SCR

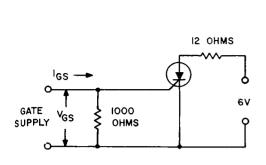
The 2N1595 series of Silicon Controlled Rectifiers are planar-passivated, all-diffused, three junction, reverse blocking triode thyristors for low power switching and control applications. The 2N2322 series, which is also available, offers additional maximum specified electrical parameters.

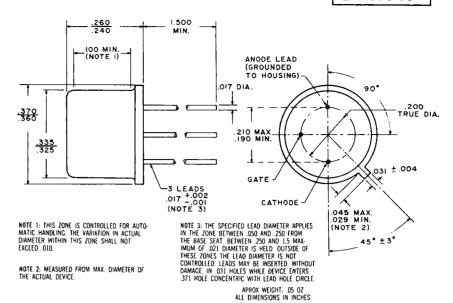
- Painted external surface for maximum heat dissipation
- Single-ended package, ideal for printed circuit applications
- All-welded construction
- All-diffused, planar passivated
- Glass-to-metal seals

MAXIMUM ALLOWABLE RATINGS

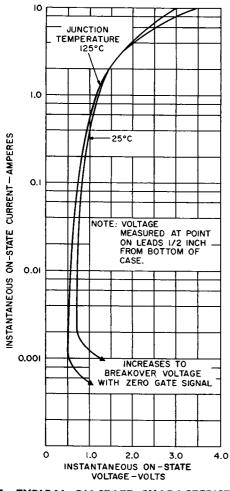
ТҮРЕ	REPETITIVE PEAK OFF-STATE VOLTAGE, $V_{\mathrm{DRM}}(1)$	PEAK POSITIVE ANODE VOLTAGE PFV	REPETITIVE PEAK REVERSE VOLTAGE, V _{RRM}				
	$T_{\rm c} = -65^{\circ}\text{C to} + 125^{\circ}\text{C}$						
2N1595	50 Volts*	500 Volts	50 Volts*				
2N1596	100 Volts*	500 Volts	100 Volts*				
2N1597	200 Volts*	500 Volts	200 Volts *				
2N1598	300 Volts*	500 Volts	300 Volts*				
2N1599	400 Volts*	500 Volts	400 Volts*				

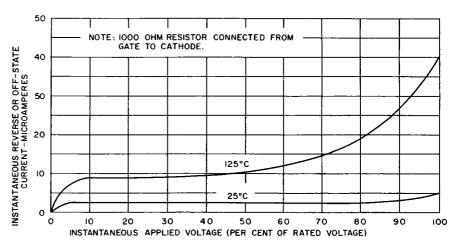
(1) Applies for 1000 ohms maximum, connected gate-to-cathode.


RMS On-State Current, I _{T(RMS)}	. 1.6 Amperes (all conduction angles)
Average On-State Current, I _{T(AV)}	Depends on conduction angle
	(see Charts 3, 4, 5 and 6)
Peak One-Cycle Surge (Non-rep) On-State Current, I _{TSM}	15 Amperes*
Peak Gate Power Dissipation, P _{GM}	0.1 Watts
Average Gate Power Dissipation, $P_{G(AV)}$	0.01 Watts
Peak Positive Gate Current, I _{GM}	0.1 Amperes
Peak Positive Gate Voltage, V _{GM}	6 Volts
Peak Negative Gate Voltage, V _{GM}	$\dots \dots $
Storage Temperature, T _{STG}	-65 °C to $+150$ °C*
Operating Temperature, T_J	$\dots \dots -65^{\circ}C$ to $+150^{\circ}C$

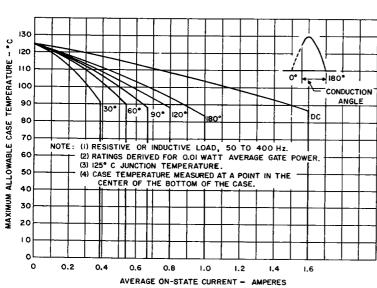

^{*} Indicates data included in JEDEC type number registration.

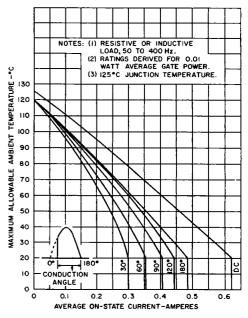
OUTLINE DRAWING (Conforms to JEDEC TO-5 Package Outline)


2N1595-99



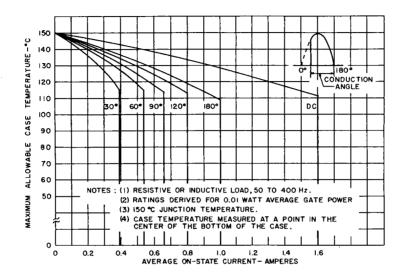
TEST	SYMBOL	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
Peak Off-State and Reverse Current	$egin{array}{c} I_{ m DRM} & \& & & & & & & & & & & & & & & & & & $		2.0 100	10 1000*	$\mu {f A}$	$V_{\mathrm{DRM}} = V_{\mathrm{RRM}} = \mathrm{Rated}$ volts peak, $R_{\mathrm{GK}} = 1000$ ohms. $T_{\mathrm{C}} = +25^{\circ}\mathrm{C}$ $T_{\mathrm{C}} = +125^{\circ}\mathrm{C}$
D.C. Gate Trigger Current	I _{GS} ⁽¹⁾		0.9	10*	mAdc	$T_{\rm C} = +25$ °C, $V_{\rm D} = 6$ Vdc, $R_{\rm L} = 12$ ohms
D.C. Gate Trigger Voltage	V_{GT}	_	0.6	3.0*	Vdc	$T_{\rm C} = +25^{\circ}{ m C}, V_{\rm D} = 6 { m Vdc}, R_{\rm L} = 12 { m ohms}$
Peak On-State Voltage	V_{TM}		1.25	2.0 *	Volts	$T_{\rm C} = +25 {\rm ^{\circ}C}$, $I_{\rm TM} = 1.0$ A peak, 1 msec. wide pulse. Duty cycle $\leq 2\%$.
Holding Current	I _H		1.0		mAdc	$T_{\rm C}=+25^{\circ}{ m C}, { m Anode Source Voltage}=12$ Vdc, $R_{ m GK}=1000 { m ohms}.$
Circuit Commutated Turn-Off Time	$^{ m t_q}$		40		μsec	$T_{\rm C} = +125 ^{\circ}{\rm C}$, $I_{\rm TM} = 1.0$ A peak. Rectangular current pulse, $50~\mu{\rm sec}$ duration. Rate of rise of current $< 10 {\rm A}/\mu{\rm sec}$. Commutation rate $\le 5 {\rm A}/\mu{\rm sec}$. Peak reverse voltage = Rated $V_{\rm RRM}$ volts max. Reverse voltage at end of turn-off time interval 15 volts. Repetition rate = $60~{\rm pps}$. Rate of rise of re-applied off-state voltage (dv/dt) = $20~V/\mu{\rm sec}$. Off-state voltage = Rated $V_{\rm DRM}$ volts. Gate bias during turn-off time interval = $0~{\rm volts}$, $100~{\rm ohms}$.
Turn-On Time	t _a + t _r		1.2	_	μsec	$T_{\rm C}=+25{\rm ^{\circ}C}, V_{\rm D}={ m Rated}~V_{ m DRM}$ value. $I_{ m TM}=1.0~{ m A}.$ Gate trigger pulse = 6 volts, 300 ohms, 5 $\mu{ m sec}~{ m wide}, 0.1~\mu{ m sec}~{ m rise}~{ m time}.$ Gate bias = 0 volts, 300 ohms.


^{*} Indicates data included in JEDEC type number registration. NOTE: (1) I_{GS} is defined in the circuit below:

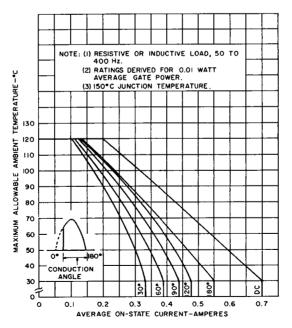


2. TYPICAL OFF-STATE AND REVERSE BLOCKING CHARACTERISTICS

1. TYPICAL ON-STATE CHARACTERISTICS



3. MAXIMUM ALLOWABLE CASE TEMPERATURE (150°C Junction Temp.)



4. MAXIMUM ALLOWABLE AMBIENT TEMPERATURE (125°C Junction Temp.)

Charts 5 and 6 apply to latching applications where SCR need not block off-state voltage after being turned on, since the $V_{\rm DRM}$ specification does not apply above + 125°C junction temperature. SCR will again block rated off-state voltage after junction temperature drops below + 125°C.

5. MAXIMUM ALLOWABLE CASE TEMPERATURE (125°C Junction Temp.)

6. MAXIMUM ALLOWABLE AMBIENT TEMPERATURE (150°C Junction Temp.)