is
displayed from 0x0000 to 0xFFFF for addresses corresponding to the code file. Data from other
addresses is displayed as double dots (..). If code size exceeds flash memory size in the selected
microcontroller, this warning message is displayed first.

Data out of the Flash Memory Space of the selected C2000.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

www.ti.com Data Viewers

37SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Operation

NOTE: The selected option on the bottom ignores all words that have the value of 0xFFFF , which represents

empty words.

Figure 2-16. Code File Data

The contents of the code viewer can be converted to TI (*.txt) or Intel (*.hex) file format by clicking on the
TI hex or INTEL button.

Contents of flash memory data can be viewed by selecting the View→Flash Memory Data option from the
dropdown menu. To be able to see flash memory contents, the Read button must be used first (as
described in Section 2.1.1). The Flash Memory Data viewer displays the memory addresses, data in hex
and ASCII format in the same way as the Code data viewer shown in Figure 2-16.

Contents of the code file and flash memory can be compared and differences can be displayed in a the
viewer by selecting the View→Compare Code & Flash Data options from the dropdown menu. Only data
that are not the same in the code file and the flash memory are displayed. The first line displays code file
data, and the second line displays flash memory data as shown in Figure 2-17.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

Data Viewers www.ti.com

38 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Operation

The Compare location presented in the code file only option is chosen by default. This option allows the
user to view differences between Code file data and corresponding flash contents (compared by address).
Additional data in the flash like DCO calibration and personal data is not compared but can be displayed if
desired. If all the aforementioned data are identical, then a "No difference found" message is displayed on
the screen.

NOTE: Only words that differ are shown. The selected option on the bottom of the figure specifies that only

memory segments corresponding to the code file should be compared. The second option, if selected,

performs the comparison and shows any remaining contents of flash memory that do not correspond to the

code file.

Figure 2-17. Comparison of Code and Flash Memory Data of the Target Microcontroller

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

www.ti.com Status Messages

39SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Operation

2.3 Status Messages

The current status is always displayed at the bottom of the progress bar, as shown in Figure 2-1, and
previous status and error messages are shown in the history window in the bottom left corner. are
displayed in the report window.

All procedures in the C2000 Gang Programmer are divided into small tasks to be executed in series.
When first task is finished successfully, then the next task is started. Each task has its own consecutive
number assigned by the task manager when the image is created. The tasks are listed below:

• Open Target Device

• Close Target Device

• Erase

– Segment

– Main memory

– OTP memory

• Blank check

• Program

• Gang Program (program unique data to each target)

• Write RAM

• Write GANG RAM (write unique data to each target)

• Verify

• Read memory

• Secure device

• Unlock Target

• Download Firmware

• Start Firmware

• Start DSP Firmware

• Set PLL Frequency

• Get PLL Frequency Status

• Get Initialization Data

• Reset

• Toggle Vcc

• Display Results

• Read Retain Data

• Restore Retain Data

• Finish

For example, the operations Erase, Program, and Verify execute the following tasks:

• Open Target Device

• Erase

• Blank check

• Program

• Verify

• Close Target Device

• Finish

These tasks execute the easiest programming process in small MCU devices. The aforementioned tasks
can be divided into smaller tasks that only erase one segment, or erase one block of the main memory.
For that reason, many more tasks are displayed in the report window than are described above. For
example, when programming the C2000 F28035 the following information would be displayed in the report
window:

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

Status Messages www.ti.com

40 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Operation

Executing Main Process...
=== F28035 Test ===
.............
2 : init target
3 : unlock CSM
4 : Download FW
5 : Start API
6 : Set PLL freq.
7 : Get Init Data
8 : Get PLL status
9 : Erase-3E8000

10 : Erase-3EA000
11 : Erase-3EC000
12 : Erase-3EE000
13 : Erase-3F0000
14 : Erase-3F2000
15 : Erase-3F4000
16 : Erase-3F6000
17 : Blank-3E8000
18 : Blank-3EA000
19 : Blank-3EC000
20 : Blank-3EE000
21 : Blank-3F0000
22 : Blank-3F2000
23 : Blank-3F4000
24 : Blank-3F6000
25 : Write-3F4000
26 : Verify-3F4000
27 : closing target
28 : Done
29 : Finished

Done

This report indicates that the main memory block has been erased (tasks 9 to 16), blank checked (tasks
17 to 24), programmed (task 25), and verified (task 26). Finally, access to target devices is closed, and
the programming process is finished. Length of task description (including consecutive task number) is
limited to 16 characters to be able display this information on the third line of the C2000 Gang
Programmer LCD display.

The C2000 Gang Programmer can process up to 1000 tasks per one image saved in internal memory.
Having that number of available tasks and one or more code files saved in internal memory (total memory
footprint of up to 512 kbytes (256 kwords) in one image), the C2000 Gang Programmer gives the user
significant flexibility to perform custom programming procedures. If for any reason the code files and task
scripts require more than 512 kbytes of memory, then the next image memory can be combined with the
first one for one larger image block (1Mbyte or more). The C2000 Gang Programmer has internal flash
memory of 8Mbyte that can, if desired, all be used to form one image with a memory footprint of 8Mbytes.

Error messages are displayed similarly to status messages; however, programming is terminated if the
error is related to all target devices. Subsequently, if the problem is resolved or the faulty target device is
disabled, then the programming procedure can be restarted to complete the programming process. The
result for all devices is reported in the results section (green or red icons). When the global status is
reported as FAIL, see the result section for details. Similarly, the C2000 Gang Programmer uses red and
green LEDs to indicate the result of its operations (red indicates failure) and details are displayed on the
LCD display. Below is the list of errors reported in the C2000 Gang Programmer.

ERR_NONE, "Operation successful.",

// errors reported by GANGC2000 adapter

ERR_NO_FIRMWARE, "BOOT Firmware only is in the C2000-
GANG! The API Firmware should be downloaded.",
ERR_FW_NO_CRC, "API Firmware CRC is not present! The API Firmware should be
reloaded.",
ERR_FW_CRC_ERR, "API Firmware CRC error! The API Firmware should be reloaded.",
ERR_BOOT_CRC_ERR, "BOOT CRC error in the C2000-GANG!",

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

www.ti.com Status Messages

41SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Operation

ERR_ACCESS_KEY_CRC, "CRC Access key. Key corrupted. Access to programmer is blocked.",
ERR_INVALID_ACCESS_KEY, "Invalid programmer's access key. Access to programmer is blocked.",
ERR_UNKNOWN_INTERFACE, "Unknown interface",
ERR_VCC_TOO_LOW, "Vcc is too low ",
ERR_VCC_TOO_HIGH, "Vcc is too high ",
ERR_VTIO_TOO_LOW, "VtIO is too low ",
ERR_VTIO_TOO_HIGH, "VtIO is too high",
ERR_HEADER_PSA, "Header CRC ",
ERR_SCRIPT_PSA, "Script CRC ",
ERR_EXCEED_SCRIPT_NO, "Exceed script no",
ERR_UNKNOWN_SCRIPT_CMD, "Script command ?",
ERR_TARGET_DEV_INIT_ERR, "MCU device init.",
ERR_RAM_FW_DOWNLOAD, "RAM FW download ",
ERR_BLANK_CHECK, "Blank check err ",
ERR_RD_VERIFY, "Read verify err ",
ERR_FLASH_WRITE, "Flash write err ",
ERR_FLASH_WR_INIT, "Image FL WR init",
ERR_FLASH_BP_LOCKED, "Image Flash lock",
ERR_INVALID_SCRIPT_TYPE, "Invalid Script T",
ERR_SIZE_TOO_HIGH, "Size too high ",
ERR_TARGET_DEV_ID_ERR, "Used wrong MCU ",
ERR_TARGET_IR_INTERRUPTED, "IR Interrupted ",
ERR_WRONG_INFO_PAGE, "Page Info number out of range",
ERR_ADDR_TOO_HIGH, "Address too high",
ERR_INVALID_TARGET_NO, "Target number out of range",
ERR_GANG_FLASH_WRITE, "Gang Flash write error",
ERR_SD_READ_INVALID_RESPONSE, "SD Card - Read Response Error",
ERR_SD_BOUNDARY_ADDRESS, "SD Card - Boundary Address Error",
ERR_SD_INIT_TIMEOUT, "SD Card - Initialization timeout",
ERR_SD_READ_TIMEOUT, "SD Card - Read timeout",
ERR_SD_INIT, "SD Card - Initialization Error",
ERR_SD_CRC7, "SD Card - CRC7 Error",
ERR_SD_CRC16, "SD Card - CRC16 Error",
ERR_SD_WRITE_CRC, "SD Card - Write CRC Error",
ERR_SD_DATA_WRITE, "SD Card - Data Write Error",
ERR_SD_WRITE_TIMEOUT, "SD Card - Write Timeout",
ERR_SD_READ_MBR, "SD Card - MBR Sector Error",
ERR_SD_VOLUME, "SD Card - Volume Error",
ERR_ADDR_IN_FILE, "SD Card - Address in File Error",
ERR_READ_FILE, "SD Card - Read File Error",
ERR_FILE_NOT_FOUND, "SD Card - File not found",
ERR_VERIFY, "Verification Error",
ERR_INTERACTIVE_RX_DATA, "Rx data error ",
ERR_SECURE_KEY, "Secure Key Error",
ERR_SECURE_DEVICE, "Secure Device Er",
ERR_TARGET_NOT_OPEN, "Target not open ",
ERR_SIZE_ERROR, "Size err ",
ERR_CSM_UNLOCK, "CSM unlock error",
ERR_DSP_FW_OPCODE, "DSP firmware opcode error",
ERR_DSP_FW_TIMEOUT, "DSP firmware timeout",
ERR_DSP_FW_START, "DSP firmware start",
ERR_DSP_PLL_FREQ, "DSP CLK frequency error",
ERR_ERASE_TIMEOUT, "Flash Erase timeout",
TASK_IN_PROGRESS, "Info 0xB0: Task in progress",

//errors from GANGC2000 DLL

ERR_COMM, "Communication - Frame has errors !",
ERR_OPEN_COMM, "Unable to open COM port - already in use?",
ERR_CLOSE_COMM, "Unable to close COM port !",
ERR_SET_COMM_STATE, "Unable to modify COM port state !",
ERR_SYNC, "Synchronization failed. Programmer connected?",
ERR_RX_HDR_TIMEOUT, "Timeout during operation - Correct COM port selected?",
ERR_WRONG_BAUDRATE, "Wrong baud rate specified !",
ERR_COMM_BAUDRATE_CHANGE, "Communication Port baud rate change",
ERR_COMM_DIAGNOSTIC_RESPONSE, "Communication port - diagnostic response error",

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

Status Messages www.ti.com

42 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Operation

ERR_OPEN_COMM_INVALID_HANDLE, "Open Comm port - invalid handle value",
ERR_OPEN_SETUP_COMM, "Invalid Comm Port Setup",
ERR_OPEN_COMM_TIMEOUT, "Open Comm Port timeout",
ERR_GET_COMM_STATE, "Get Comm Port state error",
ERR_CMD_NOT_COMPLETED, "Command did not complete correctly !",
ERR_CMD_FAILED, "Command failed or not defined or Target not accessible !",
ERR_READ_INI, "Could not read 'default.c2000gangcfg'! ",
ERR_BAD_RECORD, "File contains invalid record !",
ERR_FILE_END, "Unexpected end of file !",
ERR_FILE_IO, "Error during file I/O !",
ERR_FILE_DETECT, "Selected file is of unrecognizable format !",
ERR_FILE_OPEN, "Unable to open file !",
ERR_ARGUMENT, "Function argument(s) out of range !",
NOTE_BOOT_DOWNLOADED, "Note: Boot downloaded",
ERR_BUSY_USED_POLLING, "WARNING: Temporary function blocked, due to used main polling",
ERR_IMAGE_CORRUPTED, "Image Memory corrupted or erased ! Load Image.",
ERR_TARGET_NOACCESS, "Target not accessible !",
ERR_VERIFY_FAILED, "Verification failed !",
ERR_NO_PARMS, "Main Process Parameters not yet set ! Load Image.",
ERR_IMAGE_ERASE, "Could not erase Image Buffer !",
ERR_IMAGE_LOAD, "Could not load Image Buffer !",
ERR_PARMS_LOAD, "Could not load Main Process Parameters !",
ERR_SEL_BAUDRATE, "Could not select Baud Rate !",
ERR_SET_VCC, "WARNING: Could not set target voltage -
Short circuitry or settling time too small?",

ERR_WRONG_CMD, "Invalid firmware command !",
ERR_POWER_SUPPLY, "Power supply voltage too low !",
ERR_EXT_VCC_IN, "WARNING: Sense voltage out of range -
Check pin C2000_VCC_IN of target connector !",

ERR_WRONG_DEVICE, "Wrong target device connected ! ",
ERR_NO_DEVICE, "No target device connected",
ERR_IMAGE_OVERWRITTEN, "File(s) contains already specified data (code overwritten)",
ERR_IMAGE_NO, "Selected Image number out of range",
ERR_CFG_FILE_OPEN_ERR, "Could not open the configuration file.",
ERR_SCRIPT_HEADER_SIZE_ERR, "Script Header size error",
ERR_IMAGE_ID, "Image ID error. Image ignored, program terminated.",
ERR_IMAGE_CONTENTS, "Image contents (size, no of tasks) error. Program terminated.",
ERR_IMAGE_VERIFICATION, "Image CRC error. Program terminated.",
ERR_CODE_OVERWRITTEN, "WARNING: Code overwritten. Code from the file written to already
used location.",
ERR_CODE_FILE_CONTENTS, "Code in the file contains invalid data.",
ERR_OPEN_FILE, "Open File error",
ERR_FILE_NAME, "Extension or file name error",
ERR_IMAGE_FILE_PASSWORD, "Wrong password for opening the image file",
ERR_IMAGE_FILE_PCHW, "Wrong PC hardware fingerprint # for opening the image file",
ERR_IMAGE_FILE_ID, "Image file ID error or file corrupted",
ERR_IMAGE_FILE_CS, "Check Sum of the Image file error or file corrupted",
ERR_IMAGE_FILE_HEADER, "Wrong header in the image file or file corrupted",
ERR_IMAGE_FILE_NOT_C2000GANG,"Image file is not for the C2000-GANG programmer.",
ERR_IMAGE_FILE_CONTENTS, "Image file contents error or file corrupted.",
ERR_IMAGE_FILE_MODE, "Unknown protection mode of the image file or file corrupted.",
ERR_IMAGE_FILE_OFFSET, "Data offset in the image file error or file corrupted.",
ERR_IMAGE_FILE_HEX, "Hex data conversion in the image file error or file corrupted.",
ERR_IMAGE_FILE_CORRUPTED, "Image file corrupted.",
ERR_IMAGE_FILE_UNLOCK, "Image file cannot be unlocked",
ERR_CUSTOMIZED_MCU_LICENSE_FILE_OPEN, "Customized MCUs license file open error",
ERR_BSL_CODE_WITHIN_BSL_DISABLED, "WARNING: Code specified for the BSL space location, but
access to the BSL is locked.",
ERR_INFO_PAGE_OUT_OF_RANGE, "Info memory page number is out of range.",
ERR_COM_PORT_SCAN_SIZE, "COM ports scan number is too low.",
ERR_SELFTEST_SIZE, "Selftest data size too high.",
ERR_DATA_SIZE_TOO_HIGH, "Data size too high.",
ERR_GANG_MASK_ZERO, "Gang mask ZERO. Nothing to do.",
ERR_ADDRESS_DEFINITION, "Address definition.",
ERR_DATA_SIZE_ZERO, "Data size is below 2.",
ERR_DCO_NO_OUT_OF_RANGE, "Invalid DCO number.",

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

www.ti.com Self Test

43SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Operation

ERR_CODE_NOT_IMPLEMENTED, "Command not implemented.",
ERR_TARGET_NO, "Wrong Target number",
ERR_CODE_FILE_ERR, "Code File error.",
ERR_PASSWORD_FILE_ERR, "Password File error.",
ERR_NOTHING_TO_PROGRAM, "Nothing to program/verify - empty code in selected memory space.",
ERR_CODE_OUT_OF_RANGE, "Code out of range of the selected MCU.",
ERR_INVALID_NAME_INDEX, "Invalid Name Index.",
ERR_IGNORED_PART_OF_THE_CODE, "Ignored part of the code.",
ERR_SCRIPT_SIZE_TOO_HIGH, "Script size too high !",
ERR_BOOT_FW_NOT_VALID, "Boot Firmware not valid",
ERR_DSP_FW_VERIFICATION_ERR,"MCU Firmware verification error.",
ERR_DSP_FW_ERROR, "MCU Firmware definition error.",
ERR_CSM_INDEX_TOO_HIGH, "CSM Index Error",
ERR_RETAIN_SIZE_ERROR, "Retain size error",
ERR_RETAIN_ADDR_ERROR, "Retain address error",
ERR_RETAIN_DATA_AND_CODE_OVERWRITTEN, "Retain data and code overwritten",
ERR_INVALID_NUMBER, "Invalid error number !",

2.4 Self Test

The C2000 Gang Programmer Self Test program allows to test most of the hardware for correctness.
Connect the programmer to a computer running C2000 Gang Programmer software. The Gang Splitter
must be connected to the C2000 Gang Programmer. Disconnect all target devices, because any
connected devices can modify the test results and make them invalid.

Activate the Self Test by choosing the Tools→Self Test option from the dropdown menu. Press the Start
Self Test button, as shown in Figure 2-18, to begin. If the Self Test reports any problems, then it is
advisable to send the test report to TI technical support for assistance.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

Self Test www.ti.com

44 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Operation

NOTE: Use the C2000 Gang Programmer selftest capability to check the integrity of the hardware. Before

beginning the test, make sure that no target MCUs are connected to the C2000 Gang Programmer.

Figure 2-18. Self Test

The following is a typical self test report:

=== C2000-GANG Self test results (Saturday, January 18, 2014, 19:08:19) ===

Adapter SN ------: 13010001
Hardware --------: G430: 01.02
Access key ------: C2000 - Gang Programmer
Silicon Number --: F701 8846 3100 1300
API Firmware ----: C2000-G AC28: 01.00.00.03
BOOT Firmware ---: G430BOOT B430: 01.00.02.00
GUI Software ----: C2000-GANG-GUI G28x: 01.00.00.02
DLL Software ----: C2000-GANG-DLL D280: 01.00.00.02

================ Test results =============

No. name parameter limits result status

1: Data Bus (ALL LOW) 0x0000 (0x0000 - 0x0000) Result: 0x00 ... >> OK <<

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

www.ti.com Self Test

45SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Operation

2: Data Bus (ALL HIGH) 0x00FF (0xFFFF - 0xFFFF) Result: 0xFFFF ... >> OK <<
3: Data Bus (D-0 HI) 0x0001 (0x0101 - 0x0101) Result: 0x0101 ... >> OK <<
4: Data Bus (D-1 HI) 0x0002 (0x0202 - 0x0202) Result: 0x0202 ... >> OK <<
5: Data Bus (D-2 HI) 0x0004 (0x0404 - 0x0404) Result: 0x0404 ... >> OK <<
6: Data Bus (D-3 HI) 0x0008 (0x0808 - 0x0808) Result: 0x0808 ... >> OK <<
7: Data Bus (D-4 HI) 0x0010 (0x1010 - 0x1010) Result: 0x1010 ... >> OK <<
8: Data Bus (D-5 HI) 0x0020 (0x2020 - 0x2020) Result: 0x2020 ... >> OK <<
9: Data Bus (D-6 HI) 0x0040 (0x4040 - 0x4040) Result: 0x4040 ... >> OK <<

10: Data Bus (D-7 HI) 0x0080 (0x8080 - 0x8080) Result: 0x8080 ... >> OK <<

11: Data-2 Bus (ALL LOW) 0x0000 (0x0000 - 0x0000) Result: 0x00 ... >> OK <<
12: Data-2 Bus (ALL HIGH) 0x00FF (0xFFFF - 0xFFFF) Result: 0xFFFF ... >> OK <<
13: Data-2 Bus (D2-0 HI) 0x0001 (0x0101 - 0x0101) Result: 0x0101 ... >> OK <<
14: Data-2 Bus (D2-1 HI) 0x0002 (0x0202 - 0x0202) Result: 0x0202 ... >> OK <<
15: Data-2 Bus (D2-2 HI) 0x0004 (0x0404 - 0x0404) Result: 0x0404 ... >> OK <<
16: Data-2 Bus (D2-3 HI) 0x0008 (0x0808 - 0x0808) Result: 0x0808 ... >> OK <<
17: Data-2 Bus (D2-4 HI) 0x0010 (0x1010 - 0x1010) Result: 0x1010 ... >> OK <<
18: Data-2 Bus (D2-5 HI) 0x0020 (0x2020 - 0x2020) Result: 0x2020 ... >> OK <<
19: Data-2 Bus (D2-6 HI) 0x0040 (0x4040 - 0x4040) Result: 0x4040 ... >> OK <<
20: Data-2 Bus (D2-7 HI) 0x0080 (0x8080 - 0x8080) Result: 0x8080 ... >> OK <<

21: Vcc Target-1 (ALL OFF) 0.00 V (0.00 to 0.30) Result: 0.17 V ... >> OK <<
22: Vcc Target-2 (ALL OFF) 0.00 V (0.00 to 0.30) Result: 0.15 V ... >> OK <<
23: Vcc Target-3 (ALL OFF) 0.00 V (0.00 to 0.30) Result: 0.16 V ... >> OK <<
24: Vcc Target-4 (ALL OFF) 0.00 V (0.00 to 0.30) Result: 0.16 V ... >> OK <<
25: Vcc Target-5 (ALL OFF) 0.00 V (0.00 to 0.30) Result: 0.16 V ... >> OK <<
26: Vcc Target-6 (ALL OFF) 0.00 V (0.00 to 0.30) Result: 0.16 V ... >> OK <<
27: Vcc Target-7 (ALL OFF) 0.00 V (0.00 to 0.30) Result: 0.16 V ... >> OK <<
28: Vcc Target-8 (ALL OFF) 0.00 V (0.00 to 0.30) Result: 0.16 V ... >> OK <<

29: Translators VT (OFF) 0.00 V (0.00 to 0.50) Result: 0.21 V ... >> OK <<
30: Translators VT (ON 3.3V) 3.30 V (3.10 to 3.50) Result: 3.30 V ... >> OK <<

31: Vpp Voltage-in 10.00 V (8.00 to 12.00) Result: 10.59 V ... >> OK <<
32: Vpp Voltage 7.00 V (6.50 to 7.30) Result: 6.90 V ... >> OK <<
33: Internal Vcc-3.3V 3.30 V (3.20 to 3.40) Result: 3.30 V ... >> OK <<

34: Vcc Target-1 (ALL ON 3.3V) 3.30 V (3.10 to 3.50) Result: 3.34 V ... >> OK <<
35: Vcc Target-2 (ALL ON 3.3V) 3.30 V (3.10 to 3.50) Result: 3.31 V ... >> OK <<
36: Vcc Target-3 (ALL ON 3.3V) 3.30 V (3.10 to 3.50) Result: 3.33 V ... >> OK <<
37: Vcc Target-4 (ALL ON 3.3V) 3.30 V (3.10 to 3.50) Result: 3.31 V ... >> OK <<
38: Vcc Target-5 (ALL ON 3.3V) 3.30 V (3.10 to 3.50) Result: 3.34 V ... >> OK <<
39: Vcc Target-6 (ALL ON 3.3V) 3.30 V (3.10 to 3.50) Result: 3.34 V ... >> OK <<
40: Vcc Target-7 (ALL ON 3.3V) 3.30 V (3.10 to 3.50) Result: 3.34 V ... >> OK <<
41: Vcc Target-8 (ALL ON 3.3V) 3.30 V (3.10 to 3.50) Result: 3.31 V ... >> OK <<

42: Vcc discharge (50ms)Target-1 3.30 V (0.30 to 1.50) Result: 1.01 V ... >> OK <<
43: Vcc discharge (50ms)Target-2 3.30 V (0.30 to 1.50) Result: 0.54 V ... >> OK <<
44: Vcc discharge (50ms)Target-3 3.30 V (0.30 to 1.50) Result: 0.56 V ... >> OK <<
45: Vcc discharge (50ms)Target-4 3.30 V (0.30 to 1.50) Result: 0.57 V ... >> OK <<
46: Vcc discharge (50ms)Target-5 3.30 V (0.30 to 1.50) Result: 0.56 V ... >> OK <<
47: Vcc discharge (50ms)Target-6 3.30 V (0.30 to 1.50) Result: 0.55 V ... >> OK <<
48: Vcc discharge (50ms)Target-7 3.30 V (0.30 to 1.50) Result: 0.55 V ... >> OK <<
49: Vcc discharge (50ms)Target-8 3.30 V (0.30 to 1.50) Result: 0.54 V ... >> OK <<

50: Vcc Target-1 (#1 ON) 0.00 V (3.10 to 3.50) Result: 3.34 V ... >> OK <<
51: Vcc Target-2 (#1 ON) 0.00 V (0.00 to 0.50) Result: 0.16 V ... >> OK <<
52: Vcc Target-3 (#1 ON) 0.00 V (0.00 to 0.50) Result: 0.16 V ... >> OK <<
53: Vcc Target-4 (#1 ON) 0.00 V (0.00 to 0.50) Result: 0.16 V ... >> OK <<
54: Vcc Target-5 (#1 ON) 0.00 V (0.00 to 0.50) Result: 0.16 V ... >> OK <<
55: Vcc Target-6 (#1 ON) 0.00 V (0.00 to 0.50) Result: 0.16 V ... >> OK <<
56: Vcc Target-7 (#1 ON) 0.00 V (0.00 to 0.50) Result: 0.16 V ... >> OK <<
57: Vcc Target-8 (#1 ON) 3.30 V (0.00 to 0.50) Result: 0.16 V ... >> OK <<
58: Vcc Target-1 (#2 ON) 0.00 V (0.00 to 0.50) Result: 0.17 V ... >> OK <<
59: Vcc Target-2 (#2 ON) 0.00 V (3.10 to 3.50) Result: 3.31 V ... >> OK <<
60: Vcc Target-3 (#2 ON) 0.00 V (0.00 to 0.50) Result: 0.17 V ... >> OK <<

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

Self Test www.ti.com

46 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Operation

61: Vcc Target-4 (#2 ON) 0.00 V (0.00 to 0.50) Result: 0.16 V ... >> OK <<
62: Vcc Target-5 (#2 ON) 0.00 V (0.00 to 0.50) Result: 0.16 V ... >> OK <<
63: Vcc Target-6 (#2 ON) 0.00 V (0.00 to 0.50) Result: 0.16 V ... >> OK <<
64: Vcc Target-7 (#2 ON) 0.00 V (0.00 to 0.50) Result: 0.16 V ... >> OK <<
65: Vcc Target-8 (#2 ON) 3.30 V (0.00 to 0.50) Result: 0.16 V ... >> OK <<
66: Vcc Target-1 (#3 ON) 0.00 V (0.00 to 0.50) Result: 0.17 V ... >> OK <<
67: Vcc Target-2 (#3 ON) 0.00 V (0.00 to 0.50) Result: 0.15 V ... >> OK <<
68: Vcc Target-3 (#3 ON) 0.00 V (3.10 to 3.50) Result: 3.32 V ... >> OK <<
69: Vcc Target-4 (#3 ON) 0.00 V (0.00 to 0.50) Result: 0.16 V ... >> OK <<
70: Vcc Target-5 (#3 ON) 0.00 V (0.00 to 0.50) Result: 0.16 V ... >> OK <<
71: Vcc Target-6 (#3 ON) 0.00 V (0.00 to 0.50) Result: 0.16 V ... >> OK <<
72: Vcc Target-7 (#3 ON) 0.00 V (0.00 to 0.50) Result: 0.16 V ... >> OK <<
73: Vcc Target-8 (#3 ON) 3.30 V (0.00 to 0.50) Result: 0.16 V ... >> OK <<
74: Vcc Target-1 (#4 ON) 0.00 V (0.00 to 0.50) Result: 0.17 V ... >> OK <<
75: Vcc Target-2 (#4 ON) 0.00 V (0.00 to 0.50) Result: 0.15 V ... >> OK <<
76: Vcc Target-3 (#4 ON) 0.00 V (0.00 to 0.50) Result: 0.16 V ... >> OK <<
77: Vcc Target-4 (#4 ON) 0.00 V (3.10 to 3.50) Result: 3.31 V ... >> OK <<
78: Vcc Target-5 (#4 ON) 0.00 V (0.00 to 0.50) Result: 0.17 V ... >> OK <<
79: Vcc Target-6 (#4 ON) 0.00 V (0.00 to 0.50) Result: 0.16 V ... >> OK <<
80: Vcc Target-7 (#4 ON) 0.00 V (0.00 to 0.50) Result: 0.16 V ... >> OK <<
81: Vcc Target-8 (#4 ON) 3.30 V (0.00 to 0.50) Result: 0.16 V ... >> OK <<
82: Vcc Target-1 (#5 ON) 0.00 V (0.00 to 0.50) Result: 0.17 V ... >> OK <<
83: Vcc Target-2 (#5 ON) 0.00 V (0.00 to 0.50) Result: 0.15 V ... >> OK <<
84: Vcc Target-3 (#5 ON) 0.00 V (0.00 to 0.50) Result: 0.16 V ... >> OK <<
85: Vcc Target-4 (#5 ON) 0.00 V (0.00 to 0.50) Result: 0.16 V ... >> OK <<
86: Vcc Target-5 (#5 ON) 0.00 V (3.10 to 3.50) Result: 3.33 V ... >> OK <<
87: Vcc Target-6 (#5 ON) 0.00 V (0.00 to 0.50) Result: 0.17 V ... >> OK <<
88: Vcc Target-7 (#5 ON) 0.00 V (0.00 to 0.50) Result: 0.16 V ... >> OK <<
89: Vcc Target-8 (#5 ON) 3.30 V (0.00 to 0.50) Result: 0.16 V ... >> OK <<
90: Vcc Target-1 (#6 ON) 0.00 V (0.00 to 0.50) Result: 0.16 V ... >> OK <<
91: Vcc Target-2 (#6 ON) 0.00 V (0.00 to 0.50) Result: 0.15 V ... >> OK <<
92: Vcc Target-3 (#6 ON) 0.00 V (0.00 to 0.50) Result: 0.16 V ... >> OK <<
93: Vcc Target-4 (#6 ON) 0.00 V (0.00 to 0.50) Result: 0.16 V ... >> OK <<
94: Vcc Target-5 (#6 ON) 0.00 V (0.00 to 0.50) Result: 0.16 V ... >> OK <<
95: Vcc Target-6 (#6 ON) 0.00 V (3.10 to 3.50) Result: 3.34 V ... >> OK <<
96: Vcc Target-7 (#6 ON) 0.00 V (0.00 to 0.50) Result: 0.16 V ... >> OK <<
97: Vcc Target-8 (#6 ON) 3.30 V (0.00 to 0.50) Result: 0.16 V ... >> OK <<
98: Vcc Target-1 (#7 ON) 0.00 V (0.00 to 0.50) Result: 0.17 V ... >> OK <<
99: Vcc Target-2 (#7 ON) 0.00 V (0.00 to 0.50) Result: 0.15 V ... >> OK <<

100: Vcc Target-3 (#7 ON) 0.00 V (0.00 to 0.50) Result: 0.16 V ... >> OK <<
101: Vcc Target-4 (#7 ON) 0.00 V (0.00 to 0.50) Result: 0.16 V ... >> OK <<
102: Vcc Target-5 (#7 ON) 0.00 V (0.00 to 0.50) Result: 0.16 V ... >> OK <<
103: Vcc Target-6 (#7 ON) 0.00 V (0.00 to 0.50) Result: 0.16 V ... >> OK <<
104: Vcc Target-7 (#7 ON) 0.00 V (3.10 to 3.50) Result: 3.34 V ... >> OK <<
105: Vcc Target-8 (#7 ON) 3.30 V (0.00 to 0.50) Result: 0.16 V ... >> OK <<
106: Vcc Target-1 (#8 ON) 0.00 V (0.00 to 0.50) Result: 0.17 V ... >> OK <<
107: Vcc Target-2 (#8 ON) 0.00 V (0.00 to 0.50) Result: 0.15 V ... >> OK <<
108: Vcc Target-3 (#8 ON) 0.00 V (0.00 to 0.50) Result: 0.16 V ... >> OK <<
109: Vcc Target-4 (#8 ON) 0.00 V (0.00 to 0.50) Result: 0.16 V ... >> OK <<
110: Vcc Target-5 (#8 ON) 0.00 V (0.00 to 0.50) Result: 0.16 V ... >> OK <<
111: Vcc Target-6 (#8 ON) 0.00 V (0.00 to 0.50) Result: 0.16 V ... >> OK <<
112: Vcc Target-7 (#8 ON) 0.00 V (0.00 to 0.50) Result: 0.16 V ... >> OK <<
113: Vcc Target-8 (#8 ON) 3.30 V (3.10 to 3.50) Result: 3.31 V ... >> OK <<

114: SD Power OFF 0x0000 (0x0000 - 0x0000) Result: 0x00 ... >> OK <<
115: SD Power ON 0x0001 (0x0001 - 0x0001) Result: 0x01 ... >> OK <<
116: SD Discharge - delay 2ms 0x0010 (0x0001 - 0x0001) Result: 0x01 ... >> OK <<
117: SD Discharge - delay 50ms 0x0010 (0x0000 - 0x0000) Result: 0x00 ... >> OK <<

118: BSL RX bus (#1 HIGH) 0x0001 (0x0001 - 0x0001) Result: 0x01 ... >> OK <<
119: BSL RX bus (#2 HIGH) 0x0002 (0x0002 - 0x0002) Result: 0x02 ... >> OK <<
120: BSL RX bus (#3 HIGH) 0x0004 (0x0004 - 0x0004) Result: 0x04 ... >> OK <<
121: BSL RX bus (#4 HIGH) 0x0008 (0x0008 - 0x0008) Result: 0x08 ... >> OK <<
122: BSL RX bus (#5 HIGH) 0x0010 (0x0010 - 0x0010) Result: 0x10 ... >> OK <<
123: BSL RX bus (#6 HIGH) 0x0020 (0x0020 - 0x0020) Result: 0x20 ... >> OK <<
124: BSL RX bus (#7 HIGH) 0x0040 (0x0040 - 0x0040) Result: 0x40 ... >> OK <<

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

www.ti.com Self Test

47SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Operation

125: BSL RX bus (#8 HIGH) 0x0080 (0x0080 - 0x0080) Result: 0x80 ... >> OK <<

126: BSL TX bus (#1 HIGH) 0x0001 (0x0001 - 0x0001) Result: 0x01 ... >> OK <<
127: BSL TX bus (#2 HIGH) 0x0002 (0x0002 - 0x0002) Result: 0x02 ... >> OK <<
128: BSL TX bus (#3 HIGH) 0x0004 (0x0004 - 0x0004) Result: 0x04 ... >> OK <<
129: BSL TX bus (#4 HIGH) 0x0008 (0x0008 - 0x0008) Result: 0x08 ... >> OK <<
130: BSL TX bus (#5 HIGH) 0x0010 (0x0010 - 0x0010) Result: 0x10 ... >> OK <<
131: BSL TX bus (#6 HIGH) 0x0020 (0x0020 - 0x0020) Result: 0x20 ... >> OK <<
132: BSL TX bus (#7 HIGH) 0x0040 (0x0040 - 0x0040) Result: 0x40 ... >> OK <<
133: BSL TX bus (#8 HIGH) 0x0080 (0x0080 - 0x0080) Result: 0x80 ... >> OK <<

134: TDI bus (#1 HIGH) 0x0001 (0x0001 - 0x0001) Result: 0x01 ... >> OK <<
135: TDI bus (#2 HIGH) 0x0002 (0x0002 - 0x0002) Result: 0x02 ... >> OK <<
136: TDI bus (#3 HIGH) 0x0004 (0x0004 - 0x0004) Result: 0x04 ... >> OK <<
137: TDI bus (#4 HIGH) 0x0008 (0x0008 - 0x0008) Result: 0x08 ... >> OK <<
138: TDI bus (#5 HIGH) 0x0010 (0x0010 - 0x0010) Result: 0x10 ... >> OK <<
139: TDI bus (#6 HIGH) 0x0020 (0x0020 - 0x0020) Result: 0x20 ... >> OK <<
140: TDI bus (#7 HIGH) 0x0040 (0x0040 - 0x0040) Result: 0x40 ... >> OK <<
141: TDI bus (#8 HIGH) 0x0080 (0x0080 - 0x0080) Result: 0x80 ... >> OK <<

142: TDIO Tx-bus (#1 HIGH) 0x0001 (0x0001 - 0x0001) Result: 0x01 ... >> OK <<
143: TDIO Tx-bus (#2 HIGH) 0x0002 (0x0002 - 0x0002) Result: 0x02 ... >> OK <<
144: TDIO Tx-bus (#3 HIGH) 0x0004 (0x0004 - 0x0004) Result: 0x04 ... >> OK <<
145: TDIO Tx-bus (#4 HIGH) 0x0008 (0x0008 - 0x0008) Result: 0x08 ... >> OK <<
146: TDIO Tx-bus (#5 HIGH) 0x0010 (0x0010 - 0x0010) Result: 0x10 ... >> OK <<
147: TDIO Tx-bus (#6 HIGH) 0x0020 (0x0020 - 0x0020) Result: 0x20 ... >> OK <<
148: TDIO Tx-bus (#7 HIGH) 0x0040 (0x0040 - 0x0040) Result: 0x40 ... >> OK <<
149: TDIO Tx-bus (#8 HIGH) 0x0080 (0x0080 - 0x0080) Result: 0x80 ... >> OK <<

150: TDIO Tx-Rx (#1 HIGH) 0x0001 (0x0001 - 0x0001) Result: 0x01 ... >> OK <<
151: TDIO Tx-Rx (#2 HIGH) 0x0002 (0x0002 - 0x0002) Result: 0x02 ... >> OK <<
152: TDIO Tx-Rx (#3 HIGH) 0x0004 (0x0004 - 0x0004) Result: 0x04 ... >> OK <<
153: TDIO Tx-Rx (#4 HIGH) 0x0008 (0x0008 - 0x0008) Result: 0x08 ... >> OK <<
154: TDIO Tx-Rx (#5 HIGH) 0x0010 (0x0010 - 0x0010) Result: 0x10 ... >> OK <<
155: TDIO Tx-Rx (#6 HIGH) 0x0020 (0x0020 - 0x0020) Result: 0x20 ... >> OK <<
156: TDIO Tx-Rx (#7 HIGH) 0x0040 (0x0040 - 0x0040) Result: 0x40 ... >> OK <<
157: TDIO Tx-Rx (#8 HIGH) 0x0080 (0x0080 - 0x0080) Result: 0x80 ... >> OK <<

158: TDIO Rx-bus (#1 HIGH) 0x0001 (0x0001 - 0x0001) Result: 0x01 ... >> OK <<
159: TDIO Rx-bus (#2 HIGH) 0x0002 (0x0002 - 0x0002) Result: 0x02 ... >> OK <<
160: TDIO Rx-bus (#3 HIGH) 0x0004 (0x0004 - 0x0004) Result: 0x04 ... >> OK <<
161: TDIO Rx-bus (#4 HIGH) 0x0008 (0x0008 - 0x0008) Result: 0x08 ... >> OK <<
162: TDIO Rx-bus (#5 HIGH) 0x0010 (0x0010 - 0x0010) Result: 0x10 ... >> OK <<
163: TDIO Rx-bus (#6 HIGH) 0x0020 (0x0020 - 0x0020) Result: 0x20 ... >> OK <<
164: TDIO Rx-bus (#7 HIGH) 0x0040 (0x0040 - 0x0040) Result: 0x40 ... >> OK <<
165: TDIO Rx-bus (#84 HIGH) 0x0080 (0x0080 - 0x0080) Result: 0x80 ... >> OK <<

166: TMS bus (All HIGH) 0x00FF (0x00FF - 0x00FF) Result: 0xFF ... >> OK <<
167: TMS bus (All LOW) 0x0000 (0x0000 - 0x0000) Result: 0x00 ... >> OK <<

168: TMS bus (#1 HIGH) 0x0001 (0x0001 - 0x0001) Result: 0x01 ... >> OK <<
169: TMS bus (#2 HIGH) 0x0002 (0x0002 - 0x0002) Result: 0x02 ... >> OK <<
170: TMS bus (#3 HIGH) 0x0004 (0x0004 - 0x0004) Result: 0x04 ... >> OK <<
171: TMS bus (#4 HIGH) 0x0008 (0x0008 - 0x0008) Result: 0x08 ... >> OK <<
172: TMS bus (#5 HIGH) 0x0010 (0x0010 - 0x0010) Result: 0x10 ... >> OK <<
173: TMS bus (#6 HIGH) 0x0020 (0x0020 - 0x0020) Result: 0x20 ... >> OK <<
174: TMS bus (#7 HIGH) 0x0040 (0x0040 - 0x0040) Result: 0x40 ... >> OK <<
175: TMS bus (#8 HIGH) 0x0080 (0x0080 - 0x0080) Result: 0x80 ... >> OK <<

176: RST bus (All HIGH) 0x00FF (0x00FF - 0x00FF) Result: 0xFF ... >> OK <<
177: RST bus (All LOW) 0x0000 (0x0000 - 0x0000) Result: 0x00 ... >> OK <<

178: RST bus (#1 HIGH) 0x0001 (0x0001 - 0x0001) Result: 0x01 ... >> OK <<
179: RST bus (#2 HIGH) 0x0002 (0x0002 - 0x0002) Result: 0x02 ... >> OK <<
180: RST bus (#3 HIGH) 0x0004 (0x0004 - 0x0004) Result: 0x04 ... >> OK <<
181: RST bus (#4 HIGH) 0x0008 (0x0008 - 0x0008) Result: 0x08 ... >> OK <<

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

Self Test www.ti.com

48 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Operation

182: RST bus (#5 HIGH) 0x0010 (0x0010 - 0x0010) Result: 0x10 ... >> OK <<
183: RST bus (#6 HIGH) 0x0020 (0x0020 - 0x0020) Result: 0x20 ... >> OK <<
184: RST bus (#7 HIGH) 0x0040 (0x0040 - 0x0040) Result: 0x40 ... >> OK <<
185: RST bus (#8 HIGH) 0x0080 (0x0080 - 0x0080) Result: 0x80 ... >> OK <<

186: Keys buffer (All pull-up) 0x001F (0x001F - 0x001F) Result: 0x1F ... >> OK <<

187: Access to LCD RAM (0xAA) 0x00AA (0x00AA - 0x00AA) Result: 0xAA ... >> OK <<
188: Access to LCD RAM (0x99) 0x0099 (0x0099 - 0x0099) Result: 0x99 ... >> OK <<

189: Image Flash Access (get ID) 0x0002 (0x0001 - 0x0002) Result: 0x02 ... >> OK <<

190: TDI Fuse keys (#1 ON) 0x0001 (0x0001 - 0x0001) Result: 0x01 ... >> OK <<
191: TDI Fuse keys (#2 ON) 0x0002 (0x0002 - 0x0002) Result: 0x02 ... >> OK <<
192: TDI Fuse keys (#3 ON) 0x0004 (0x0004 - 0x0004) Result: 0x04 ... >> OK <<
193: TDI Fuse keys (#4 ON) 0x0008 (0x0008 - 0x0008) Result: 0x08 ... >> OK <<
194: TDI Fuse keys (#5 ON) 0x0010 (0x0010 - 0x0010) Result: 0x10 ... >> OK <<
195: TDI Fuse keys (#6 ON) 0x0020 (0x0020 - 0x0020) Result: 0x20 ... >> OK <<
196: TDI Fuse keys (#7 ON) 0x0040 (0x0040 - 0x0040) Result: 0x40 ... >> OK <<
197: TDI Fuse keys (#8 ON) 0x0080 (0x0080 - 0x0080) Result: 0x80 ... >> OK <<

198: TEST Fuse keys (#1 ON) 1.00 (2.80 to 3.50) Result: 3.18 ... >> OK <<
199: TEST Fuse keys (#2 ON) 2.00 (2.80 to 3.50) Result: 3.16 ... >> OK <<
200: TEST Fuse keys (#3 ON) 3.00 (2.80 to 3.50) Result: 3.16 ... >> OK <<
201: TEST Fuse keys (#4 ON) 4.00 (2.80 to 3.50) Result: 3.15 ... >> OK <<
202: TEST Fuse keys (#5 ON) 5.00 (2.80 to 3.50) Result: 3.17 ... >> OK <<
203: TEST Fuse keys (#6 ON) 6.00 (2.80 to 3.50) Result: 3.18 ... >> OK <<
204: TEST Fuse keys (#7 ON) 7.00 (2.80 to 3.50) Result: 3.18 ... >> OK <<
205: TEST Fuse keys (#8 ON) 8.00 (2.80 to 3.50) Result: 3.15 ... >> OK <<

============== Finished =================================
* Test pass - no errors.
===

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

www.ti.com Label

49SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Operation

2.5 Label

Information and C2000 Gang Programmer software and hardware can be displayed by accessing the
About dropdown menu. Select the About→About option to display information similar to that shown in
Figure 2-19.

Figure 2-19. Information About the C2000 Gang Programmer

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

Benchmarks www.ti.com

50 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Operation

2.6 Benchmarks

This section shows the results of timing benchmarks used on the C2000 Gang Programmer to measure
the programming speed. Table 2-1 shows the result of the benchmark when programming with the JTAG
interface. Identical programming speed is seen whether one device is programmed or eight devices are
programmed simultaneously, because programming each MCU is done in parallel.

2.6.1 Benchmark for C28035

(1) Programming speed and verify speed without startup procedures (initialization takes 1.2 seconds).

Table 2-1. Benchmark Results – C28035, 64 kwords (128kB) Code (1)

Mode (via USB) Interface

Erase, Blank
Check, Program,

and Verify
(s)

Verify
(s)

Programming
Speed
(kB/s)

Verify Speed
(kB/s)

Interactive Fast JTAG Fast 20.0 0.3 11.3 430

From Image Memory Fast JTAG Fast 18.5 0.2 13.0 500

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

51SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Firmware

Chapter 3
SPRUHS0C–February 2014–Revised March 2016

Firmware

3.1 Commands

The C2000 Gang Programmer can be controlled by firmware commands received through USB or its RS-
232 serial port. The following firmware commands are supported:

== Commands supported by the BOOT loader ======

• "Hello"

• Boot Commands Disable

• Boot Commands Enable

• Transmit Diagnostics

• Select Baud Rate

• Erase Firmware

• Load Firmware

• Exit Firmware update

• Get Label

• Get Progress Status

== Commands supported by API firmware ======

• Main process

• Interactive process

• Erase Image

• Read Info memory from C2000-GANG

• Write Info memory to C2000-GANG

• Verify Access Key

• Load Image Block

• Verify Image Checksum

• Read Image Header

• Boot update

• Read from Gang Data buffer

• Write to Gang Data buffer

• Disable API Interrupts

• Select Image

• Display Message on the LCD display

• Set temporary configuration

• Get selected status

• Selftest

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

Firmware Interface Protocol www.ti.com

52 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Firmware

3.2 Firmware Interface Protocol

The C2000 Gang Programmer supports a UART communication protocol at baud rates from 9.6 to
115.2 kbaud in half duplex mode. The default baud rate at startup is 9.6 kbaud. This allows for
communication between the C2000 Gang Programmer and devices that have a lower communication
speed than the maximum 115.2 kbaud. It is recommended that after startup, the communication speed be
increased to the common maximum for both devices to enable faster communication. If the control device
has a USB interface with a virtual COM port, then it is recommended to use USB for communication
between the control device and the C2000 Gang Programmer, because USB is several times faster than
RS-232. Communication requires one start bit, eight data bits, even parity bit, and one stop bit. A software
handshake is performed by a (not) acknowledge character.

3.3 Synchronization Sequence

To synchronize with the C2000 Gang Programmer the host serial handler transmits a SYNC (CR)
character (0x0D) to the C2000 Gang Programmer. The C2000 Gang Programmer acknowledges
successful reception of the SYNC character by responding with a DATA ACK character (0x90). If the
SYNC is not received correctly, no data is sent back. This sequence is required to establish the
communication channel and to react immediately to line faults. The synchronization character is not part of
the data frame described in Section 3.4.1. When communication is established, the synchronization
character is not required any more, but it can be sent at any time for checking the "alive" status, if
required.

The synchronization character is not part of the data frame described in Section 3.4.1.

3.4 Command Messages

The C2000 Gang Programmer has a few type of messages with mandatory responses for each received
command.

• Short TX messages with one byte only

"Hello"

Tx -> 0x0d (CR)
Rx -> 0x90 (ACK)

Get Progress Status

Tx -> 0xA5
Rx -> 0x80 0x00 <...data...> (without Check Sum)

• Standard TX messages with data frame

Tx -> 0x3E, CMD, <...data...>, < Check sum >
Rx -> 0x90 (ACK)

or 0xA0 (NACK)
or 0xB0 (In Progress) (use Get Progress Status for monitoring)
or 0x80, 0x00, <...data....>, < Check sum >

3.4.1 Frame Structure

The data frame format follows the TI C2000 serial standard protocol (SSP) rules, extended with a
preceding synchronization sequence (SS), as described in Section 3.3. The C2000 Gang Programmer is
considered the receiver in Table 3-1, which details the data frame for firmware commands. The
redundancy of some parameters results from the adaptation of the SSP or to save boot ROM space.

The data frame format of the firmware commands is shown in Table 3-1.

• The first eight bytes (HDR through LH) are mandatory ("–" represents dummy data).

• Data bytes D1 to Dn are optional.

• Two bytes (CKL and CKH) for checksum are mandatory

• Response is mandatory by the C2000 Gang Programmer. Response can be an "Acknowledge" or a full
data frame depending on the command.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

www.ti.com Command Messages

53SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Firmware

The following abbreviations are used in Table 3-1.

CMD Command identification

R Do not use this command. Used for internal communication.

T Target number (1 to 8)

L1, L2 Number of bytes in AL through Dn. The valid values of these bytes are restricted as follows: L1 = L2, L1 < 255, L1 even.

A1, A2, A3 Block start address or erase (check) address or jump address LO or HI byte. The bytes are combined to generate a 24-bit
word as follows: Address = A3 × 0x10000 + A2 × 0x100 + A1

LL, LH Number of pure data bytes (maximum 250) or erase information LO or HI byte or block length of erase check (max is 0xFF).

D1...Dn Data bytes

CKL, CKH 16-bit checksum LO or HI byte

xx Can be any data

– No character (data byte) received or transmitted

ACK The acknowledge character returned by the C2000 Gang Programmer can be either DATA_ACK = 0x90 (frame was received
correctly, command was executed successfully) or DATA_NAK = 0xA0 (frame not valid (for example, wrong checksum, L, L2),
command is not defined, is not allowed.

PRS DATA_IN_PROGRESS = 0xB0 - Tasks in progress. Use Get Progress Status (0xA5) command to get the status and check
when task is finished.

(1) All numbers are bytes in hexadecimal notation. ACK is sent by the C2000 Gang Programmer.
(2) PROMPT = 0x3E means data frame expected.
(3) Bold bytes represent responses from C2000 Gang Programmer.

Table 3-1. Data Frame for Firmware Commands (1) (2) (3)

C2000-GANG
Firmware Command

Prompt CMD L1 L2 A1 A2 A3 A4 LL LH D1 D2...Dn CLK CLH ACK

"Hello" 0D - - - - - - - - - - - - ACK

Boot Commands
Disable

3E 2A R R R R R R R R R R CKL CKH ACK

Boot Commands
Enable

3E 2B R R R R R R R R R R CKL CKH ACK

Diagnostic 3E 32 04 04 00 00 - - 00 00 - - CKL CKH -

Response-
Diagnostic

80 0 1E 1E D1 D2 D3 D4 D5 D6 D7 D08...D1E CKL CKH -

Set Baud Rate 3E 38 06 06 D1 00 - - 00 00 00 00 CKL CKH ACK

Erase Firmware 3E 39 R R R R R R R R R R CKL CKH ACK

Load Firmware 3E 3A R R R R R R R R R R CKL CKH ACK

Exit Firmware Update 3E 3B R R R R R R R R R R CKL CKH ACK

Get Label 3E 40 04 04 00 00 - - 00 00 - - CKL CKH -

Response-Get Label 80 00 8C 8C D1 D2 D3 D4 D5 D6 D7 D8...D140 CKL CKH -

Get Progress Status A5 - - - - - - - - - - - - - -

Response----,,,---- 80 A5 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10...D48 - - -

Main Process 3E 31 04 04 00 00 - - 00 00 - - CKL CKH PRS

Interactive Task 3E 46 n n D1 D2 - - D3 D4 D5 D6...Dn CKL CKH -

Response----,,,---- 80 0 n n D1 D2 D3 D4 D5 D6 D7 D8...Dn CKL CKH -

Erase Image 3E 33 04 04 00 00 - - 00 00 - - CKL CKH PRS

Get Info C-D 3E 41 04 04 A1 00 - - 00 00 - - CKL CKH -

Response-Get Info 80 0 80 80 D1 D2 D3 D4 D5 D6 D7 D8...D128 CKL CKH -

Write Info C-D 3E 42 84 84 A1 00 - - 80 0 D1 D2...D128 CKL CKH ACK

Verify Access Key 3E 44 04 04 00 00 - - 00 00 - - CKL CKH ACK

Load Image 3E 43 n n A1 A2 A3 00 n-6 00 D1 D2...Dn-6 CKL CKH ACK

Verify Image CRC 3E 45 08 08 A1 A2 A3 A4 LL LH D1 D2 CKL CKH ACK

Get Image Header 3E 47 06 06 A1 A2 00 00 n 00 - - CKL CKH -

Response----,,,---- 80 0 n n D1 D2 - - D3 D4 D5 D6...Dn CKL CKH -

Read Gang Buffer 3E 49 4 4 T 0 - - n 0 - - CKL CKH -

Response----,,,---- 80 0 n n D1 D2 D3 D4 D5 D6 D7 D8...Dn CKL CKH -

Write Gang Buffer 3E 4A n+4 n+4 T 0 - - n 0 D1 D2...Dn CKL CKH ACK

Disable API Interrupts 3E 4C 4 4 R R - - R R - - CKL CKH ACK

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

Command Messages www.ti.com

54 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Firmware

Table 3-1. Data Frame for Firmware Commands (1) (2) (3) (continued)

C2000-GANG
Firmware Command

Prompt CMD L1 L2 A1 A2 A3 A4 LL LH D1 D2...Dn CLK CLH ACK

Select Image 3E 50 4 4 A1 0 - - 0 0 - - CKL CKH ACK

Display Message 3E 54 n+4 n+4 A1 A2 - - n 00 D1 D2...Dn CKL CKH ACK

Set IO State 3E 4E 0C 0C VL VH - - 08 00 D1 D2...D8 CKL CKH ACK

Set Temporary
Configuration

3E 56 06 06 A1 A2 - - 2 0 D1 D2 CKL CKH ACK

Get Gang Status 3E 58 04 04 A1 0 - - 0 0 - - CKL CKH -

Response----,,,---- 80 0 n n D1 D2 D3 D4 D5 D6 D7 D8...Dn CKL CKH -

Remote Selftest 3E 71 n+6 n+6 A1 A2 A3 A4 n 0 D1 D2...Dn CKL CKH -

Response----,,,---- 80 0 n n D1 D2 D3 D4 D5 D6 D7 D8...Dn CKL CKH -

3.4.2 Checksum

The 16-bit (2-byte) checksum is calculated over all received or transmitted bytes, B1 to Bn, in the data
frame except the checksum bytes themselves. The checksum is calculated by XORing words (two
consecutive bytes) and bit-wise inverting (∼) the result, as shown in the following formulas.

CHECKSUM = INV [(B1 + 256 × B2) XOR (B3 + 256 × B4) XOR...XOR ((Bn – 1) + 256 × Bn)]

or

CKL = INV [B1 XOR B3 XOR...XOR Bn–1]

CKH = INV [B2 XOR B4 XOR...XOR Bn]

An example of a frame for the Execute Self Test command with checksum would appear as:

0x3E 0x35 0x06 0x06 0x00 0x00 0x00 0x00 0x00 0x00 0xC7 0xCC

3.5 Detailed Description of Commands

3.5.1 General

After the prompt byte (0x3E) and the command identification byte CMD, the frame length bytes L1 and L2
(which must be equal) hold the number of bytes following L2, excluding the checksum bytes CKL and
CKH. Bytes A1, A2, A3, A4, LL, LH, and D1 to Dn are command specific. However, the checksum bytes
CKL (low byte) and CKH (high byte) are mandatory. If the data frame is received correctly and the
command execution is successful, the acknowledge byte ACK (0x90), in progress byte (0xB0) or received
message with header byte (0x80) as the first one. Incorrectly received data frames, unsuccessful
operations, and commands that are not defined are confirmed with a DATA_NACK = 0xA0.

3.5.2 Commands Supported by the BOOT Loader

3.5.2.1 "Hello"

Short TX messages with one byte only

Tx -> 0x0d (CR)
Rx -> 0x90 (ACK)

A response is sent only when the <CR> (0x0D byte) has been detected and when it is not the byte used
as the part of the data frame. This command can be useful for checking communication with the C2000
Gang Programmer. When there is no response, then the baud rate should be changed. After power-up,
the USB interface is used for communication with the C2000 Gang Programmer; however, the RS-232
receiver is also active. To reestablish communication between USB and RS232, the "Hello" command
must be sent a minimum of three times via RS232. After this, an ACK (0x90) is transmitted via RS232.
This sequence also works in reverse, to reestablish communication between RS232 and USB.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

www.ti.com Detailed Description of Commands

55SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Firmware

3.5.2.2 Boot Commands Disable

Tx -> 3E 2A CKL CKH
Rx -> 0x90 (ACK)

Do not use this command. This command is used during firmware or information memory update. Use the
C2000 Gang Programmer executable GUI software for updating firmware or information memory update if
required.

3.5.2.3 Boot Commands Enable

Tx -> 3E 2B CKL CKH
Rx -> 0x90 (ACK)

Do not use this command. This command is used during firmware or information memory update. Use the
C2000 Gang Programmer executable GUI software for updating firmware or information memory update if
required.

3.5.2.4 Diagnostic

The Diagnostic command retrieves the result of the preceding gang programming command.

Tx -> 3E 32 04 04 00 00 00 00 CKL CKH
Rx -> 80 00 1E 1E D1 D2 ... D30 CKL CKH

Data bytes D1 to D30 hold the parameters, as follows:

D1-D6: Reserved

D7-D8: Boot revision number: D7 (MSByte), D8 (LSByte)

D9-D10: Hardware version number: D9 (MSByte), D10 (LSByte).

D11 to D12: Firmware version number: D11 (MSByte), D12 (LSByte).

D13 to D20: Character string representing the boot name "C2000BOOT"

D21: Comma (,)

D22 to D30: Zero-terminated application firmware name "C2000-GANG"

When the application is modified or is not present, then bits D11-D12 and D22-D30 are modified and can
be used for detection if the application firmware is present, and if present, what type and version of the
application firmware is downloaded.

3.5.2.5 Set Baud Rate

Tx -> 3E 38 06 06 BR 00 00 00 00 00 CKL CKH
Rx -> 0x90 (ACK)

The Set Baud Rate command sets the rate of the serial communications. The default is 9600 baud. Baud
rate index 0 to 4, representing the baud rate.

BR → 0 = 9600 baud (default)

BR → 1 = 19200 baud

BR → 2 = 38400 baud

BR → 3 = 57600 baud

BR → 4 = 115200 baud

The Set Baud Rate command takes effect (that is, changes the baud rate) immediately.

3.5.2.6 Erase Firmware

Tx -> 3E 39 CKL CKH
Rx -> 0x90 (ACK)

Do not use this command. This command is used during firmware or information memory update. Use the
C2000 Gang Programmer executable GUI software for updating firmware or information memory update if
required.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

Detailed Description of Commands www.ti.com

56 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Firmware

3.5.2.7 Load Firmware

Tx -> 3E 3A CKL CKH
Rx -> 0x90 (ACK)

Do not use this command. This command is used during firmware or information memory update. Use the
C2000 Gang Programmer executable GUI software for updating firmware or information memory update if
required.

3.5.2.8 Exit Firmware Update Command

Tx -> 3E 3B CKL CKH
Rx -> 0x90 (ACK)

Do not use this command. This command is used during firmware or information memory update. Use the
C2000 Gang Programmer executable GUI software for updating firmware or information memory update if
required.

3.5.2.9 Get Label

The Get Label command retrieves all hardware and software information.

Tx -> 3E 40 04 04 00 00 00 00 CKL CKH
Rx -> 80 00 8C 8C D1 D2 ... D140 CKL CKH

Data bytes D1 to D140 hold the parameters, as follows:

D1, D2: BOOT software ID ("B430")

D3-D6: BOOT software version (01 00 01 00)

D7, D8: API software ID ("A430")

D9-D12: API software version (01 00 01 09)

D13, D14: Boot revision number: D7 (MSByte), D8 (LSByte)

D15, D16: Hardware version number: D9 (MSByte), D10 (LSByte).

D17, D18: Firmware version number: D11 (MSByte), D12 (LSByte).

D19-D26: Character string representing the boot name "C2000BOOT"

D27: Comma ','

D28-D36: Zero-terminated application firmware name "C2000-GANG"

D37-D44: MCU's Silicon Unique Number

D45-D76: Zero-terminated string of the Programmer description.

D77-D108: Access keys

D109-D116: Programmers serial number YYMMnnnn

D117-D120: MFG ID "ELP "

D121-D124: Hardware ID "C2000"

D125-D126: Hardware revision 0x0101 (rev 1.01)

D127-D140: Spare

3.5.2.10 Get Progress Status

The Get Progress Status command is a low-level command and can be used at any time, even if the
C2000 Gang Programmer is busy with other tasks. It replies to the command without interrupting the
currently serviced process. Some commands that have long execution times require the Get Progress
Status command to monitor the current state.

For example, the Main Process command, which can require a few seconds or more to execute, responds
with the character "In Progress 0xB0" as soon as the command has been received and accepted. At this
time, the communication link has been released and is ready to use the Get Progress Status command.
The current status and progress data can be monitored by polling the Get Progress Status command. The
contents of the progress status include the current task number, chunk number, and information about
what tasks have been already finished (erase, blank check, program, verify, and more).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

www.ti.com Detailed Description of Commands

57SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Firmware

In addition, the comment that is displayed on the LCD display is also available in the progress status
message. This makes it possible to mirror the progress status on a PC screen so that the status on the
PC screen appears the same as it is in the C2000 Gang Programmer LCD display. In the internal
firmware, the progress status buffer is always updated when a new task or new chunk is executed. In
cases where the LCD is updated frequently, it might not be possible for the PC screen to exactly mirror it.
If polling is done more frequently, then messages on the PC can be updated almost in real time. Polling
can be fast, but it is not recommended to send the Get Progress Status command within a 20-ms interval.

The C2000 Gang Programmer has internal 8-level FIFO buffer for progress status (8 internal buffers of
50 bytes each). This allows messages to be retrieved even if status has been changed a few times in the
20-ms interval, as long as the next task is bigger and the status is not updated within the next 100 ms.

One of the bytes (byte 6) in the progress status contains information as to whether the process is still in
progress or if it is finished. If the process is finished, then the programmer is ready to receive the next
command. If the process is in progress, then only the Get Progress Status command can be used. Do not
send any other commands. The next command can also be accepted, but the new command bytes would
be collected in the RX buffer until the C2000 Gang Programmer is ready to service it. When the first valid
byte of the new command has been received (byte prompt '>' 0x3E), then the receiver cannot get the Get
Progress Status command, because the 0xA5 byte, instead of the Get Progress Status command, is
treated as a data byte in the data frame.

When the Get Progress Status command is detected (single 0xA5 byte if it is not the frame data contents)
then the current status (50 bytes) is transmitted from the C2000 Gang Programmer with following data:

byte 0 0x80

byte 1 0xA5

bytes 2-3 (WORD) Task counter

bytes 4-5 (WORD) Chunk counter

byte 6 Status - In Progress, ACK or NACK

byte 7 Ack or nack

bytes 8-9 (WORD) Finished tasks mask

byte 10 Cumulative gang mask

byte 11 Request gang mask

byte 12 Connected gang mask

byte 13 Erased gang mask

byte 14 Blank check gang mask

byte 15 Programmed gang mask

byte 16 Verified gang mask

byte 17 Secured gang mask

bytes 18-23 Spare

byte 24 Error number

byte 25 Internal VTIO (VTIO = data × 32 mV)

byte 26 VCC gang status mask - A

byte 27 VCC gang status mask - B

byte 28 VCC error mask

byte 29 VCC cumulative error mask

byte 30 JTAG init err mask

byte 31 JTAG Fuse already blown mask

byte 32 Wrong MCU ID mask

byte 33 Progress bar (0 - 100%)

bytes 34-50 Comment text (comment currently displayed on the LCD display)

Where,

Bytes 8-9 are task mask bits:

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

Detailed Description of Commands www.ti.com

58 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Firmware

CONNECT_TASK_BIT 0x0001

ERASE_TASK_BIT 0x0002

BLANKCHECK_TASK_BIT 0x0004

PROGRAM_TASK_BIT 0x0008

VERIFY_TASK_BIT 0x0010

SECURE_TASK_BIT 0x0020

DCO_CAL_TASK_BIT 0x0040

spare 0x0080 to 0x4000

RST_AND_START_FW_BIT 0x8000

All byte masks (bytes 10 to 17 and 26 to 32) are related to each target device as such:

Target 1 mask 0x01

Target 2 mask 0x02

⋮ ⋮
Target 8 mask 0x80

Byte masks 26 to 27 are used in combination as such:

Bits: B A

0 0 VCC below 0.7 V

0 1 VCC below VCC min (0.7 V < VCC < VCC min)

1 0 VCC over VCC min (OK status)

1 1 VCC over 3.8 V

For example, result 0x83 in connected gang mask (byte 12) means that targets 1, 2, and 8 have been
detected and communication with targets successfully established.

Bytes 26 and 27 (VCC status) provide two bits to each target. Bit A for each target and bit B for each
target.

3.5.3 Commands Supported by Application Firmware

Commands supported by the application firmware give access to the target device. All of the features that
are provided by the C2000 Gang Programmer and available through the GUI and DLL are accessible by
these functions. Some of the commands that allow control of the C2000 Gang Programmer are described
in the following sections; however, commands that provide data transfer and script information between
the C2000 Gang Programmer and DLL are not described here. Users should use the GUI software
package (C2000 Gang Programmer executable and DLL) for preparing data for programming, save it in
the internal memory or SD card, verify if that works, and then use the commands described in the
following sections to control the programming process via RS-232 or USB interface. If it is possible, then it
is recommended to use the C2000 Gang Programmer DLL and control the C2000 Gang Programmer via
the DLL rather than directly via RS-232 or USB interface using the low-level communication protocol. The
C2000 Gang Programmer DLL allows full control of the programmer.

3.5.3.1 Select Image

Tx -> 3E 50 4 4 A1 0 0 0 CKL CKH
Rx -> 90 (ACK)

The Select Image command sets a number for the current image. After this command, all operations that
the C2000 Gang Programmer performs use this image. The C2000 Gang Programmer supports 16
images, 0 through 15. The default image after power on is 0.

A1: holds a number of the image to set (0x00 to 0x0F).

NOTE: When the SD card is inserted to SD slot, then the SD card is selected as the default image,

and the Select Image command has no effect.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

www.ti.com Detailed Description of Commands

59SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Firmware

3.5.3.2 Main Process

Tx -> 3E 31 4 4 0 0 0 0 CKL CKH
Rx -> B0 (In Progress)

The Main Process command begins the gang programming cycle, using the operations defined in the SD
or internal image memory. The result of the command execution can be determined using the Get
Progress Status command described in Section 3.5.2. It should be noted that the Main Progress
commands responds as soon as the command is accepted with byte In Progress (0xB0). When the byte In
Progress is received, then the Get Progress Status command should be polled to monitor the progress
status. As long as the main process is not finished, byte 6 gives a response of In Progress data (0xB0).
When the process is finished, byte 6 changes to ACK (0x90) or NACK (0xA0). When ACK is received,
then whole process is finished, and all results are available on bytes 8 to 32. See the Get Progress Status
command description for details. During the polling process, it is possible to examine all bytes of the
progress status and check the current state; for example, what targets are connected or erased. In the
comment bytes (34-50) is the current process, and the same message as is displayed on the LCD display.

3.5.3.3 Set Temporary Configuration

Tx -> 3E 56 6 6 A1 0 2 0 DL DH CKL CKH
Rx -> 90 (ACK)

By default the Main Process command takes all configuration and setup from the image memory. It is
possible to overwrite some of the configuration parameters and execute the Main Process commands with
a modified configuration. The following parameters can be modified: Targets VCC, high or low current,
external VCC enable or disable, VCC settle time, communication interface (JTAG), enabled target devices
and enable process mask (for example, erase or program verify). The Set Temporary Configuration in
C2000 Gang Programmer command allows modification of these parameters.

When the Main Process command is finished, then the temporary setups are erased and the configuration
from the image memory is restored. When the modified configuration should be used in the next run, then
the temporary configuration should be transferred to C2000 Gang Programmer again before starting the
Main Process command.

The Set Temporary Configuration in C2000 Gang Programmer command transfers two data: address
index (A1) and one 16-bit data [DL (LSB byte) and DH (MSB byte)].

The following address indexes are defined:

CFG_TMP_CLEAR (2)

Data (DH, DH) is irrelevant.

Remove temporary configuration and take it from the image memory.

CFG_TMP_TASK_MASK (4)

Set the execution mask.

By default execution mask is 0xFFFF (execute all procedures).

Data (DH, DL) can be from 0x0000 up to 0xFFFF.

Currently supported bits in the execution mask:

CONNECT_TASK_BIT 0x0001

ERASE_TASK_BIT 0x0002

BLANKCHECK_TASK_BIT 0x0004

PROGRAM_TASK_BIT 0x0008

VERIFY_TASK_BIT 0x0010

SECURE_TASK_BIT 0x0020

DCO_CAL_TASK_BIT 0x0040

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

Detailed Description of Commands www.ti.com

60 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Firmware

For example, when the target device must be erased, then only the following data should be send (A1, D).

4, 0x0003

Full command:

Tx -> 3E 56 6 6 4 0 2 0 3 0 CKL CKH

CFG_TMP_VCC_VALUE (6)

Data - VCC value in mV (range from 1800 to 3600)

CFG_TMP_POWER_VCC_EN (8)

Data 0 Target devices powered from an external power supply

Data 1 Target devices powered from C2000 Gang Programmer

CFG_TMP_INTERFACE (10)

Data JTAG_FAST 0x0004

Data JTAG_MED 0x0005

Data JTAG_SLOW 0x0006

Data SBW_FAST 0x0008

Data SBW_MED 0x0009

Data SBW_SLOW 0x000A

CFG_TMP_GANG_MASK (12)

Sum of target bit masks

Target 1 0x01

Target 2 0x02

Target 3 0x04

⋮ ⋮
Target 8 0x80

One target only - Target 1 Data = 0x0001

All targets Data = 0x00FF

CFG_TMP_VCC_ONOFF (14)

Immediately turn VCC target on of off

Data 0x0001 ON

Data 0x0000 OFF

CFG_TMP_ICC_HI_EN (18)

High (50 mA) current from programmer enable or disable

Data 0x0001 Enable

Data 0x0000 Disable

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

www.ti.com Detailed Description of Commands

61SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Firmware

CFG_TMP_IO_INTERFACE (20)

Set interface configuration

Data 0x0000 SBW via TDOI line

Data 0x0001 SBW via RST line

CFG_TMP_RESET (22)

Immediately reset target device

Data 0x0001 Reset target device

Data 0x0000 Release Reset line

CFG_TMP_VCC_SETTLE_TIME (26)

Data 0x0000 to 0x00C8 Settle VCC time in step 20 ms

3.5.3.4 Get Gang Status

Tx ->3E 58 04 04 A1 0 - - 0 0 - - CKL CKH
Rx ->80 0 n n B0 B1 B2 B3 ... Bn CKL CKH

The Get Gang Status command gets the selected status or results from the C2000 Gang Programmer.
The following numbers (A1) are available. See the description of the C2000GANG_GetAPIStatus function
(Section 4.1.41) for details of the B0...Bn byte contents.

GET_APP_FLAGS 10

GET_LAST_STATUS 12

GET_LAST_ERROR_NO 14

3.5.3.5 Read Gang Buffer

Tx -> 3E 49 4 4 T 0 - - n 0 - - CKL CKH
Rx -> 80 0 n n D1 D2 D3 D4 D5 D6 D7 D8...Dn CKL CKH

The C2000 Gang Programmer contains a temporary data buffer that can be used for writing data to and
reading data from each target device. The buffer size is 64 words for each target device - Buffer[8][64];

T = Target device number, 1 to 8

n = Number of words taken from the Buffer[T-1] [..]

3.5.3.6 Write Gang Buffer

Tx -> 3E 4A n+4 n+4 T 0 - - n 0 D1 D2...Dn CKL CKH
Rx -> ACK

Write words to selected target’s Buffer -> Buffer[8][64]

T = Target device number, 1 to 8

n = Number of bytes written to Buffer[T-1] [..]

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

Detailed Description of Commands www.ti.com

62 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Firmware

3.5.4 API Firmware Commands That Should Not be Used

3.5.4.1 Interactive Task

Tx -> 3E 46 n n D1 ... Dn CKL CKH
Rx -> 80 0 k k D1 ... Dk CKL CKH

NOTE: Do not use this command. This command is used by the API-DLL and GUI only.

3.5.4.2 Erase Image

Tx -> 3E 33 4 4 0 0 0 0 CKL CKH
Rx -> B0 (In Progress)

NOTE: Do not use this command. This command is used by the API-DLL and GUI only.

3.5.4.3 Get Info C-D

Tx -> 3E 41 4 4 A1 0 0 0 CKL CKH
Rx -> 80 0 80 80 D1 ... D128 CKL CKH

NOTE: Do not use this command. This command is used by the API-DLL and GUI only.

3.5.4.4 Write Info C-D

Tx -> 3E 42 84 84 A1 0 80 0 D1 ... D128 CKL CKH
Rx -> ACK

NOTE: Do not use this command. This command is used by the API-DLL and GUI only.

3.5.4.5 Verify Access Key

Tx -> 3E 44 4 4 0 0 0 0 CKL CKH
Rx -> ACK or NACK

NOTE: Do not use this command. This command is used by the API-DLL and GUI only.

3.5.4.6 Load Image

Tx -> 3E 43 n n A1 A2 A3 0 n-6 0 D1 ... Dn-6 CKL CKH
Rx -> ACK or NACK

The Load Image command loads the data bytes into the image buffer of the C2000 Gang Programmer. Do
not use this function in your application. Use C2000-GANG GUI and C2000-GANG DLL for writing data
into the internal image buffer.

3.5.4.7 Verify Image CRC

Tx -> 3E 45 08 08 A1 A2 A3 0 LL LH D1 D2 CKL CKH
Rx -> ACK or NACK

The Verify Image CRC command verifies the image CRC of all written image contents. Do not use this
function in your application. Use C2000-GANG GUI and C2000-GANG DLL for writing and verifying data
in the internal image buffer.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

www.ti.com Detailed Description of Commands

63SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Firmware

3.5.4.8 Get Image Header

Tx -> 3E 47 6 6 A1 A2 0 0 n 0 CKL CKH
Rx -> 80 0 n n D1 ... Dn CKL CKH

NOTE: Do not use this command. This command is used by the API-DLL and GUI only.

3.5.4.9 Disable API Interrupts

Tx -> 3E 4C 4 4 R R R R CKL CKH
Rx -> ACK

NOTE: Do not use this command. This command is used by the API-DLL and GUI only.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

Detailed Description of Commands www.ti.com

64 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Firmware

3.5.4.10 Display Message

Tx -> 3E 54 n+4 n+4 A1 A2 n 0 D1 ... Dn CKL CKH
Rx -> ACK

NOTE: Do not use this command. This command is used by the API-DLL and GUI only.

3.5.4.11 Set IO State

Tx -> 3E 4E 0C 0C VL VH 08 00 D1 D2 D3 D4 D5 D6 D7 D8 CKL CKH
Rx -> ACK

Modify static levels on the I/O pins (JTAG lines).

Vcc - VCC level in mV (VCC = VH × 256 + VL)

D1 - Open destination buffer for output and transferred data for each target

0 = none

1 = TDI (target1 to target8)

2 = TDOI (target1 to target8)

3 = TMS (target1 to target8)

4 = RST (target1 to target8)

5 = BSL-RX (target1 to target8)

D2 - data transferred to the buffer above

b0 to b7 - target1 to target8

D3 - output enable bits: 0 = high impedance, 1 = output

b2 (0x04) - common RST - the same state for all eight targets (Note: if the RST buffer above is
selected, then this state is ignored)

b3 (0x08) - common TEST - the same state for all eight targets

b4 (0x10) - common TCK - the same state for all eight targets

b5 (0x20) - common TMS - the same state for all eight targets (Note: if the TMS buffer above is
selected, then this state is ignored)

D4 - output level on all targets: 0 = LOW, 1 = HIGH

b2 (0x04) - common RST - the same level for all eight targets (Note: if the RST buffer above is
selected, then this state is ignored)

b3 (0x08) - common TEST - the same level for all eight targets

b4 (0x10) - common TCK - the same level for all eight targets

b5 (0x20) - common TMS - the same level for all eight targets (Note: if the TMS buffer above is
selected, then this state is ignored)

D5 - VCC enable bits to each targets

b0 to b7 - target1 to target8

D6 - ICC HI enable: 0 = disable, 1 = enable

D7 - spare

D8 - spare

Example 1

Generate a short RST pulse on target 1 only and force RST level LOW on targets 2 to 5 and RST level
HIGH on targets 6 and 7. VCC on targets 1 to 7 is 3.3 V (0x0CE4) and on target 8 is 0 V (disabled).

Tx -> 3E 4E 0C 0C E4 0C 08 00 04 60 00 00 7F 00 00 00 CKL CKH

then

Tx -> 3E 4E 0C 0C E4 0C 08 00 04 61 00 00 7F 00 00 00 CKL CKH

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

www.ti.com Detailed Description of Commands

65SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Firmware

Example 2

Generate a short RST pulse on all targets. VCC on targets 1 to 7 is 3.3 V (0x0CE4) and on target 8 is 0 V
(disabled).

Tx -> 3E 4E 0C 0C E4 0C 08 00 00 00 04 00 7F 00 00 00 CKL CKH

then

Tx -> 3E 4E 0C 0C E4 0C 08 00 00 00 04 04 7F 00 00 00 CKL CKH

3.5.4.12 Remote Selftest

Tx -> 3E 71 n+6 n+6 A1 A2 A3 A4 n 0 D1 D2...Dn CKL CKH
Rx -> 80 0 n n D1 D2 D3 D4 D5 D6 D7 D8...Dn CKL CKH

NOTE: Do not use this command. This command is used by the API-DLL and GUI only.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

66 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Dynamic Link Library for C2000 Gang Programmer

Chapter 4
SPRUHS0C–February 2014–Revised March 2016

Dynamic Link Library for C2000 Gang Programmer

4.1 C2000-GANG.dll Description

The C2000-GANG.dll is a Dynamic Link Library (DLL) that provides functions for controlling the C2000
Gang Programmer. The C2000-GANG.dll controls the Gang Programmer via RS 232 or USB (VCP)
interface. The C2000-GANG.dll greatly simplifies the control of the C2000 Gang Programmer, because the
user is isolated from the complexities of the communication via USB or RS232 interface protocol.
Together with the C2000-GANG.dll are provided two more files that should be used during the compilation
process.

• C2000-GANG.h: This file is the header file for the C2000-GANG.dll, and provides the function
prototypes, typedefs, #defines, and data structures for the functions of the C2000-GANG.dll. This file is
normally located in the same directory as the application source file and should be included by the
application source files. This file is used during compile time.

• C2000-GANG.lib: This file is the library file for the C2000-GANG.dll and is required to access the DLL
functions. This file is normally located in the same directory as the application source file and should
be added to the Linker Object, Library Modules list of the application. This file is used during link time.

All C2000 Gang Programmer DLL functions have the same "C2000GANG_" prefix in the function name. It
is easy in the application software to determine what functions are used with the C2000-GANG.dll. The
following sections describe each function.

Examples of using the new C2000-GANG.dll are provided and can be found in these locations (if the
default installation directory was used):

C:\Program Files\Texas Instruments\C2000-GANG\Examples\C_Applications_C2000_DLL
and
C:\Program Files\Texas Instruments\C2000-GANG\Examples\Cpp_Applications_C2000_DLL

These examples show how to configure the C2000 Gang Programmer to the desired target device type,
select code, and subsequently program connected devices. In addition, the examples also show how to
write a serial number into a custom memory location. To use these examples copy the MSG-Gang.dll into
the working directory.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

www.ti.com C2000-GANG.dll Description

67SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Dynamic Link Library for C2000 Gang Programmer

4.1.1 C2000GANG_GetDataBuffers_ptr

C2000GANG_GetDataBuffers_ptr gives access to the internal data buffers that provide code contents,
data to be programmed, and buffers of data that was read from each target device with following structure.

#define DBUFFER_SIZE 0x42000
#define FLASH_END_ADDR 0x3FFFFF
#define FLASH_BUF_LEN DBUFFER_SIZE
#define GANG_SIZE 8

typedef struct
{

WORD SourceCode[DBUFFER_SIZE]; //source code from the file
WORD UsedCode[DBUFFER_SIZE]; //combined data (source code, serialization etc)
WORD CommonTx[DBUFFER_SIZE]; //data used to writing - the same data to all targets
WORD GangTx[DBUFFER_SIZE][GANG_SIZE]; //selective data used to writing
WORD GangRx[DBUFFER_SIZE][GANG_SIZE]; //data read from all targets
WORD Tmp[DBUFFER_SIZE];
WORD CSM_Passsword[NO_OF_CSM_PASSWORDS][CSM_PASSWORD_SIZE];
BYTE Flag_ScrCode[DBUFFER_SIZE]; //0 - empty 1-valid data in SourceCode[x];

#define CODE1_FLAG 1
#define CODE2_FLAG 2
#define APPEND_CODE_FLAG 4

BYTE Flag_UsedCode[DBUFFER_SIZE]; //0 - empty 1-valid data in UsedCode[x];
BYTE Flag_WrEn[DBUFFER_SIZE]; //0 - none 1-write/verify enable in FlashMem[x]
BYTE Flag_EraseEn[DBUFFER_SIZE]; //0 - none 1-erase enable in FlashMem[x]
BYTE Flag_RdEn[DBUFFER_SIZE]; //0 - none 1-read enable in FlashMem[x]
BYTE Flag_Sp1[DBUFFER_SIZE]; //spare
BYTE Flag_Sp2[DBUFFER_SIZE]; //spare
BYTE Flag_Sp3[DBUFFER_SIZE]; //spare
BYTE Flag_CSM_Passw[NO_OF_CSM_PASSWORDS][CSM_PASSWORD_SIZE]; //spare

} DATA_BUFFERS;
extern DATA_BUFFERS dat;

In the application software, the pointer to the dat buffer can be initialized as follows.

DATA_BUFFERS *DBuf;
void *temp;
C2000GANG_GetDataBuffers_ptr((&temp));
DBuf = (DATA_BUFFERS *)temp;

Syntax

LONG C2000GANG_GetDataBuffers_ptr(void ** x)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

C2000-GANG.dll Description www.ti.com

68 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Dynamic Link Library for C2000 Gang Programmer

4.1.2 C2000GANG_SetGangBuffer, C2000GANG_GetGangBuffer

The C2000 Gang Programmer contains a temporary data buffer that can be used for writing and reading
data to each target device. Buffer size is 64 words for each target device.

Buffer[8][64];

C2000GANG_SetGangBuffer writes data to selected Buffer. C2000GANG_GetGangBuffer reads contents
from the selected buffer.

Syntax

LONG C2000GANG_SetGangBuffer(BYTE target, BYTE size, WORD *data)
LONG C2000GANG_GetGangBuffer(BYTE target, BYTE size, WORD *data)

Arguments

BYTE target Target number (1 to 8)

BYTE size Size of data (1 to 64)

WORD *data Pointer to data buffer from where data is taken or to where the data should be saved

Result

LONG Error code

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

www.ti.com C2000-GANG.dll Description

69SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Dynamic Link Library for C2000 Gang Programmer

4.1.3 C2000GANG_GetDevice

Reads all specific parameters of a device type from the internal C2000-GANG .DLL table and returns data
related to the selected device.

Syntax

LONG WINAPI C2000GANG_GetDevice(LPTSTR lpszDeviceName, void **lpData)

Arguments

LPTSTR lpszDeviceName MCU name. The device name; for example, 'C2000F5438A' for desired
MCU or (blank) for currently selected MCU

void *lpData Pointer to internal structure

Result

LONG Error code

typedef struct
{

long Group;
long RAM_size;
long OTP_start_addr;
long OTP_end_addr;
long MainMem_start_addr;
long MainMem_end_addr;
long family_index;
long Internal_OSC_kHz;
long spare[32];

} DEVICE_INFO;
extern DEVICE_INFO device;

In the application software, the pointer to the device info structure can be initialized as follows.

DEVICE_INFO *Device;
void *temp;

C2000GANG_GetDevice(" ", &temp);
Device = (DEVICE_INFO *)temp;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

C2000-GANG.dll Description www.ti.com

70 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Dynamic Link Library for C2000 Gang Programmer

4.1.4 C2000GANG_LoadFirmware

Load firmware from C2000-GANG.dll to C2000 Gang Programmer,

NOTE: Do not use this command. This command is used by the API-DLL and GUI only.

Syntax

LONG C2000GANG_LoadFirmware(void)

4.1.5 C2000GANG_InitCom

C2000GANG_InitCom opens a communications port, sets the baudrate and checks if the C2000 Gang
Programmer is present.

Syntax

LONG C2000GANG_InitCom(LPTSTR lpszPort, LONG lBaud)

Arguments

char * lpszComPort Name of the port

LONG lBaudRate Baud rate

Result

LONG Error code

4.1.6 C2000GANG_ReleaseCom

Release communications port

Syntax

LONG C2000GANG_ReleaseCom(void)

Arguments

None

Result

LONG Error code

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

www.ti.com C2000-GANG.dll Description

71SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Dynamic Link Library for C2000 Gang Programmer

4.1.7 C2000GANG_GetErrorString

Returns the error string for the selected error number (response from any functions that returns error
status).

Syntax

LPTSTR C2000GANG_GetErrorString(LONG lErrorNumber)

Arguments

LONG lErrorNumber Error number

Result

LPTSTR Error string

4.1.8 C2000GANG_SelectBaudrate

C2000GANG_SelectBaudrate sets the rate of the serial communications. The default is 9600 baud. Baud
rate index 0 to 4, representing the baud rate. The Select Baud Rate command takes effect (that is,
changes the baud rate) immediately.

Syntax

LONG C2000GANG_SelectBaudrate(LONG lBaud)

Arguments

LONG lBaud Baud rate in bytes per second
0 = 9600 baud (default)
1 = 19200 baud
2 = 38400 baud
3 = 57600 baud
4 = 115200 baud

Result

LONG Error code

4.1.9 C2000GANG_GetDiagnostic

See the Get Diagnostic command (Section 3.5.2.4) for detailed information about received data contents.

Syntax

LONG C2000GANG_GetDiagnostic(void **lpData)

Arguments

void ** lpData Pointer to data buffer

Result

LONG Error code

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

C2000-GANG.dll Description www.ti.com

72 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Dynamic Link Library for C2000 Gang Programmer

4.1.10 C2000GANG_MainProcess

C2000GANG_MainProcess starts the execution if all function saved inside image memory (or SD card
memory). That includes targets initialization, fuse check, memory erase, blank check, program,
verification, and more, if selected (for example, DCO calibration).

Syntax

LONG C2000GANG_MainProcess(LONG timeout)

Arguments

LONG timeout In seconds

Result

LONG Error code

4.1.11 C2000GANG_InteractiveProcess

C2000GANG_InteractiveProcess starts the execution if all function provided in the interactive mode,
similar to the C2000GANG_MainProcess function; however, data is taken from the PC, not from the image
(or SD) memory.

Syntax

LONG C2000GANG_InteractiveProcess(LONG timeout)

Arguments

LONG timeout In seconds

Result

LONG Error code

4.1.12 C2000GANG_Interactive_Open_Target_Device

C2000GANG_Interactive_Open_Target_Device is used in the interactive mode and in initializing access to
target devices (setting Vcc, checking fuse, and initializing JTAG communication with target devices). The
argument 'name' is displayed on the LCD display. It can contains no more then 16 characters. Extra
characters are ignored.

Syntax

LONG C2000GANG_Interactive_Open_Target_Device(LPTSTR name)

Arguments

LPTSTR name

Result

LONG Error code

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

www.ti.com C2000-GANG.dll Description

73SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Dynamic Link Library for C2000 Gang Programmer

4.1.13 C2000GANG_Interactive_Close_Target_Device

C2000GANG_Interactive_Close_Target_Device is used in the interactive mode and in closing access to
target devices.

Syntax

LONG C2000GANG_Interactive_Close_Target_Device(void)

Result

LONG Error code

4.1.14 C2000GANG_Interactive_DefReadTargets

Note: The target device must be opened first if not open yet (see
C2000GANG_Interactive_Open_Target_Device, Section 4.1.12).

C2000GANG_Interactive_DefReadTargets reads the contents of the selected target devices (one to eight
targets) simultaneously from Start_addr to the End_addr and saves it in the internal data buffer (see
DATA_BUFFERS dat; structure for details).

Syntax

LONG C2000GANG_Interactive_DefReadTargets(BYTE mask, BYTE bar_min, BYTE bar_max, LONG Start_addr,
LONG End_addr)

Arguments

BYTE mask Mask of the target devices that data should be read from

BYTE bar_min Beginning progress bar value displayed on the LCD display (valid values are 0 to
100).

BYTE bar_max Ending —,,,---

LONG Start_addr Data read from Start_addr location

LONG End_addr Data read up to the End_addr location

Result

LONG Error code

4.1.15 C2000GANG_Interactive_ReadTargets

Note: The target device must be opened first if not open yet (see
C2000GANG_Interactive_Open_Target_Device, Section 4.1.12).

C2000GANG_Interactive_ReadTargets reads the contents of the selected target devices (one to eight
targets) simultaneously from the locations specified in the configuration memory (see configuration setup
for details) and saves it in the internal data buffer (see DATA_BUFFERS dat; structure for details).

Syntax

LONG C2000GANG_Interactive_ReadTargets(BYTE mask)

Arguments

BYTE mask Mask of the target devices that data should be read from

Result

LONG Error code

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

C2000-GANG.dll Description www.ti.com

74 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Dynamic Link Library for C2000 Gang Programmer

4.1.16 C2000GANG_Interactive_ReadWords

Note: The target device must be opened first if not open yet (see
C2000GANG_Interactive_Open_Target_Device, Section 4.1.12).

C2000GANG_Interactive_ReadWords reads contents from one selected target device and saves it in the
desired data buffer.

Syntax

LONG WINAPI C2000GANG_Interactive_ReadWords(BYTE target_no, LONG addr, LONG size, WORD * data)

Arguments

BYTE target_no Target number (one to eight) of the desired target device

LONG addr Start address from read data

LONG size Number of read words

WORD *data Pointer to buffer where data would be saved

Result

LONG Error code

4.1.17 C2000GANG_Interactive_WriteWord_to_RAM

Note: The target device must be opened first if not open yet (see
C2000GANG_Interactive_Open_Target_Device, Section 4.1.12).

C2000GANG_Interactive_WriteWord_to_RAM writes one word (16 bits) to any RAM or I/O location. The
address must be even.

Syntax

LONG C2000GANG_Interactive_WriteWord_to_RAM(LONG addr, LONG data)

Arguments

LONG addr RAM address location

BYTE data Data (16 bits)

Result

LONG Error code

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

www.ti.com C2000-GANG.dll Description

75SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Dynamic Link Library for C2000 Gang Programmer

4.1.18 C2000GANG_Interactive_WriteWords_to_RAM

Note: The target device must be opened first if not open yet (see
C2000GANG_Interactive_Open_Target_Device, Section 4.1.12).

C2000GANG_Interactive_WriteWords_to_RAM writes 'size' number of words to any RAM or I/O location.
The starting address must be even.

Syntax

LONG C2000GANG_Interactive_WriteWords_to_RAM(LONG addr, LONG size, WORD * data)

Arguments

LONG addr RAM address location

LONG size Number of words to be written

WORD * data Data block

Result

LONG Error code

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

C2000-GANG.dll Description www.ti.com

76 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Dynamic Link Library for C2000 Gang Programmer

4.1.19 C2000GANG_Interactive_WriteWords_to_FLASH

Note: The target device must be opened first if not open yet (see
C2000GANG_Interactive_Open_Target_Device, Section 4.1.12).

C2000GANG_Interactive_WriteWords_to_FLASH writes 'size' number of words to any flash location. The
starting address must be even.

Syntax

LONG C2000GANG_Interactive_WriteWords_to_FLASH(LONG addr, LONG size, WORD * data)

Arguments

LONG addr RAM address location

LONG size Number of words to be written

WORD * data Data block

Result

LONG Error code

4.1.20 C2000GANG_Interactive_Copy_Gang_Buffer_to_RAM

Note: The target device must be opened first if not open yet (see
C2000GANG_Interactive_Open_Target_Device, Section 4.1.12).

C2000GANG_Interactive_Copy_Gang_Buffer_to_RAM writes 'size' number of words from the internal
Gang_Buffer[8][64] to RAM - simultaneously to all active target devices. Data for each target can be
different. Contents from Gang_Buffer[0][n] are written to target 1, contents from Gang_Buffer[1][n] are
written to target 2, and contents from Gang_Buffer[7][n] are written to target 8.

Data in the Gang_Buffer should be prepared and sent to C2000 Gang Programmer first. See
C2000GANG_GetGangBuffer and C2000GANG_SetGangBuffer functions for details.

Syntax

LONG C2000GANG_Interactive_Copy_GANG_Buffer_to_RAM(LONG addr, LONG size)

Arguments

LONG addr RAM address location

LONG size Number of words to be written (up to 64)

Result

LONG Error code

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

www.ti.com C2000-GANG.dll Description

77SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Dynamic Link Library for C2000 Gang Programmer

4.1.21 C2000GANG_Interactive_Copy_Gang_Buffer_to_FLASH

Note: The target device must be opened first if not open yet (see
C2000GANG_Interactive_Open_Target_Device, Section 4.1.12).

C2000GANG_Interactive_Copy_Gang_Buffer_to_FLASH writes 'size' number of words from the internal
Gang_Buffer[8][64] to FLASH, simultaneously to all active target devices. Data for each target can be
different (for example, calibration data or serial numbers). Contents from Gang_Buffer[0][n] are written to
target 1, contents from Gang_Buffer[1][n] are written to target 2, and contents from Gang_Buffer[7][n] are
written to target 8.

Data in the Gang_Buffer should be prepared and sent to C2000 Gang Programmer first. See
C2000GANG_GetGangBuffer and C2000GANG_SetGangBuffer functions for details.

Syntax

LONG C2000GANG_Interactive_Copy_GANG_Buffer_to_FLASH(LONG addr, LONG size)

Arguments

LONG addr FLASH address location

LONG size Number of words to be written

Result

LONG Error code

4.1.22 C2000GANG_Interactive_EraseSectors

Note: The target device must be opened first if not open yet (see
C2000GANG_Interactive_Open_Target_Device, Section 4.1.12).

C2000GANG_Interactive_EraseSectors erases flash sectors starting from the sector with address location
StartAddr and ending with the sector with EndAddr location.

Syntax

LONG C2000GANG_Interactive_EraseSectors(LONG StartAddr, LONG EndAddr)

Arguments

LONG StartAddr FLASH address location of the first sector to be erased. Address aligned to the
sector size.

LONG EndAddr Address of the last sector to be erased. The address is aligned to the sector size.

Result

LONG Error code

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

C2000-GANG.dll Description www.ti.com

78 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Dynamic Link Library for C2000 Gang Programmer

4.1.23 C2000GANG_Interactive_BlankCheck

Note: The target device must be opened first if not open yet (see
C2000GANG_Interactive_Open_Target_Device, Section 4.1.12).

C2000GANG_Interactive_BlankCheck verifies all flash contents starting from StartAddr and ending with
EndAddr are 0xFF.

Syntax

LONG C2000GANG_Interactive_BlankCheck(LONG StartAddr, LONG EndAddr)

Arguments

LONG StartAddr Blank check (if 0xFF) from StartAddr location to EndAddr location Start Address
must be even, End address must be odd.LONG EndAddr

Result

LONG 0 = blank
!0 = error (not blank or error)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

www.ti.com C2000-GANG.dll Description

79SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Dynamic Link Library for C2000 Gang Programmer

4.1.24 C2000GANG_SelectImage

C2000GANG_SelectImage sets an active image to work with. C2000 Gang Programmer supports 16
images.

Syntax

LONG C2000GANG_SelectImage(LONG lImage)

Arguments

LONG lImage Image number (0 to 15)

Result

LONG Error code

4.1.25 C2000GANG_EraseImage

C2000GANG_EraseImage clears (presets with 0xFF) active image memory. Use the
C2000GANG_SelectImage function to select desired image memory.

Syntax

LONG C2000GANG_EraseImage(void)

Result

LONG Error code

4.1.26 C2000GANG_CreateGangImage

C2000GANG_CreateGangImage creates a command script and the data to be written to target devices
according to the current C2000 Gang Programmer configuration. After the image data is prepared, then it
can be saved in the selected image memory by calling the C2000GANG_LoadImageBlock function.

Syntax

LONG C2000GANG_CreateGangImage(LPTSTR name)

Arguments

LPTSTR name Image name; maximum of 16 characters. Image name is displayed on the LCD
display.

Result

LONG Error code

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

C2000-GANG.dll Description www.ti.com

80 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Dynamic Link Library for C2000 Gang Programmer

4.1.27 C2000GANG_LoadImageBlock

C2000GANG_LoadImageBlock saves the previously prepared image contents into the selected image
memory. The selected image memory must be erased first. Use the following sequence for preparing and
saving an image into image memory:

C2000GANG_CreateGangImage(name);
C2000GANG_SelectImage(lImage);
C2000GANG_EraseImage();
C2000GANG_LoadImageBlock();
C2000GANG_VerifyPSAImageBlock();

Syntax

LONG C2000GANG_LoadImageBlock(void)

Arguments

None

Result

LONG Error code

4.1.28 C2000GANG_VerifyPSAImageBlock

C2000GANG_VerifyPSAImageBlock verifies the checksum of all blocks used in the selected image
memory. The image memory number should be selected first using C2000GANG_SelectImage function.

Syntax

LONG C2000GANG_VerifyPSAImageBlock(void)

Arguments

None

Result

LONG Error code

4.1.29 C2000GANG_ReadImageBlock

C2000GANG_ReadImageBlock reads the header from the selected image memory. A maximum of 127
words can be read. Access to the remaining image memory (up to 512 kBytes (256 kWords)) is blocked.

Syntax

LONG C2000GANG_ReadImageBlock(LONG addr, LONG size, void *lpData)

Arguments

LONG address

LONG size

void *lpData Pointer to word buffer where the result is saved

Result

LONG Error code

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

www.ti.com C2000-GANG.dll Description

81SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Dynamic Link Library for C2000 Gang Programmer

4.1.30 C2000GANG_Read_Code_File

C2000GANG_Read_Code_File reads or appends a code file or reads a password file and saves it in its
internal buffer. By default, the file is treated as the main code file as long as the setup has not redirected
the file to 'Append code' or 'Password code' using the C2000GANG_SetConfig function.

C2000GANG_SetConfig(CFG_OPEN_FILE_TYPE, CODE_FILE_INDEX)
C2000GANG_SetConfig(CFG_OPEN_FILE_TYPE, APPEND_FILE_INDEX)
C2000GANG_SetConfig(CFG_OPEN_FILE_TYPE, PASSW_FILE_INDEX)

When the C2000GANG_Read_Code_File is executed, the flag set by
C2000GANG_SetConfig(CFG_OPEN_FILE_TYPE, CODE_FILE_INDEX) is set to the default value of
Read Code File.

Syntax

LONG C2000GANG_Read_Code_File(LPTSTR FullPath)

Arguments

LPTSTR FullPath Path to the code file (*.hex,*.txt or *.s19, *.s28, *.s37)

Result

LONG Error code

4.1.31 C2000GANG_Save_Config, C2000GANG_Load_Config, C2000GANG_Default_Config

The current configuration file can be saved using the C2000GANG_Save_Config function and recalled
when required using the C2000GANG_Load_Config function. The current configuration can be erased and
the default configuration loaded by calling the C2000GANG_Default_Config function. When the new
configuration is loaded, some of the parameters can be modified item-by-item using
C2000GANG_SetConfig and can be read from the configuration item-by-item using
C2000GANG_GetConfig. The C2000 Gang Programmer configuration can also be created using the
C2000 Gang Programmer GUI software (C2000-GANG-exe) by setting the desired programmer setup,
verifying it, and then saving the configuration using the Save Setup as... option. The setup created using
the GUI can be loaded by the DLL when the above mentioned configuration file is selected using the
C2000GANG_Load_Config function.

Syntax

LONG C2000GANG_Save_Config(LPTSTR filename)
LONG C2000GANG_Load_Config(LPTSTR filename)
LONG C2000GANG_Default_Config(void)

Arguments

LPTSTR filename Path to the configuration file

Result

LONG Error code

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

C2000-GANG.dll Description www.ti.com

82 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Dynamic Link Library for C2000 Gang Programmer

4.1.32 C2000GANG_SetConfig, C2000GANG_GetConfig

Syntax

LONG C2000GANG_SetConfig(LONG index, LONG data)

Arguments

LONG index Configuration index. See list below.

LONG data Configuration data

Result

LONG Error code

Syntax

LONG C2000GANG_GetConfig(LONG index)

Arguments

LONG index Configuration index. See list below.

Result

LONG data Configuration data

List of Indexes

#define FROMIMAGE_BIT 0x1000

#define CFG_INTERFACE 0
#define INTERFACE_NONE 0
#define INTERFACE_JTAG 4
#define INTERFACE_SBW 8
#define INTERFACE_BSL 0xC
#define INTERFACE_TYPE_MAX_INDEX INTERFACE_BSL

#define CFG_JTAG_SPEED 1
#define INTERFACE_FAST 0
#define INTERFACE_MED 1
#define INTERFACE_SLOW 2
#define INTERFACE_SPEED_MAX_INDEX INTERFACE_SLOW

#define CFG_IO_INTERFACE 4
#define SBW_VIA_RST_BIT 0x01
// 0 - SBW_VIA_TDIO (pin 1) and TCK/TEST (pin-7/8)
// 1 - SBW_VIA_RST (pin 11) and TCK/TEST (pin-7/8)

#define CFG_POWERTARGETEN 6
// disable 0 (external power supply)
// enable 1 (targets supplied by C2000-GANG)

#define CFG_VCCINDEX 7
// Vcc in mV 1800 - 3600

#define CFG_BLOWFUSE 9
// disable 0
// enable 1

#define CFG_TARGET_EN_INDEX 10
// Targets GANG enable mask - 0x00 ...0xFF. Enable all targets -> 0xFF
#define TARGET_1_MASK 0x01
#define TARGET_2_MASK 0x02

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

www.ti.com C2000-GANG.dll Description

83SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Dynamic Link Library for C2000 Gang Programmer

#define TARGET_3_MASK 0x04
#define TARGET_4_MASK 0x08
#define TARGET_5_MASK 0x10
#define TARGET_6_MASK 0x20
#define TARGET_7_MASK 0x40
#define TARGET_8_MASK 0x80

#define CFG_FLASHERASEMODE 11
#define ERASE_NONE_MEM_INDEX 0
#define ERASE_ALL_MEM_INDEX 1
#define ERASE_PRG_ONLY_MEM_INDEX 2
#define ERASE_INFILE_MEM_INDEX 3
#define ERASE_DEF_CM_INDEX 4
#define WRITE_OTP_MEM_ONLY_INDEX 5
#define ERASE_MAX_INDEX ERASE_DEF_CM_INDEX

#define CFG_ERASESTARTADDR 17
// FLASH/FRAM start erase address

#define CFG_ERASESTOPADDR 18
// FLASH/FRAM end erase address

#define CFG_FLASHREADMODE 19
#define READ_ALL_MEM_INDEX 0
#define READ_PRGMEM_ONLY_INDEX 1
#define READ_INFOMEM_ONLY_INDEX 2
#define READ_DEF_MEM_INDEX 3
#define READ_MEM_MAX_INDEX READ_DEF_MEM_INDEX

#define CFG_FINALACTION_MODE 24
#define APPLICATION_NO_RESET 0
#define APPLICATION_TOGGLE_RESET 1
#define APPLICATION_TOGGLE_VCC 2
#define APPLICATION_JTAG_RESET 3
#define APPLICATION_RESET_MAX_INDEX APPLICATION_JTAG_RESET

#define CFG_BEEPMODE 25
// sum of following bits

#define BEEP_PCSPK_EN_BIT 1 //Beep via PC Speaker enable
#define BEEP_OK_EN_BIT 2 //Beep when OK enable
#define BEEP_SOUND_EN_BIT 4 //Sound enable

#define CFG_DEFERASEMAINEN 26
// disable 0
// enable 1

#define CFG_CUSTOMRESETPULSETIME 27
// time in ms 1.....2000

#define CFG_CUSTOMRESETIDLETIME 28
// time in ms 1.....2000

#define CFG_RETAIN_CAL_DATA_INDEX 31
// disable 0
// enable 1

#define CFG_FINALACTIONRUNTIME 32
// 0 - infinite,
// 1...120 time in seconds

#define CFG_FINALACTIONVCCOFFTIME 33
// Vcc-OFF (then again ON) time after programming when the
// APPLICATION_TOGGLE_VCC option is selected.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

C2000-GANG.dll Description www.ti.com

84 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Dynamic Link Library for C2000 Gang Programmer

#define CFG_READMAINMEMEN 39
// disable 0
// enable 1

#define CFG_READDEFSTARTADDR 40
// Memory READ start address

#define CFG_READDEFSTOPADDR 41
// Memory READ end address

#define CFG_COMPORT_NO 42
// Communication COM Port number - 0..255

#define CFG_UART_SPEED 43
// Baud Rate index
#define UART_9600 0
#define UART_19200 1
#define UART_38400 2
#define UART_57600 3
#define UART_115200 4

#define CFG_OPEN_FILE_TYPE 44
#define CODE_FILE_INDEX 0
#define APPEND_FILE_INDEX 1
#define PASSW_FILE_INDEX 2
#define SECONDCODE_FILE_INDEX 3
#define CODE2_FILE_INDEX 4

#define CFG_USE_SCRIPT_FILE 45
// disable 0
// enable 1

#define CFG_IMAGE_NO 46
//image number - 0...15

#define CFG_RESETTIME 47
#define RESET_10MS_INDEX 0
#define RESET_100MS_INDEX 1
#define RESET_200MS_INDEX 2
#define RESET_500MS_INDEX 3
#define RESET_CUSTOM_INDEX 4
#define RESET_MAX_INDEX RESET_CUSTOM_INDEX

#define CFG_PROJECT_SOURCE 48
#define INTERACTIVE_MODE 0
#define FROM_IMAGE_MEMORY_MODE 1
#define STANDALONE_MODE 2
#define FROM_IMAGE_FILE_MODE 3
#define PROJECT_SOURCE_MAX_INDEX FROM_IMAGE_FILE_MODE

#define CFG_COPY_CFG_FROM_MEMORY_EN 49
// disable 0
// enable 1

#define CFG_RUNNING_SCRIPT_MODE 50
#define RUNNING_SCRIPT_NONE 0
#define RUNNING_SCRIPT_ONLINE 1
#define RUNNING_SCRIPT_OFFLINE 2

#define CFG_VCC_SETTLE_TIME 51
// Vss settle time in step 20 ms. Range 0...200 (time 0...4000 ms)

#define CFG_JTAG_UNLOCK_EN 52
// disable 0
// enable 1

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

www.ti.com C2000-GANG.dll Description

85SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Dynamic Link Library for C2000 Gang Programmer

#define CFG_SKIP_ERASE_IF_BLANK 53
// disable 0
// enable 1

#define CFG_DO_NOT_OVERWRITE_OTP 54
// disable 0
// enable 1

#define CFG_WRITE_OTP_STARTADDR 55
#define CFG_WRITE_OTP_ENDADDR 56
#define CFG_READ_OTP_STARTADDR 57
#define CFG_READ_OTP_ENDADDR 58

#define CFG_OTP_WRITE_EN 61
#define CFG_READ_OTP_EN 62
#define CFG_READ_MAIN_EN 63
#define CFG_READ_RDONLY_EN 64

#define CFG_ERASE_MAIN_EN 65

#define CFG_RETAIN_DATA_EN 67
#define CFG_RETAIN_START_ADDR 68
#define CFG_RETAIN_END_ADDR 69
#define RETAIN_DATA_MAX_SIZE 0x40

#define CFG_CSM_PASSW_INDEX 70
#define CSM_NONE_INDEX 0
#define CSM_CODE_FILE_INDEX 1
#define CSM_PASSWORD_FILE_INDEX 2
#define CSM_DEFINED_INDEX 3
#define CSM_MAX_INDEX CSM_DEFINED_INDEX

#define CFG_DSP_OSC_FREQ_KHZ 71

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

C2000-GANG.dll Description www.ti.com

86 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Dynamic Link Library for C2000 Gang Programmer

4.1.33 C2000GANG_GetNameConfig, C2000GANG_SetNameConfig

Set or Get file names for code file, script file, password file or warning sounds.

Syntax

LPTSTR C2000GANG_GetNameConfig(LONG index)

Arguments

LONG index See list of indexes below

Result

LPTSTR File name

Syntax

LONG C2000GANG_SetNameConfig(LONG index, LPTSTR name)

Arguments

LONG index See list of indexes below

LPTSTR
file_name

Result

LONG Error code

#define CODEFILE_INDEX 0
#define SCRIPTFILE_INDEX 1
#define PASSWORDFILE_INDEX 2
#define SOUNDERRFILE_INDEX 3
#define SOUNDOKFILE_INDEX 4
#define SOUNDWARNINGFILE_INDEX 5

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

www.ti.com C2000-GANG.dll Description

87SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Dynamic Link Library for C2000 Gang Programmer

4.1.34 C2000GANG_SetTmpGANG_Config

See the Set temporary configuration command (Section 3.5.3.3) for details.

Syntax

LONG C2000GANG_SetTmpGANG_Config(LONG no, LONG data)

Arguments

LONG no Index list of indexes below

LONG data

Result

LONG Error code

//----- TMP_CFG_INDEX -----------
#define CFG_TMP_CLEAR 2
#define CFG_TMP_TASK_MASK 4
#define CFG_TMP_VCC_VALUE 6
#define CFG_TMP_POWER_VCC_EN 8
#define CFG_TMP_INTERFACE 10
#define CFG_TMP_GANG_MASK 12
#define CFG_TMP_VCC_ONOFF 14
#define CFG_LCD_CONTRAST 16
#define CFG_TMP_ICC_HI_EN 18
#define CFG_TMP_IO_INTERFACE 20
#define CFG_TMP_RESET 22
#define CFG_TMP_KEYBOARD_EN 24
#define CFG_TMP_VCC_SETTLE_TIME 26

4.1.35 C2000GANG_GetLabel

See the Get Label command (Section 3.5.2.9) for detailed LABEL information.

Syntax

LONG C2000GANG_GetLabel(BYTE *Data)

Arguments

BYTE *Data Pointer to data buffer where the label is saved

Result

LONG Error code

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

C2000-GANG.dll Description www.ti.com

88 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Dynamic Link Library for C2000 Gang Programmer

4.1.36 C2000GANG_GetInfoMemory, C2000GANG_SetInfoMemory

Reads or writes 64 words to the internal Information memory. Information memory contains configuration
data such as LCD contrast and USB port configuration, and it is not intended to be modified by the user.
Use the GUI software to set the Information memory.

Syntax

LONG C2000GANG_GetOTPMemory(BYTE page, WORD *data)
LONG C2000GANG_SetOTPMemory(BYTE page, WORD *data)

Arguments

BYTE page Page info 0 or 1

WORD *data Pointer to or from data buffer

Result

LONG Error code

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

www.ti.com C2000-GANG.dll Description

89SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Dynamic Link Library for C2000 Gang Programmer

4.1.37 C2000GANG_Get_qty_MCU_Family, C2000GANG_Get_MCU_FamilyName,
C2000GANG_Check_MCU_Name, C2000GANG_Get_MCU_Name

Set of functions that allows to get names of all supported MCU’s, names of MCU groups and subgroups.

Syntax

LONG C2000GANG_Get_qty_MCU_Family(void)
LONG C2000GANG_Get_MCU_FamilyName(LONG index, LPTSTR name)
LONG C2000GANG_Check_MCU_Name(LPTSTR name)
LONG C2000GANG_Get_MCU_Name(LONG group_index, LONG index, LPTSTR name)

Use these functions in the following order:

typedef struct
{

int no;
char name[24];

} MCU_FAMILY;

MCU_FAMILY MCU_family_list[30];

typedef struct
{

int index;
char name[24];

} MCU_NAME;

MCU_NAME MCU_name_list[100];

n = C2000GANG_Get_qty_MCU_Family(); //get no of MCU groups
for(k=0; k<n; k++)
{
P = C2000GANG_Get_MCU_FamilyName(k, MCU_family_list[k].name);
If(p == 0) break;
MCU_family_list[k].no = p;

}

Currently following names and numbers should be received using above functions:

{ F28FIXED, " F28xx Fixed-point" },

{ F28PICCOLO, " F28xx Piccolo" },

{ F28DELFINO, " F28xx Delfino" },

List of the MCU names in selected group can be taken as follows (as an example - list of the MCUs from
the F28xx group (group number F28FIXED, defined in DLL header file)):

for(n = 0; n< 100; n++) MCU_name_list[n].index = 0;
for(n = 0; n< 100; n++)
{
p = C2000GANG_Get_MCU_Name(50, n, MCU_name_list[n].name);
if(p == 0) break;
MCU_name_list[n].index = n;

}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

C2000-GANG.dll Description www.ti.com

90 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Dynamic Link Library for C2000 Gang Programmer

4.1.38 C2000GANG_Set_MCU_Name

The C2000GANG_Set_MCU_Name allows to select desired target MCU.

Syntax

LONG C2000GANG_Set_MCU_Name(LPTSTR name);

Arguments

LPTSTR MCU_name MCU name, the same as it is listed in the GUI software

Result

LONG Error code

4.1.39 C2000GANG_HW_devices

The C2000GANG_HW_devices function scanning all available COM ports and saving information about
these ports in following structure.

#define MAX_COM_SIZE 60
#define HW_NAME_SIZE 30
typedef union
{

unsigned char bytes[HW_NAME_SIZE];
struct
{

unsigned short ComNo;
char ComName[7];
char description[HW_NAME_SIZE-2-7];

}x;
}COM_PORTS_DEF;
COM_PORTS_DEF *AvailableComPorts = NULL;
C2000GANG_HW_devices(MAX_COM_SIZE, (void **) &AvailableComPorts));

If detected, USB VCP information is placed at the first location.

Syntax

LONG C2000GANG_HW_devices(LONG max, void **AvailableComPorts)

Arguments

LONG max

void **AvailableComPorts

Result

LONG Error code

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

www.ti.com C2000-GANG.dll Description

91SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Dynamic Link Library for C2000 Gang Programmer

4.1.40 C2000GANG_GetProgressStatus

C2000GANG_GetProgressStatus gets progress status from C2000 Gang Programmer. The data received
contains a Gang Mask of all processes done in the previous function. Each bit in the Gang mask
represents one targeted device:

bit 0 → Target 1, bit 1 → Target 2, ... bit 7 → Target 8

For example, when connected_gang_mask is 0x7A, then targets 2, 4, 5, 6, and 7 are detected, and
communication with these targets is established. The cumulative mask contains the final result for all
targets.

Syntax

LONG C2000GANG_GetProgressStatus(void *lpData)

Arguments

void *lpData Pointer to structure below

Result

LONG Error code

#define SCRIPT_TEXT_SIZE 16
union GANG_PROGRESS_STATUS
{
BYTE bytes[PROGRESS_STATUS_SIZE+4];
struct
{
BYTE header;
BYTE ctr;
WORD task_ctr; //byte offset - 0
WORD chunk_ctr; //byte offset - 2
BYTE run; //byte offset - 4
BYTE ack; //byte offset - 5
WORD Finished_tasks_mask; //byte offset - 6,7

//--- task mask bits ----
// CONNECT_TASK_BIT 0x0001
// ERASE_TASK_BIT 0x0002
// BLANKCHECK_TASK_BIT 0x0004
// PROGRAM_TASK_BIT 0x0008
// VERIFY_TASK_BIT 0x0010
// SECURE_TASK_BIT 0x0020
// FREQ_TEST_TASK_BIT 0x0040
//spare 0x0080 to 0x4000
// RST_AND_START_FW_BIT 0x8000

BYTE cumulative; //byte offset - 8
//target masks
// TARGET_1_MASK 0x01
// TARGET_2_MASK 0x02
// TARGET_3_MASK 0x04
// TARGET_4_MASK 0x08
// TARGET_5_MASK 0x10
// TARGET_6_MASK 0x20
// TARGET_7_MASK 0x40
// TARGET_8_MASK 0x80

BYTE Rq_gang_mask; //byte offset - 9
BYTE Connected_gang_mask; //byte offset - 10
BYTE Erased_gang_mask; //byte offset - 11
BYTE BlankCheck_gang_mask; //byte offset - 12
BYTE Programmed_gang_mask; //byte offset - 13
BYTE Verified_gang_mask; //byte offset - 14
BYTE Secured_gang_mask; //byte offset - 15
BYTE spare[6]; //byte offset - 16..21

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

C2000-GANG.dll Description www.ti.com

92 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Dynamic Link Library for C2000 Gang Programmer

BYTE error_no; //byte offset - 22
BYTE VTIO_32mV; //byte offset - 23
BYTE VccSt_LOW; //byte offset - 24
BYTE VccSt_HI; //byte offset - 25

// VccSt_LOW, VccSt_HI provide 2 bits to each target.
// Bit A for each target and bit B for each target.
// Bits B A
// 0 0 Vcc below 0.7V

// 0 1 Vcc below Vcc min (0.7V < Vcc < Vcc min)
// 1 0 Vcc over Vcc min (OK status)
// 1 1 Vcc over 3.8V

BYTE VccErr; //byte offset - 26
//current Vcc below min

BYTE VccErr_Cumulative; //byte offset - 27
//Cumulative (during programing) Vcc below min

BYTE JTAG_init_err_mask; //byte offset - 28
BYTE JTAG_Fuse_already_blown_mask; //byte offset - 29
BYTE Wrong_MCU_ID_mask; //byte offset - 30
BYTE Progress_bar; //byte offset - 31

// 0...100%
char comment[SCRIPT_TEXT_SIZE]; //byte offset - 32..47

}st;
};

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

www.ti.com C2000-GANG.dll Description

93SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Dynamic Link Library for C2000 Gang Programmer

4.1.41 C2000GANG_GetAPIStatus

C2000GANG_GetAPIStatus gets the selected status or results from the C2000 Gang Programmer. The
following numbers (no) are available:

GET_APP_FLAGS 10
GET_LAST_STATUS 12
GET_LAST_ERROR_NO 14

Syntax

LONG C2000GANG_GetAPIStatus (LONG no, BYTE *data)

Arguments

LONG no Status type

BYTE *data Pointer to status results. See below.

Result

LONG Error code

no = GET_APP_FLAGS (10)

response:
Byte-0

b0 (LSB) Hardware rev-0
b1 initialization finished (after power-up)
b2 access key CRC error
b3 invalid access key
b4 running from SD card
b5 File in SD card found
b6 target secure device in process
b7 keypad enabled

Byte-1
b0 key pressed
b1..b7 spare

Byte-2 spare
Byte-3 spare

no = GET_LAST_STATUS (12)

response:
Byte-0 Error number in the last execute transaction
Byte-1 targets connection mask
Byte-2 active targets mask
Byte-3 targets error mask
Byte-4..7 spare

no = GET_LAST_ERROR_NO (14)

Byte-0 last error number from C2000 Gang Programmer for any command
error numbers 1...255 - see error list numbers

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

C2000-GANG.dll Description www.ti.com

94 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Dynamic Link Library for C2000 Gang Programmer

4.1.42 C2000GANG_Set_IO_State

The C2000GANG_Set_IO_State modifies the static levels on the I/O pins (JTAG lines). The JTAG lines
can be set to the desired level (low or high) or they can be high impedance. The state and the level can
be the same on all outputs. The level on one selected line (RST, TDI, TDOI, TMS or BSL-RX) can be
different for each target.

Syntax

LONG C2000GANG_Set_IO_State(long Vcc_mV, BYTE * data);

Arguments

Vcc_mV Voltage level in mV on the target’s VCC

data[0] Open destination buffer for output and transferred data for each targets.
0 = None
1 = TDI (target1 to target8)
2 = TDOI (target1 to target8)
3 = TMS (target1 to target8)
4 = RST (target1 to target8)
5 = BSL-RX (target1 to target8)

data[1] Data transferred to the buffer above.
b0 to b7 - target1 to target8

data[2] Output enable bits: 0 = high impedance, 1 = output
b2 (0x04) - common RST - the same state for all 8 targets (Note: if the RST buffer
above is selected, then this state is ignored)
b3 (0x08) - common TEST - the same state for all 8 targets
b4 (0x10) - common TCK - the same state for all 8 targets
b5 (0x20) - common TMS - the same state for all 8 targets (Note: if the TMS buffer
above is selected, then this state is ignored)

data[3] Output level on all targets: 0 = LOW, 1 = HIGH
b2 (0x04) - common RST - the same level for all eight targets (Note: if the RST
buffer above is selected, then this state is ignored)
b3 (0x08) - common TEST - the same level for all eight targets
b4 (0x10) - common TCK - the same level for all eight targets
b5 (0x20) - common TMS - the same level for all eight targets (Note: if the TMS
buffer above is selected, then this state is ignored)

data[4] VCC enable bits to each target
b0 to b7 - target1 to target8

data[5] ICC HI enable: 0 = disable, 1 = enable

data[6] spare

data[7] spare

Example 1

Generate a short RST pulse on target 1 only and force RST level LOW on targets 2 to 5 and RST level
HIGH on targets 6 and 7. VCC on targets 1 to 7 is 3.3 V (0x0CE4) and on target 8 is 0 V (disabled).

WORD data[4] = { 0460 0000 7F00 0000 };
C2000GANG_Set_IO_State(3300, data);

then

data[0] = 0x0461;
C2000GANG_Set_IO_State(3300, data);

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

www.ti.com C2000-GANG.dll Description

95SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Dynamic Link Library for C2000 Gang Programmer

Example 2

Generate a short RST pulse on all targets. VCC on targets 1 to 7 is 3.3 V (0x0CE4) and on target 8 is 0 V
(disabled).

WORD data[4] = { 0000 0400 7F00 0000 };
C2000GANG_Set_IO_State(3300, data);

then

data[2] = 0x0400;
C2000GANG_Set_IO_State(3300, data);

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

96 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Schematics

Chapter 5
SPRUHS0C–February 2014–Revised March 2016

Schematics

The following pages show the schematics for the C2000 Gang Programmer.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

C2000-GANG_simlified.sch-1 - Tue Feb 25 19:16:30 2014

www.ti.com

97SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Schematics

Figure 5-1. C2000 Gang Programmer Simplified Schematic (1 of 3)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

C2000-GANG_simlified.sch-2 - Tue Feb 25 19:16:30 2014

www.ti.com

98 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Schematics

Figure 5-2. C2000 Gang Programmer Simplified Schematic (2 of 3)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

C2000-GANG_simlified.sch-3 - Tue Feb 25 19:16:30 2014

www.ti.com

99SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Schematics

Figure 5-3. C2000 Gang Programmer Simplified Schematic (3 of 3)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

www.ti.com

100 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Schematics

Figure 5-4. C2000 Gang Splitter rev. 0 Schematic

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

www.ti.com

101SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Schematics

Table 5-1. Gang Splitter rev. 0 Bill of Materials (BOM)

Item Name
Drawing and Part

Number
Qt. Description

1 BLANK PC BOARD C2000-GANG-SP rev-0 1 Blank PC Board

THROUGH HOLE COMPONENTS

1,2,3,4,5,6,7,8 Connector 35-514-0 8
14-pins Header Connector (Mode Electronics /

Electrosonic)

J9 Connector TX24-100R-LT-H1E 1 100p-Receptical Right Angle Connector (JAE Electronics)

Bumpers SJ61A6 3 Bumpon cylindrical 0.312 x 0.215, black

SMT COMPONENTS

C1,C2,C3,C4,C5,C
6,C7,C8

Tantalum Capacitor TAJA225K016R 8 Cap Tan Chip 2.2uF 16V 10% Size-A (AVX or eq.)

C9,C10 Tantalum Capacitor TAJC476K016R 2 Cap Tan Chip 47uF 16V 10% Size-C (AVX or eq.)

C11,C12 Capacitor 0603YC224KAT2A 2 Cap Cer Chip 0.22uF X7R 10% 16V 0603 (AVX or eq.)

D1 Diode
MBRS130LT3 or

B130B-13-F
1 Schottky Diode 2A/30V SMB (On Semi / Diodes Inc)

R1,R2,R3,R4,R5,R
6,R7,R8

Resistor MCR03 EZP J 473 8 SMD Chip Res 47 kOhm 5% 1/10W 0603

U1,U2,U3,U4,U5,U
6,U7,U8

IC REG102GA-3.3 8 LDO - 3.3V (TI)

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

www.ti.com

102 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Schematics

Figure 5-5. C2000 Gang Splitter rev.1 Schematic

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

103SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Supported MCU List

Table 5-2. Gang Splitter rev. 1 Bill of Materials (BOM)

Item Name
Drawing and Part

Number
Qt. Description

1 BLANK PC BOARD C2000-GANG-SP rev-1 1 Blank PC Board

1,2,3,4,5,6,7,8 Connector
SBH11-PBPC-D07-ST-

BK
8 14-pins Header Connector (Sullins)

J9 Connector TX24-100R-LT-H1E 1 100p-Receptical Right Angle Connector (JAE Electronics)

Bumpers SJ61A6 3 Bumpon cylindrical 0.312 x 0.215, black

Chapter 6
SPRUHS0C–February 2014–Revised March 2016

Supported MCU List

6.1 F28x Fixed Point MCU

TMS320F2801, TMS320F28015, TMS320F28016, TMS320F2802, TMS320F28044, TMS320F2806,
TMS320F2808, TMS320F2809, TMS320F2810, TMS320F2811, TMS320F2812, TMS320F28232,
TMS320F28234, TMS320F28235

6.2 Piccolo™ F280x

TMS320F28022, TMS320F28023, TMS320F28024, TMS320F28025, TMS320F28026, TMS320F28027,
TMS320F28035, TMS320F28032, TMS320F28033, TMS320F28034, TMS320F28030, TMS320F28031,
TMS320F28021, TMS320F28020, TMS320F280200, TMS320F28062, TMS320F28062U,
TMS320F28063, TMS320F28063U, TMS320F28064, TMS320F28064U, TMS320F28065,
TMS320F28065U, TMS320F28066, TMS320F28066U, TMS320F28067, TMS320F28067U,
TMS320F28068, TMS320F28068U, TMS320F28069, TMS320F28069U, TMS320F28050,
TMS320F28051, TMS320F28052, TMS320F28052F, TMS320F28052M, TMS320F28053,
TMS320F28054, TMS320F28054F, TMS320F28054M, TMS320F28055, TMS320F280220,
TMS320F280230, TMS320F280260, TMS320F280270, TMS320F28075, TMS320F28074

6.3 Delfino F283xx

TMS320F28332, TMS320F28334, TMS320F28335, TMS320F28377D, TMS320F28376D,
TMS320F28375D, TMS320F28374D, TMS320F28376S, TMS320F28374S

6.4 C28x + ARM®

F28M35H52C, F28M35H22C, F28M35M52C, F28M35M22C, F28M35M20B, F28M35E20B,
F28M36P63C, F28M36P53C, F28M36H53C, F28M36H53B, F28M36H33C, F28M36H33B

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

Revision History www.ti.com

104 SPRUHS0C–February 2014–Revised March 2016
Submit Documentation Feedback

Copyright © 2014–2016, Texas Instruments Incorporated

Revision History

Revision History

Changes from B Revision (November 2015) to C Revision ... Page

• Added the text before "TRACEOFF - Disable Tracing". .. 23

• Added Section 2.1.3.4 Commands Combined With the Executable File... 25

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHS0C

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive

Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers

DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP dsp.ti.com Energy and Lighting www.ti.com/energy

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial

Interface interface.ti.com Medical www.ti.com/medical

Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	Table of Contents
	Preface
	1 Introduction
	1.1 Software Installation
	1.2 Driver Installation
	1.3 Hardware Installation

	2 Operation
	2.1 Programming C2000 Flash Devices Using the C2000 Gang Programmer
	2.1.1 Programming Using Interactive Mode
	2.1.1.1 GO
	2.1.1.2 Erase
	2.1.1.3 Blank Check
	2.1.1.4 Program
	2.1.1.5 Verify
	2.1.1.6 Read

	2.1.2 Programming >From Image
	2.1.3 Programming From Script
	2.1.3.1 Script Limitations
	2.1.3.2 Command Syntax
	2.1.3.3 Instructions
	2.1.3.4 Commands Combined With the Executable File

	2.1.4 Programming in Standalone Mode
	2.1.5 Memory Setup for GO, Erase, Program, Verify, and Read
	2.1.6 Creating and Using Images
	2.1.7 Programming >From Image File
	2.1.8 Programming >From SD Card
	2.1.9 File Extensions
	2.1.10 Checksum Calculation

	2.2 Data Viewers
	2.3 Status Messages
	2.4 Self Test
	2.5 Label
	2.6 Benchmarks
	2.6.1 Benchmark for C28035

	3 Firmware
	3.1 Commands
	3.2 Firmware Interface Protocol
	3.3 Synchronization Sequence
	3.4 Command Messages
	3.4.1 Frame Structure
	3.4.2 Checksum

	3.5 Detailed Description of Commands
	3.5.1 General
	3.5.2 Commands Supported by the BOOT Loader
	3.5.2.1 "Hello"
	3.5.2.2 Boot Commands Disable
	3.5.2.3 Boot Commands Enable
	3.5.2.4 Diagnostic
	3.5.2.5 Set Baud Rate
	3.5.2.6 Erase Firmware
	3.5.2.7 Load Firmware
	3.5.2.8 Exit Firmware Update Command
	3.5.2.9 Get Label
	3.5.2.10 Get Progress Status

	3.5.3 Commands Supported by Application Firmware
	3.5.3.1 Select Image
	3.5.3.2 Main Process
	3.5.3.3 Set Temporary Configuration
	3.5.3.4 Get Gang Status
	3.5.3.5 Read Gang Buffer
	3.5.3.6 Write Gang Buffer

	3.5.4 API Firmware Commands That Should Not be Used
	3.5.4.1 Interactive Task
	3.5.4.2 Erase Image
	3.5.4.3 Get Info C-D
	3.5.4.4 Write Info C-D
	3.5.4.5 Verify Access Key
	3.5.4.6 Load Image
	3.5.4.7 Verify Image CRC
	3.5.4.8 Get Image Header
	3.5.4.9 Disable API Interrupts
	3.5.4.10 Display Message
	3.5.4.11 Set IO State
	3.5.4.12 Remote Selftest

	4 Dynamic Link Library for C2000 Gang Programmer
	4.1 C2000-GANG.dll Description
	4.1.1 C2000GANG_GetDataBuffers_ptr
	4.1.2 C2000GANG_SetGangBuffer, C2000GANG_GetGangBuffer
	4.1.3 C2000GANG_GetDevice
	4.1.4 C2000GANG_LoadFirmware
	4.1.5 C2000GANG_InitCom
	4.1.6 C2000GANG_ReleaseCom
	4.1.7 C2000GANG_GetErrorString
	4.1.8 C2000GANG_SelectBaudrate
	4.1.9 C2000GANG_GetDiagnostic
	4.1.10 C2000GANG_MainProcess
	4.1.11 C2000GANG_InteractiveProcess
	4.1.12 C2000GANG_Interactive_Open_Target_Device
	4.1.13 C2000GANG_Interactive_Close_Target_Device
	4.1.14 C2000GANG_Interactive_DefReadTargets
	4.1.15 C2000GANG_Interactive_ReadTargets
	4.1.16 C2000GANG_Interactive_ReadWords
	4.1.17 C2000GANG_Interactive_WriteWord_to_RAM
	4.1.18 C2000GANG_Interactive_WriteWords_to_RAM
	4.1.19 C2000GANG_Interactive_WriteWords_to_FLASH
	4.1.20 C2000GANG_Interactive_Copy_Gang_Buffer_to_RAM
	4.1.21 C2000GANG_Interactive_Copy_Gang_Buffer_to_FLASH
	4.1.22 C2000GANG_Interactive_EraseSectors
	4.1.23 C2000GANG_Interactive_BlankCheck
	4.1.24 C2000GANG_SelectImage
	4.1.25 C2000GANG_EraseImage
	4.1.26 C2000GANG_CreateGangImage
	4.1.27 C2000GANG_LoadImageBlock
	4.1.28 C2000GANG_VerifyPSAImageBlock
	4.1.29 C2000GANG_ReadImageBlock
	4.1.30 C2000GANG_Read_Code_File
	4.1.31 C2000GANG_Save_Config, C2000GANG_Load_Config, C2000GANG_Default_Config
	4.1.32 C2000GANG_SetConfig, C2000GANG_GetConfig
	4.1.33 C2000GANG_GetNameConfig, C2000GANG_SetNameConfig
	4.1.34 C2000GANG_SetTmpGANG_Config
	4.1.35 C2000GANG_GetLabel
	4.1.36 C2000GANG_GetInfoMemory, C2000GANG_SetInfoMemory
	4.1.37 C2000GANG_Get_qty_MCU_Family, C2000GANG_Get_MCU_FamilyName, C2000GANG_Check_MCU_Name, C2000GANG_Get_MCU_Name
	4.1.38 C2000GANG_Set_MCU_Name
	4.1.39 C2000GANG_HW_devices
	4.1.40 C2000GANG_GetProgressStatus
	4.1.41 C2000GANG_GetAPIStatus
	4.1.42 C2000GANG_Set_IO_State

	5 Schematics
	6 Supported MCU List
	6.1 F28x Fixed Point MCU
	6.2 Piccolo F280x
	6.3  Delfino F283xx
	6.4 C28x + ARM

	Revision History
	Important Notice

