



# USB4640/USB4640i

# High-Speed Inter-Chip (HSIC) USB 2.0 Hub and Flash Media Controller

# **PRODUCT FEATURES**

### **General Description**

The SMSC USB4640/USB4640i is a Hi-Speed HSIC USB hub and card reader combo solution with an upstream port that is compliant to HSIC 1.0 (supplement to the USB 2.0 Specification). The two downstream ports are compliant with the USB 2.0 Specification.

High-Speed Inter-Chip (HSIC) is a digital interconnect bus that enables the use of USB technology as a low-power chipto-chip interconnect at speeds up to 480 Mb/s. The HSIC interface is an industry standard 2-pin digital interface which uses standard USB software. The USB4640/USB4640i provides an ultra fast interface between an HSIC enabled host and several popular flash media formats. The controller allows read/write capability to flash media from the following families:

- Secure Digital<sup>TM</sup> (SD)
- MultiMediaCard<sup>TM</sup> (MMC)
- Memory Stick<sup>®</sup> (MS)
- xD-Picture Card<sup>™</sup> (xD)<sup>1</sup>

The USB4640/USB4640i combo solution leverages SMSC's innovative technology that delivers industry-leading data throughput in mixed-speed USB environments. Average sustained transfer rates exceeding 35 MB/s are possible<sup>2</sup>.

### **Highlights**

- Upstream HSIC port and 2 exposed Hi-Speed USB 2.0 downstream ports for external peripheral expansion
- Dedicated flash media reader internally attached to a 3rd downstream port of the hub as a USB compound device
   — single or multiplexed flash media reader interface
- PortMap
  - Flexible port mapping and disable sequencing
- PortSwap
  - Programmable USB differential-pair pin locations ease PCB design by aligning USB signal lines directly to connectors
- PHYBoost
  - Programmable USB signal drive strength for recovering signal integrity using 4-level driving strength resolution

2. Host and media dependent.

#### **Features**

- Compliance with the following flash media card specifications SD 2.0; MMC 4.2; MS 1.43; MS-Pro 1.02; MS-Pro-HG 1.01; MS-Duo 1.10; and xD 1.2
- Low-power digital HSIC interface offers a replacement for onboard host and device connection for analog USB bus cable
- HSIC interface enables printers, mobile PCs, ultra-mobile PCs, and cell phone products to reduce the total power budget
- HSIC interface provides use of USB connectivity and compatibility with existing USB drivers and software
- External 1.2 V reference allows upstream/downstream HSIC links to use the same voltage reference
- Supports a single external 3.3 V supply source; internal regulators provide 1.8 V internal core voltage for additional bill of materials and power savings
- The hub transaction translator (TT) supports Full-Speed and Low-Speed peripheral operation
- 9 KB RAM | 64 KB on-chip ROM
- Enhanced EMI rejection and ESD protection performance
- Hub and flash media reader/writer configuration from a single source:
  - Configures internal code using an external I<sup>2</sup>C EEPROM
  - Supports external code using an SPI Flash EEPROM
  - Customizable vendor ID, product ID, and language ID if using an external EEPROM
- Up to 9 configurable GPIOs for special functions
- The USB4640 supports the commercial temperature range of 0°C to +70°C
- The USB4640i supports the industrial temperature range of -40°C to +85°C
- 48-pin QFN (7 x 7 mm) lead-free, RoHS compliant package

#### **Applications**

- 3G/4G handsets, smartphones, cell phones, and other mobile devices
- Desktop and mobile PCs
- Printers
- GPS navigation systems
- Media players/viewers
- Consumer A/V
- Set-top boxes
- Industrial products

<sup>1.</sup> Obtain user license from the xD-Picture Card License Office.

#### **Order Number(s):**

# USB4640/USB4640i-HZH-xx for 48-pin, QFN lead-free RoHS compliant package

### USB4640/USB4640i-HZH-TR-xx for 48-pin, QFN lead-free RoHS compliant tape and reel package

"XX" in the order number indicates the internal ROM firmware revision level. Please contact SMSC for more information.

#### This product meets the halogen maximum concentration values per IEC61249-2-21

For RoHS compliance and environmental information, please visit www.smsc.com/rohs

Please contact your SMSC sales representative for additional documentation related to this product such as application notes, anomaly sheets, and design guidelines.

Copyright © 2013 SMSC or its subsidiaries. All rights reserved.

Circuit diagrams and other information relating to SMSC products are included as a means of illustrating typical applications. Consequently, complete information sufficient for construction purposes is not necessarily given. Although the information has been checked and is believed to be accurate, no responsibility is assumed for inaccuracies. SMSC reserves the right to make changes to specifications and product descriptions at any time without notice. Contact your local SMSC sales office to obtain the latest specifications before placing your product order. The provision of this information does not convey to the purchaser of the described semiconductor devices any licenses under any patent rights or other intellectual property rights of SMSC or others. All sales are expressly conditional on your agreement to the terms and conditions of the most recently dated version of SMSC's standard Terms of Sale Agreement dated before the date of your order (the "Terms of Sale Agreement"). The product may contain design defects or errors anomalies which may cause the product's functions to deviate from published specifications. Anomaly sheets are available upon request. SMSC products are not designed, intended, authorized or warranted for use in any life support or other application where product failure could cause or contribute to personal injury or severe properly damage. Any and all such uses without prior written approval of an Officer of SMSC and further testing and/or modification will be fully at the risk of the customer. Copies of this document or other SMSC literature, as well as the Terms of Sale Agreement, may be obtained by visiting SMSC's website at http://www.smsc.com. SMSC is a registered trademarks of Standard Microsystems Corporation ("SMSC"). Product names and company names are the trademarks of their respective holders.

The Microchip name and logo, and the Microchip logo are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SMSC DISCLAIMS AND EXCLUDES ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIMITATION ANY AND ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND AGAINST INFRINGEMENT AND THE LIKE, AND ANY AND ALL WARRANTIES ARISING FROM ANY COURSE OF DEALING OR USAGE OF TRADE. IN NO EVENT SHALL SMSC BE LIABLE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES; OR FOR LOST DATA, PROFITS, SAVINGS OR REVENUES OF ANY KIND; REGARDLESS OF THE FORM OF ACTION, WHETHER BASED ON CONTRACT; TORT; NEGLIGENCE OF SMSC OR OTHERS; STRICT LIABILITY; BREACH OF WARRANTY; OR OTHERWISE; WHETHER OR NOT ANY REMEDY OF BUYER IS HELD TO HAVE FAILED OF ITS ESSENTIAL PURPOSE, AND WHETHER OR NOT SMSC HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

# Conventions

| Example                 | Description                                                                                                                                                    |  |  |  |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| BIT                     | Name of a single bit within a field                                                                                                                            |  |  |  |
| FIELD.BIT               | Name of a single bit (BIT) in FIELD                                                                                                                            |  |  |  |
| ху                      | Range from x to y, inclusive                                                                                                                                   |  |  |  |
| BITS[m:n]               | Groups of bits from m to n, inclusive                                                                                                                          |  |  |  |
| PIN                     | Pin Name                                                                                                                                                       |  |  |  |
| zzzzb                   | Binary number (value zzzz)                                                                                                                                     |  |  |  |
| 0xzzz                   | Hexadecimal number (value zzz)                                                                                                                                 |  |  |  |
| zzh                     | Hexadecimal number (value zz)                                                                                                                                  |  |  |  |
| rsvd                    | Reserved memory location. Must write 0, read value indeterminate                                                                                               |  |  |  |
| N/A                     | Not applicable                                                                                                                                                 |  |  |  |
| code                    | Instruction code, or API function or parameter                                                                                                                 |  |  |  |
| Multi Word Name         | Used for multiple words that are considered a single unit, such as:<br>Resource Allocate message, or Connection Label, or Decrement Stack Pointer instruction. |  |  |  |
| Section Name            | Section or Document name.                                                                                                                                      |  |  |  |
| VAL                     | Over-bar indicates active low pin or register bit                                                                                                              |  |  |  |
| х                       | Don't care                                                                                                                                                     |  |  |  |
| <parameter></parameter> | <> indicate a Parameter is optional or is only used under some conditions                                                                                      |  |  |  |
| {,Parameter}            | Braces indicate Parameter(s) that repeat one or more times.                                                                                                    |  |  |  |
| [Parameter]             | Brackets indicate a nested Parameter. This Parameter is not real and actually decodes into one or more real parameters.                                        |  |  |  |

Within this manual, the following abbreviations and symbols are used to improve readability.

# **Table of Contents**

| Chap       | oter 1 Overview                                         | . 8 |
|------------|---------------------------------------------------------|-----|
| 1.1        | Hardware Features                                       |     |
| 1.2        | Software Features                                       |     |
| 1.3        | OEM Selectable Hub Features                             |     |
| Chap       | oter 2 Block Diagram                                    | 10  |
| Chap       | oter 3 Pinning Information                              | 11  |
| 3.1        | Pin Configurations                                      | 11  |
| 3.2        | 48-Pin List                                             | 12  |
| 3.3        | Pin Descriptions                                        |     |
| 3.4        | Buffer Type Descriptions                                | 18  |
| 3.5        | Port Power Control                                      |     |
|            | 3.5.1 Port Power Control Using a USB Power Switch       | 20  |
|            | 3.5.2 Port Power Control Using a Poly Fuse              | 20  |
| 3.6        | ROM BOOT Sequence                                       | 21  |
| 3.7        | Pin Reset States                                        | 22  |
|            |                                                         | 25  |
| -          | oter 4 Configuration Options                            |     |
| 4.1<br>4.2 | Hub                                                     |     |
| 4.2<br>4.3 | Card Reader                                             |     |
| 4.3        | 4.3.1 EEPROM/SPI Interface                              |     |
|            | 4.3.1 EEPROM/SPTIMenace                                 |     |
| 4.4        | •                                                       |     |
| 4.4        | Internal Flash Media Controller Extended Configurations |     |
|            | · · · · · · · · · · · · · · · · · · ·                   |     |
|            | · · · · · · · · · · · · · · · · · · ·                   |     |
|            |                                                         |     |
|            | <ul> <li>4.4.4 Hub Controller Configurations</li></ul>  |     |
|            | 4.4.6 I <sup>2</sup> C EEPROM                           |     |
|            |                                                         |     |
| 4.5        |                                                         |     |
| 4.5        | Default Configuration Option                            |     |
|            | 4.5.1 External Hardware IRESET                          |     |
|            | 4.5.2 USB Bus Resel                                     | 40  |
| Chan       | oter 5 AC Specifications                                | 49  |
| 5.1        | Oscillator/Crystal.                                     | -   |
| 5.2        | Ceramic Resonator                                       |     |
| 5.3        | External Clock.                                         |     |
| 5.5        | 5.3.1 I <sup>2</sup> C EEPROM                           |     |
|            | 5.3.2 USB 2.0                                           |     |
|            | 0.0.2 00D 2.0                                           |     |
| Chan       | oter 6 DC Parameters                                    | 51  |
| 6.1        | Maximum Guaranteed Ratings                              |     |
| 6.2        | Operating Conditions                                    |     |
| 6.3        | DC Electrical Characteristics                           |     |
| 6.4        | Capacitance                                             |     |
|            |                                                         | _   |
| Chap       | oter 7 GPIO Usage                                       | 57  |

| Chap | ter 8  | Package Specifications | 58 |
|------|--------|------------------------|----|
| 8.1  | Tape a | nd Reel Specifications | 59 |

High-Speed Inter-Chip (HSIC) USB 2.0 Hub and Flash Media Controller

### Datasheet

# **List of Tables**

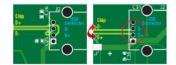
| Table 3.1 | USB4640/USB4640i 48-Pin List                            | 12 |
|-----------|---------------------------------------------------------|----|
| Table 3.2 | USB4640/USB4640i Pin Descriptions                       | 13 |
| Table 3.3 | USB4640/USB4640i Buffer Type Descriptions               | 18 |
| Table 3.4 | Legend for Pin Reset States Table.                      | 23 |
| Table 3.5 | USB4640/USB4640i Reset States Table                     | 23 |
| Table 4.1 | Internal Flash Media Controller Configurations          | 26 |
| Table 4.2 | Hub Controller Configurations                           | 27 |
| Table 4.3 | Other Internal Configurations                           | 28 |
| Table 4.4 | Internal Flash Media Controller Extended Configurations | 28 |
| Table 4.5 | Port Map Register for Ports 1 and 2                     | 44 |
| Table 4.6 | Port Map Register for Port 3                            | 45 |
| Table 4.7 | nRESET Timing for EEPROM Mode                           | 48 |
| Table 5.1 | Crystal Circuit Legend                                  |    |
| Table 6.1 | Pin Capacitance                                         | 56 |
| Table 7.1 | USB4640/USB4640i GPIO Usage                             | 57 |
|           |                                                         |    |

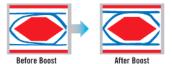
# List of Figures

| Figure 2.1 | USB4640/USB4640i Block Diagram.                               | 10 |
|------------|---------------------------------------------------------------|----|
| Figure 3.1 | USB4640/USB4640i 48-Pin QFN                                   |    |
| Figure 3.2 | Port Power Control with USB Power Switch                      | 20 |
| Figure 3.3 | Port Power Control with a Single Poly Fuse and Multiple Loads | 21 |
| Figure 3.4 | Port Power with Ganged Control with Poly Fuse                 |    |
| Figure 3.5 | SPI ROM Connection                                            |    |
| Figure 3.6 | I <sup>2</sup> C Connection                                   | 22 |
| Figure 3.7 | Pin Reset States                                              | 22 |
| Figure 4.1 | nRESET Timing for EEPROM Mode                                 | 47 |
| Figure 5.1 | Typical Crystal Circuit                                       | 49 |
| Figure 5.2 | Capacitance Formulas                                          | 49 |
| Figure 5.3 | Ceramic Resonator Usage with SMSC IC                          | 50 |
| Figure 6.1 | Supply Rise Time Model.                                       |    |
| Figure 8.1 | USB4640/USB4640i 48-Pin QFN                                   | 58 |
| Figure 8.2 | 48-Pin Package Tape Specifications                            | 59 |
| Figure 8.3 | 48-Pin Package Reel Specifications                            |    |

# **Chapter 1 Overview**

The USB4640/USB4640i is a Hi-Speed HSIC USB hub and card reader combo solution with an upstream port compliant to the *High-Speed Inter-Chip USB Electrical Specification Revision 1.0* [2]. The two downstream ports are USB 2.0 compliant, and the dedicated flash media reader/writer is internally attached to a 3<sup>rd</sup> downstream port as a USB compound device.


High-Speed Inter-Chip (HSIC) is a digital interconnect bus that enables the use of USB technology as a low-power chip-to-chip interconnect at speeds up to 480 Mb/s (see the *High-Speed Inter-Chip USB Electrical Specification Revision 1.0*). This combo solution supports several multi-format flash media cards. This multi-format flash media controller and USB hub combo features two exposed downstream USB ports available for external peripheral expansion.


The USB4640/USB4640i can attach to an upstream port as a Full- or Full/Hi-Speed hub. The hub supports Low-Speed, Full-Speed, and Hi-Speed downstream devices (if operating as a Hi-Speed hub) on all of the enabled downstream ports.

All required resistors on the USB ports are integrated into the hub, including all series termination resistors on D+ and D– pins and all required pull-down and pull-up resistors. The over-current sense inputs for the downstream facing ports have internal pull-up resistors.

The USB4640/USB4640i includes programmable features, such as:

- PortMap: provides flexible port mapping and disable sequences. The downstream ports of a USB4640/USB4640i hub can be reordered or disabled in any sequence to support multiple platform designs with minimum effort. For any port that is disabled, the USB4640/USB4640i hub controllers automatically reorder the remaining ports to match the USB host controller's port numbering scheme.
- PortSwap: adds per-port programmability to USB differentialpair pin locations. PortSwap also allows direct alignment of USB signals (D+/D-) to connectors to avoid uneven trace length or crossing of the USB differential signals on the PCB.
- PHYBoost: enables 4 programmable levels of USB signal drive strength in downstream port transceivers. PHYBoost will also attempt to restore USB signal integrity.





**Note:** PHYBoost is only available on the two USB downstream ports.

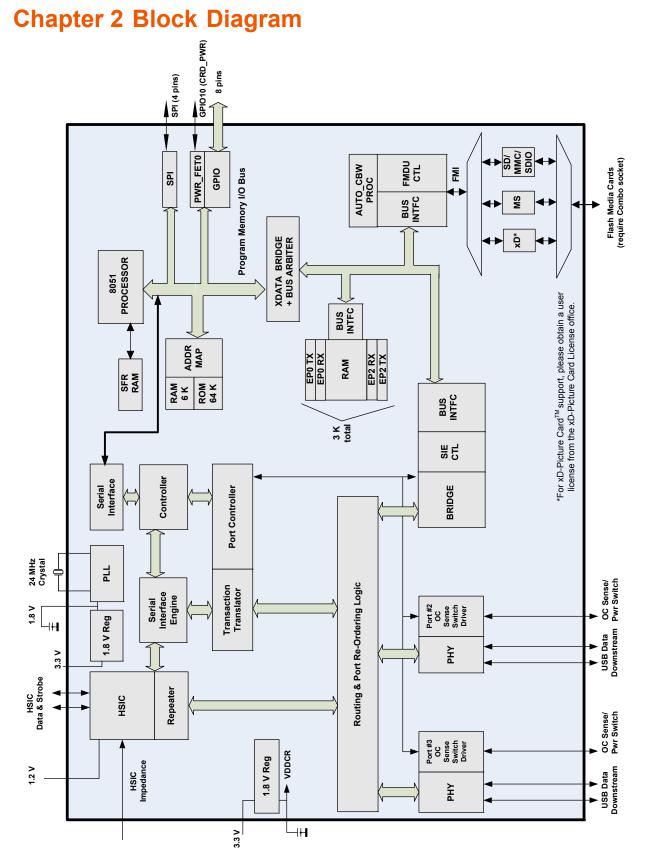
# **1.1 Hardware Features**

- Single chip HSIC hub and flash media controller combo
- USB2660/USB2660i supports the commercial temperature range of 0°C to +70°C
- USB4640/USB4640i supports the industrial temperature range of -40°C to +85°C
- Transaction translator (TT) in the hub supports operation of FS and LS peripherals
- Full power management with individual or ganged power control of each downstream port
- Optional support for external firmware access via SPI interface
- Onboard 24 MHz crystal driver circuit
- Optional external 24 MHz clock input (must be a 1.8 V signal)
- Code execution via SPI ROM which must meet the following criteria: —30 MHz or 60 MHz operation support
  - -Single bit or dual bit mode support
  - -Mode 0 or mode 3 SPI support

Compliance with the following flash media card specifications:

—Secure Digital 2.0 and MultiMediaCard 4.2

- -SD 2.0, SD-HS, SD-HC
- -TransFlash™ and reduced form factor media
- -1/4/8 bit MMC 4.2
- -Memory Stick 1.43
- —Memory Stick Pro Format 1.02
- -Memory Stick Pro-HG Duo Format 1.01
  - –Memory Stick, MS Duo, MS-HS, MS Pro-HG, MS Pro
- —Memory Stick Duo 1.10 –xD-Picture Card 1.2
- Up to 9 GPIOs: configuration and polarity for special function use
   —The number of actual GPIOs depends on the implementation configuration used
   —One GPIO available with up to 200 mA drive and protected fold-back short circuit current
- 8051 8-bit microprocessor
   —60 MHz single cycle execution
   —64 KB ROM | 9 KB RAM
- Integrated regulator for 1.8 V core operation


# 1.2 Software Features

- Hub and flash media reader/writer configuration from a single source: External I<sup>2</sup>C ROM or external SPI ROM, where the following features are then available:
  - -Customizable vendor ID, product ID, and device ID
  - -12-hex digits maximum for the serial number string
  - -28-character manufacturer ID and product strings for the flash media reader/writer

# 1.3 OEM Selectable Hub Features

The USB4640/USB4640i provides a default configuration that may be sufficient for most applications. following a reset. The USB4640/USB4640i can instead be configured by an external  $I^2C$  EEPROM or SPI ROM.

- Compound Device support on a port-by-port basis
   —a port is permanently hardwired to a downstream USB peripheral device
- Select over-current sensing and port power control on an individual or ganged (all ports together) basis to match the OEM's choice of circuit board component selection
- Port power control and over-current detection/delay features
- Configure the delay time for filtering the over-current sense inputs
- Configure the delay time for turning on downstream port power
- Bus- or self-powered selection
- Hub port disable or non-removable configurations
- Flexible port mapping and disable sequencing supports multiple platform designs
- Programmable USB differential-pair pin location eases PCB layout by aligning USB signal lines directly to connectors
- Programmable USB signal drive strength recovers USB signal integrity using 4 levels of signal drive strength
- Indicate the maximum current that the 2-port hub consumes
- Indicate the maximum current required for the hub controller



### Figure 2.1 USB4640/USB4640i Block Diagram

# **Chapter 3 Pinning Information**

This chapter outlines the pinning configuration, followed by a corresponding pin list grouped by function. The detailed pin descriptions are listed then outlined in Section 3.3, on page 13.

# 3.1 Pin Configurations

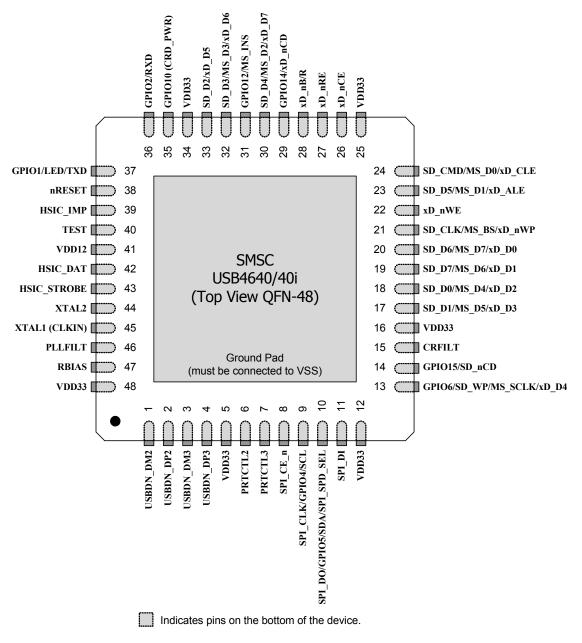



Figure 3.1 USB4640/USB4640i 48-Pin QFN

3.2 48-Pin List

# Table 3.1 USB4640/USB4640i 48-Pin List

|                                       | UPSTREAM HSIC I             | NTERFACE (3 PINS)                        |                           |
|---------------------------------------|-----------------------------|------------------------------------------|---------------------------|
| HSIC_IMP                              | HSIC_DAT                    | HSIC_STROBE                              |                           |
|                                       | DOWNSTREAM USB              | INTERFACE (3 PINS)                       |                           |
| XTAL1 (CLKIN)                         | XTAL2                       | RBIAS                                    |                           |
|                                       | DOWNSTREAM 2-PORT           | USB INTERFACE (6 PINS)                   |                           |
| USBDN_DP2                             | USBDN_DM2                   | PRTCTL2                                  | PRTCTL3                   |
| USBDN_DP3                             | USBDN_DM3                   |                                          |                           |
| SE                                    | CURE DIGITAL/MEMORY         | STICK/xD INTERFACE (18 PIN               | IS)                       |
| SD_D7/<br>MS_D6/<br>xD_D1             | SD_D6/<br>MS_D7/<br>xD_D0   | SD_D5/<br>MS_D1/<br>xD_ALE               | SD_D4/<br>MS_D2/<br>xD_D7 |
| SD_D3/<br>MS_D3/<br>xD_D6             | SD_D2/<br>xD_D5             | SD_D1/<br>MS_D5/<br>xD_D3                | SD_D0/<br>MS_D4/<br>xD_D2 |
| SD_CLK/<br>MS_BS/<br>xD_nWP           | SD_CMD/<br>MS_D0/<br>xD_CLE | GPIO15/<br>SD_nCD                        | GPIO12/<br>MS_INS         |
| GPIO6/<br>SD_WP/<br>MS_SCLK/<br>xD_D4 | GPIO14/<br>xD_nCD           | xD_nWE                                   | xD_nB/R                   |
| xD_nRE                                | xD_nCE                      |                                          |                           |
|                                       | SPI INTERF                  | ACE (4 PINS)                             |                           |
| SPI_CE_N                              | SPI_CLK/<br>GPIO4/<br>SCL   | SPI_DO/<br>GPIO5/<br>SDA/<br>SPI_SPD_SEL | SPI_DI                    |
|                                       | MISC                        | (5 PINS)                                 |                           |
| nRESET                                | TEST                        | GPIO1/<br>LED/<br>TXD                    | GPIO2/<br>RXD             |
| GPIO10 (CRD_PWR)                      |                             |                                          |                           |
|                                       | POWER                       | (9 PINS)                                 |                           |
| (6) VDD33                             | VDD12                       | CRFILT                                   | PLLFILT                   |
|                                       | тот                         | AL 48                                    |                           |

# 3.3 Pin Descriptions

This section provides a detailed description of each pin. The pins are arranged in functional groups according to their associated interface. The pin descriptions below are applied when using the internal default firmware and can be referenced in Chapter 4: *Configuration Options* on page 25. See Appendix A: *(Acronyms)* on page 61 for details.

An n in the signal name indicates that the active (asserted) state occurs when the signal is at a low voltage level. When the n is not present, the signal is asserted when it is at a high voltage level. The terms assertion and negation are used exclusively in order to avoid confusion when working with a mixture of active low and active high signals. The term assert, or assertion, indicates that a signal is active, independent of whether that level is represented by a high or low voltage. The term negate, or negation, indicates that a signal is inactive.

| SYMBOL                     | 48-PIN<br>QFN            | BUFFER<br>TYPE | DESCRIPTION                                                                                                                                                                                                                         |  |  |  |  |  |
|----------------------------|--------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                            | UPSTREAM HSIC INTERFACE  |                |                                                                                                                                                                                                                                     |  |  |  |  |  |
| HSIC_IMP                   | 39                       | I              | HSIC Impedance Control                                                                                                                                                                                                              |  |  |  |  |  |
|                            |                          |                | Selects the driver impedance of HSIC_DAT and HSIC_STROBE                                                                                                                                                                            |  |  |  |  |  |
|                            |                          |                | 1 : Approximately 50 $\Omega$ impedance 0 : Approximately 40 $\Omega$ impedance                                                                                                                                                     |  |  |  |  |  |
| HSIC_DAT                   | 42                       | I/O            | HSIC Data                                                                                                                                                                                                                           |  |  |  |  |  |
|                            |                          |                | Bi-directional double data rate (DDR) data signal that is synchronous to the HSIC_STROBE signal as defined in the <i>High-Speed Inter-Chip</i> USB Specification, Version 1.0.                                                      |  |  |  |  |  |
| HSIC_STROBE                | 43                       | I/O            | HSIC Strobe                                                                                                                                                                                                                         |  |  |  |  |  |
|                            |                          |                | Bi-directional data strobe signal defined in the <i>High-Speed Inter-Chip</i> USB Specification, Version 1.0.                                                                                                                       |  |  |  |  |  |
|                            | DOWNSTREAM USB INTERFACE |                |                                                                                                                                                                                                                                     |  |  |  |  |  |
| USBDN_DM                   | 3                        | I/O-U          | USB Bus Data                                                                                                                                                                                                                        |  |  |  |  |  |
| [3:2]<br>USBDN_DP<br>[3:2] | 1<br>4<br>2              |                | Connect to the downstream USB bus data signals and can be swapped using the PortSwap feature (See Section 4.4.4.20: <i>F1h: Port Swap</i> on page 43).                                                                              |  |  |  |  |  |
| PRTCTL[3:2]                | 7                        | I/OD6PU        | USB Power Enable, when used as an:                                                                                                                                                                                                  |  |  |  |  |  |
|                            | 6                        |                | <ul> <li>output: enables power to downstream USB peripheral devices and<br/>have weak internal pull-up resistors. (See Section 3.5: <i>Port Power</i><br/><i>Control</i> on page 20 for diagram and usage instructions.)</li> </ul> |  |  |  |  |  |
|                            |                          |                | <ul> <li>input: monitor the over-current condition (when the power is<br/>enabled). When an over-current condition is detected, the pins turn<br/>the power off.</li> </ul>                                                         |  |  |  |  |  |
| RBIAS                      | 47                       | 47 I-R         | USB Transceiver Bias                                                                                                                                                                                                                |  |  |  |  |  |
|                            |                          |                | Sets the transceiver's internal bias currents using a 12.0 kΩ, $\pm 1.0\%$ resistor attached from VSS.                                                                                                                              |  |  |  |  |  |
| XTAL1 (CLKIN)              | 45                       | ICLKx          | 24 MHz Crystal Input or External Clock Input                                                                                                                                                                                        |  |  |  |  |  |
|                            |                          |                | Can be connected to one terminal of the crystal or connected to an external 24 MHz clock when a crystal is not used.                                                                                                                |  |  |  |  |  |

### Table 3.2 USB4640/USB4640i Pin Descriptions

| SYMBOL    | 48-PIN<br>QFN                                | BUFFER<br>TYPE | DESCRIPTION                                                                                                                                 |  |
|-----------|----------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|
| XTAL2     | 44                                           | OCLKx          | 24 MHz Crystal Output                                                                                                                       |  |
|           |                                              |                | The other terminal of the crystal, or it is left open when an external clock source is used to drive XTAL1(CLKIN).                          |  |
|           |                                              | SE             | CURE DIGITAL INTERFACE                                                                                                                      |  |
| SD_D[7:0] | 19<br>20<br>23<br>30<br>32<br>33<br>17<br>18 | I/O8PU         | Secure Digital Data 7-0<br>Bi-directional data signals <b>SD_D0</b> - <b>SD_D7</b> with weak pull-up<br>resistors.                          |  |
| SD_CLK    | 21                                           | O8             | Secure Digital Clock                                                                                                                        |  |
|           |                                              |                | The output clock signal to the SD/MMC device.                                                                                               |  |
| SD_CMD    | 24                                           | I/O8PU         | Secure Digital Command                                                                                                                      |  |
|           |                                              |                | Bi-directional signal that connects to the CMD signal of the SD/MMC device. The bi-directional signal has a weak internal pull-up resistor. |  |
| GPIO15/   | 14                                           | I/O6           | General Purpose IO 15                                                                                                                       |  |
|           |                                              |                | Can be used either as an input; edge sensitive interrupt input; or output. Custom firmware is required to activate this function.           |  |
| SD_nCD    |                                              | I/O8PU         | Secure Digital Card Detect GPIO                                                                                                             |  |
|           |                                              |                | Designated by the default firmware as the Secure Digital card detection pin and has an internal pull-up.                                    |  |
| GPIO6/    | 13                                           | I/O6           | General Purpose IO 6                                                                                                                        |  |
|           |                                              |                | Can be used either as input; edge sensitive interrupt input; or output.<br>Custom firmware is required to activate this function.           |  |
| SD_WP     |                                              | I/O8           | Secure Digital Write Protected GPIO                                                                                                         |  |
|           |                                              |                | Designated by the default firmware as the Secure Digital card interface mechanical write protect detect pin.                                |  |
|           |                                              | М              | EMORY STICK INTERFACE                                                                                                                       |  |
| MS_BS     | 21                                           | O8             | Memory Stick Bus State                                                                                                                      |  |
|           |                                              |                | Connected to the bus state pin of the MS device. It is used to control the Bus States 0, 1, 2, and 3 (BS0, BS1, and BS3) of the MS device.  |  |
| GPIO12/   | 31                                           | I/O8           | General Purpose IO 12                                                                                                                       |  |
|           |                                              |                | Can be used either as input; edge sensitive interrupt input; or output.<br>Custom firmware is required to activate this function.           |  |
| MS_INS    |                                              | IPU            | Memory Stick Card Insertion GPIO                                                                                                            |  |
|           |                                              |                | Designated by the default software as the Memory Stick card detection pin and has a weak internal pull-up resistor.                         |  |
| MS_SCLK   | 13                                           | O8             | Memory Stick System Clock                                                                                                                   |  |
|           |                                              |                | Output clock signal to the MS device.                                                                                                       |  |

| SYMBOL    | 48-PIN<br>QFN                    | BUFFER<br>TYPE | DESCRIPTION                                                                                                                                                                                                                     |
|-----------|----------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MS_D[7:0] | 20                               | I/O8PD         | Memory Stick System Data In/Out                                                                                                                                                                                                 |
|           | 19<br>17<br>18<br>32             |                | Bi-directional data signals for the MS device. In serial mode, the most significant bit (MSB) of each byte is transmitted first by either the memory stick controller MSC or the MS device on MS_D0.                            |
|           | 30<br>23<br>24                   |                | MS_D0, MS_D2, and MS_D3 have weak pull-down resistors. MS_D1 has a pull-down resistor when in parallel mode. Otherwise, it is disabled. In 4- or 8-bit parallel modes, all MS_D7 - MS_D0 signals have weak pull-down resistors. |
|           |                                  | хD-            | PICTURE CARD INTERFACE                                                                                                                                                                                                          |
| xD_D[7:0] | 30<br>32                         | I/O8PD         | xD-Picture Card Data 7-0                                                                                                                                                                                                        |
|           | 33<br>13<br>17<br>18<br>19<br>20 |                | Bi-directional data signals $xD_D7 - xD_D0$ and have weak internal pull-down resistors.                                                                                                                                         |
| xD_ALE    | 23                               | O8PD           | xD-Picture Card Address Strobe                                                                                                                                                                                                  |
|           |                                  |                | Active high Address Latch Enable (ALE) signal for the xD-Picture Card device. This pin has a weak pull-down resistor that is permanently enabled.                                                                               |
| xD_nB/R   | 28                               | IPU            | xD-Picture Card Busy or Data Ready                                                                                                                                                                                              |
|           |                                  |                | Connected to the BSY/RDY pin of the xD-Picture Card device.                                                                                                                                                                     |
|           |                                  |                | When using the internal FET, this pin has a weak internal pull-up resistor that is tied to the output of the internal power FET.                                                                                                |
|           |                                  |                | If an external FET is used (the internal FET is disabled), then the internal pull-up is not available (an external pull-up is required).                                                                                        |
| xD_nCE    | 26                               | O8PU           | xD-Picture Card Chip Enable                                                                                                                                                                                                     |
|           |                                  |                | Active low chip enable signal for the xD-Picture Card device.                                                                                                                                                                   |
|           |                                  |                | When using the internal FET, this pin has weak internal pull-up resistor that is tied to the output of the internal power FET.                                                                                                  |
|           |                                  |                | If an external FET is used (internal FET is disabled), then the internal pull-up is not available (an external pull-up is required).                                                                                            |
| xD_CLE    | 24                               | O8PD           | xD-Picture Card Command Strobe                                                                                                                                                                                                  |
|           |                                  |                | An active high Command Latch Enable signal for the xD-Picture Card device. This pin has a weak pull-down resistor that is permanently enabled.                                                                                  |
| GPIO14/   | 29                               | I/O6           | General Purpose IO 14                                                                                                                                                                                                           |
|           |                                  |                | Can be used either as input; edge sensitive interrupt input; or output.<br>Custom firmware is required to activate this function.                                                                                               |
| xD_nCD    |                                  | I/O8           | xD-Picture Card Detection GPIO                                                                                                                                                                                                  |
|           |                                  |                | Designated by the default firmware as the xD-Picture Card detection pin and has an internal pull-up.                                                                                                                            |

| SYMBOL   | 48-PIN<br>QFN | BUFFER<br>TYPE | DESCRIPTION                                                                                                                                                                |
|----------|---------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| xD_nRE   | 27            | O8PU           | xD-Picture Card Read Enable                                                                                                                                                |
|          |               |                | Active low read strobe signal for the xD-Picture Card device.                                                                                                              |
|          |               |                | When using the internal FET, this pin has a weak internal pull-up resistor that is tied to the output of the internal power FET.                                           |
|          |               |                | If an external FET is used (internal FET is disabled), then the internal pull-up is not available (an external pull-up is required).                                       |
| xD_nWE   | 22            | O8PU           | xD-Picture Card Write Enable                                                                                                                                               |
|          |               |                | Active low write strobe signal for the xD-Picture Card device.                                                                                                             |
|          |               |                | When using the internal FET, this pin has a weak internal pull-up resistor that is tied to the output of the internal power FET.                                           |
|          |               |                | If an external FET is used (internal FET is disabled), then the internal pull-up is not available (an external pull-up is required).                                       |
| xD_nWP   | 21            | O8PD           | xD-Picture Card Write Protect                                                                                                                                              |
|          |               |                | Active low write-protect signal for the xD-Picture Card device. This pin has a weak pull-down resistor that is permanently enabled.                                        |
|          |               |                | SPI INTERFACE                                                                                                                                                              |
| SPI_CE_n | 8             | O12            | SPI Chip Enable                                                                                                                                                            |
|          |               |                | Active low chip enable output. If the SPI interface is enabled, this pin must be driven high in power down states.                                                         |
| SPI_CLK/ | 9             | I/O12          | SPI Clock Out                                                                                                                                                              |
|          |               |                | Clock signal out to the serial ROM. See Section 3.6: <i>ROM BOOT</i><br>Sequence on page 21 for diagram and usage instructions. During reset, this pin must be driven low. |
| GPIO4/   |               | I/O6           | General Purpose IO 4                                                                                                                                                       |
|          |               |                | Can be used either as input; edge sensitive interrupt input; or output.<br>Custom firmware is required to activate this function.                                          |
| SCL      |               |                | Serial Clock                                                                                                                                                               |
|          |               |                | The I <sup>2</sup> C EEPROM clock pin when the device is connected to the optional I <sup>2</sup> C EEPROM.                                                                |

| SYMBOL      | 48-PIN<br>QFN | BUFFER<br>TYPE | DESCRIPTION                                                                                                                                                                                                                                                                                                                          |
|-------------|---------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SPI_DO/     | 10            | I/O12          | SPI Serial Data Out                                                                                                                                                                                                                                                                                                                  |
|             |               |                | The output for the SPI port. See Section 3.6: <i>ROM BOOT Sequence</i> for diagram and usage instructions.                                                                                                                                                                                                                           |
| GPIO5/      |               | I/O6           | This pin may be used either as an input; edge sensitive interrupt input; or output. Custom firmware is required to activate this function.                                                                                                                                                                                           |
| SDA/        |               |                | Serial Data Line                                                                                                                                                                                                                                                                                                                     |
|             |               |                | The I <sup>2</sup> C EEPROM data pin when the device is connected to the optional I <sup>2</sup> C EEPROM.                                                                                                                                                                                                                           |
| SPI_SPD_SEL |               | I/O12          | SPI Speed Select                                                                                                                                                                                                                                                                                                                     |
|             |               |                | Selects the speed of the SPI interface. During <b>nRESET</b> assertion, this pin will be tri-stated with the weak pull-down resistor enabled. When <b>nRESET</b> is negated, the value on the pin will be internally latched, and the pin will revert to <b>SPI_DO</b> functionality, where the internal pull-down will be disabled. |
|             |               |                | $_{\rm 0}$ : 30 MHz (no external resistor should be applied) $_{\rm 1}$ : 60 MHz (a 10 k $\Omega$ external pull-up resistor must be applied)                                                                                                                                                                                         |
|             |               |                | If the latched value is 1, then the pin is tri-stated when the chip is in the suspend state.                                                                                                                                                                                                                                         |
|             |               |                | If the latched value is 0, then the pin is driven low during a suspend state.                                                                                                                                                                                                                                                        |
| SPI_DI      | 11            | I/O12PD        | SPI Serial Data In                                                                                                                                                                                                                                                                                                                   |
|             |               |                | The SPI data in to the controller from the ROM. This pin has a weak internal pull-down applied at all times to prevent floating.                                                                                                                                                                                                     |
|             |               |                | MISC                                                                                                                                                                                                                                                                                                                                 |
| GPIO1/      | 37            | I/O6           | General Purpose I/O 1                                                                                                                                                                                                                                                                                                                |
|             |               |                | Can be used either as an input; edge sensitive interrupt input; or output. Custom firmware is required to activate this function.                                                                                                                                                                                                    |
| LED/        |               |                | Can be used as an LED output.                                                                                                                                                                                                                                                                                                        |
| TXD         |               |                | This signal can be configured as the TXD output of the internal UART. Custom firmware is required to activate this function.                                                                                                                                                                                                         |
| GPIO2/      | 36            | I/O6           | General Purpose I/O 2                                                                                                                                                                                                                                                                                                                |
|             |               |                | Can be used either as an input; edge sensitive interrupt input; or output. Custom firmware is required to activate this function.                                                                                                                                                                                                    |
| RXD         |               |                | This signal can be configured as input to the RXD of the internal UART. Custom firmware is required to activate this function.                                                                                                                                                                                                       |
| GPIO10      | 35            | I/O200         | Card Power Drive: 3.3 V (100 mA or 200 mA)                                                                                                                                                                                                                                                                                           |
| (CRD_PWR)   |               |                | This must be the only FET used to power devices. Failure to do this will violate voltage specifications on device pins. If this pin is not being used as a card power pin, this pin may be used either as an input; edge sensitive interrupt input; or output (GPIO).                                                                |
|             |               |                | Please see Section 4.4.2.3: <i>A4h-A5h: Smart Media Device Power Configuration</i> on page 34 for more information.                                                                                                                                                                                                                  |

| Table 3.2 | USB4640/USB4640i Pin Descriptions | (continued) |
|-----------|-----------------------------------|-------------|
|-----------|-----------------------------------|-------------|

| SYMBOL  | 48-PIN<br>QFN  | BUFFER<br>TYPE | DESCRIPTION                                                                                                       |  |
|---------|----------------|----------------|-------------------------------------------------------------------------------------------------------------------|--|
| nRESET  | 38             | IS             | Reset Input                                                                                                       |  |
|         |                |                | The system uses this active low signal to reset the chip. The active low pulse should be at least 1 $\mu s$ wide. |  |
| TEST    | 40             | I              | Test Input                                                                                                        |  |
|         |                |                | Tie to ground for normal operation.                                                                               |  |
|         |                | DI             | GITAL / POWER / GROUND                                                                                            |  |
| CRFILT  | 15             |                | VDD Core Regulator Filter Capacitor                                                                               |  |
|         |                |                | Requires a 1.0 $\mu\text{F}$ (or greater) $\pm20\%$ (ESR <0.1\Omega) capacitor to VSS.                            |  |
| PLLFILT | 46             |                | Phase-Locked Loop Regulator Filter Capacitor                                                                      |  |
|         |                |                | Requires a 1.0 $\mu F$ (or greater) $\pm$ 20% (ESR < 0.1 $\Omega)$ capacitor to VSS.                              |  |
| VDD12   | 41             |                | 1.2 V Power                                                                                                       |  |
|         |                |                | For HSIC pads and buffers                                                                                         |  |
| VDD33   | 5              |                | 3.3 V Power and Regulator Input                                                                                   |  |
|         | 12<br>16       |                | See Chapter 6: DC Parameters on page 51 for more information.                                                     |  |
|         | 25<br>34<br>48 |                | Pins 16 and 48 each require an external bypass capacitor of 4.7 $\mu\text{F}$ minimum.                            |  |
| VSS     | ePad           |                | Ground Pad/ePad                                                                                                   |  |
|         |                |                | The package slug is the only VSS for the device and must be tied to ground with multiple vias.                    |  |

# 3.4 Buffer Type Descriptions

### Table 3.3 USB4640/USB4640i Buffer Type Descriptions

| BUFFER  | DESCRIPTION                                                                                |
|---------|--------------------------------------------------------------------------------------------|
| I       | Input.                                                                                     |
| I/O     | Input/output                                                                               |
| IPU     | Input with weak internal pull-up                                                           |
| IS      | Input with Schmitt trigger                                                                 |
| I/O6    | Input/output buffer with 6 mA sink and 6 mA source                                         |
| I/OD6PU | Input/open drain output buffer with a 6 mA sink                                            |
| O8      | Output buffer with an 8 mA sink and an 8 mA source                                         |
| O8PD    | Output buffer with an 8 mA sink and an 8 mA source with a weak internal pull-down resistor |
| O8PU    | Output buffer with an 8 mA sink and an 8 mA source with a weak internal pull-up resistor   |
| I/O8    | Input/output buffer with an 8 mA sink and an 8 mA source                                   |

| Table 3.3 USB4640/USB4640i Buffer Type Descriptions (continued) | Table 3.3 | USB4640/USB464 | 10i Buffer Typ | e Descriptions | (continued) |
|-----------------------------------------------------------------|-----------|----------------|----------------|----------------|-------------|
|-----------------------------------------------------------------|-----------|----------------|----------------|----------------|-------------|

| BUFFER  | DESCRIPTION                                                                                      |
|---------|--------------------------------------------------------------------------------------------------|
| I/O8PD  | Input/output buffer with an 8 mA sink and an 8 mA source with a weak internal pull-down resistor |
| I/O8PU  | Input/output buffer with an 8 mA sink and an 8 mA source with a weak internal pull-up resistor   |
| O12     | Output buffer with a 12 mA sink and a 12 mA source                                               |
| I/O12   | Input/output buffer with 12 mA sink and 12 mA source                                             |
| I/O12PD | Input/output buffer with 12 mA sink and 12 mA source with a weak internal pull-down resistor     |
| I/O200  | Input/output buffer 12 mA with FET disabled, 100/200 mA source only when the FET is enabled      |
| ICLKx   | XTAL clock input                                                                                 |
| OCLKx   | XTAL clock output                                                                                |
| I/O-U   | Analog input/output as defined in the USB 2.0 Specification                                      |
| I-R     | RBIAS                                                                                            |

# 3.5 Port Power Control

# 3.5.1 Port Power Control Using a USB Power Switch

The USB4640/USB4640i has a single port power control and over-current sense signal for each downstream port. When disabling port power, the driver will actively drive a 0. To avoid unnecessary power dissipation, the internal pull-up resistor will be disabled at that time. When port power is enabled, the output driver is disabled, and the pull-up resistor is enabled creating an open drain output.

If there is an over-current situation, the USB Power Switch will assert the open drain OCS signal. The Schmitt trigger input will detect this event as a low. The open drain output does not interfere. The internal over-current sense filter handles the transient conditions, such as low voltage, while the device is powering up.

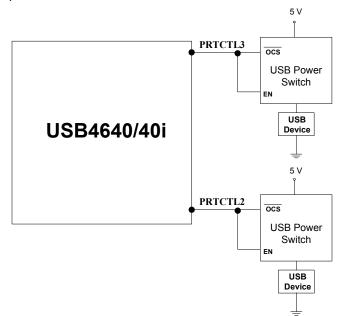



Figure 3.2 Port Power Control with USB Power Switch

# 3.5.2 Port Power Control Using a Poly Fuse

When using the USB4640/USB4640i with a poly fuse, an external diode must be used (see Figure 3.3). When disabling port power, the USB4640/USB4640i will drive a 0. This procedure will have no effect since the external diode will isolate the pin from the load. When port power is enabled, the USB4640/USB4640i output driver is disabled, and the pull-up resistor is enabled which creates an open drain output. This open drain output condition means that the pull-up resistor is providing 3.3 volts to the anode of the diode. If there is an over-current situation, the poly fuse will open. This will cause the cathode of the diode to go to zero volts. The anode of the diode will be at 0.7 volts, and the

Schmitt trigger input will register this as a low resulting in an over-current detection. The open drain output does not interfere.

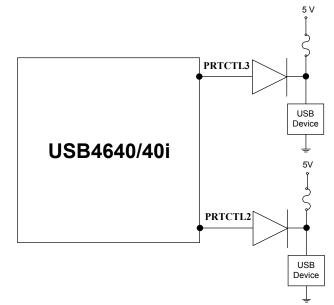



Figure 3.3 Port Power Control with a Single Poly Fuse and Multiple Loads

When using a single poly fuse to power all devices, note that for the ganged situation, all power control pins must be tied together.

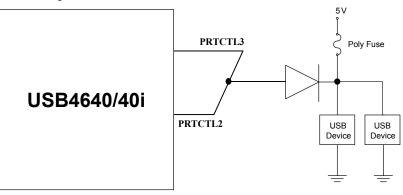



Figure 3.4 Port Power with Ganged Control with Poly Fuse

# 3.6 ROM BOOT Sequence

After power-on reset, the internal firmware checks for an external SPI flash device that contains a valid signature of *2DFU* (device firmware upgrade) beginning at address 0xFFFA. If a valid signature is found, then the external ROM is enabled and code execution begins at address 0x0000 in the external SPI device. Otherwise, code execution continues from the internal ROM.

If there is no SPI ROM detected, the internal firmware then checks for the presence of an  $I^2C$  ROM. The firmware looks for the signature *ATA2* at the offset of FCh-FFh and *ecf1* at the offset of 17Ch-17Fh in the  $I^2C$  ROM. The firmware reads in the  $I^2C$  ROM to configure the hardware and software internally. Please refer to Section 4.3.2: *EEPROM Data Descriptor* on page 26 for the details of the configuration options.

The SPI ROM required for the USB4640/USB4640i is a recommended minimum of 1 Mb and support either 30 MHz or 60 MHz. The frequency used is set using the **SPI\_SPD\_SEL**. For 30 MHz operation, this pin must be pulled to ground through a 100 k $\Omega$  resistor. For 60 MHz operation, this pin must pulled up through a 100 k $\Omega$  resistor.

The SPI\_SPD\_SEL pin is used to choose the speed of the SPI interface. During **nRESET** assertion, this pin will be tri-stated with the weak pull-down resistor enabled. When nRESET is negated, the value on the pin will be internally latched, and the pin will revert to SPI\_DO functionality. The internal pull-down will be disabled.

The firmware can determine the speed of operation on the SPI port by checking the **SPI\_CTL.SPI\_SPEED** bit (0x2400 - RESET = 0x02). Both 1- and 2-bit SPI operation is supported. For optimum throughput, a 2-bit SPI ROM is recommended. Both mode 0 and mode 3 SPI ROMS are also supported.

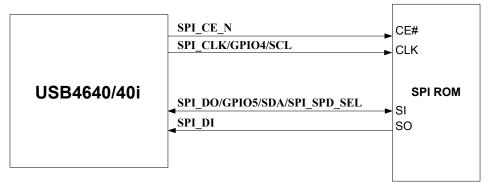
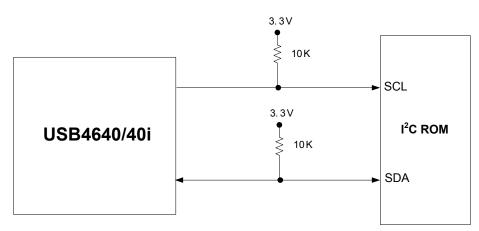
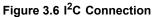
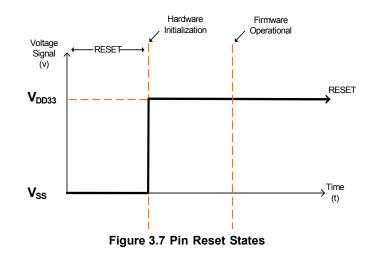






Figure 3.5 SPI ROM Connection





# 3.7 Pin Reset States



| SYMBOL | DESCRIPTION                                                               |  |
|--------|---------------------------------------------------------------------------|--|
| 0      | Output driven low                                                         |  |
| 1      | Output driven high                                                        |  |
| IP     | Input enabled                                                             |  |
| PU     | Hardware enables pull-up                                                  |  |
| PD     | Hardware enables pull-down                                                |  |
| none   | Hardware disables pad                                                     |  |
|        | Hardware disables function                                                |  |
| Z      | Hardware disables pad. Both output driver and input buffers are disabled. |  |

### Table 3.4 Legend for Pin Reset States Table

### Table 3.5 USB4640/USB4640i Reset States Table

|     |                              | RESET STATE |                  |           |
|-----|------------------------------|-------------|------------------|-----------|
| PIN | PIN NAME                     | FUNCTION    | INPUT/<br>OUTPUT | PU/<br>PD |
| 1   | USBDN_DM2                    | USBDN_DM2   | IP               | PD        |
| 2   | USBDN_DP2                    | USBDN_DP2   | IP               | PD        |
| 3   | USBDN_DM3                    | USBDN_DM3   | IP               | PD        |
| 4   | USBDN_DP3                    | USBDN_DP3   | IP               | PD        |
| 6   | PRTCTL2                      | PRTCTL      | 0                |           |
| 7   | PRTCTL3                      | PRTCTL      | 0                |           |
| 8   | SPI_CE_n                     | SPI_CE_n    | 1                |           |
| 9   | SPI_CLK/GPIO4/SCL            | GPIO        | 0                |           |
| 10  | SPI_DO/GPIO5/SDA/SPI_SPD_SEL | GPIO        | 0                |           |
| 11  | SPI_DI                       | SPI_DI      | IP               | PD        |
| 13  | GPIO6/SD_WP/MS_SCLK/xD_D4    | GPIO        | 0                |           |
| 14  | GPIO15/SD_nCD                | GPIO        | IP               | PU        |
| 17  | SD_D1/MS_D5/xD_D3            | none        | Z                |           |
| 18  | SD_D0/MS_D4/xD_D2            | none        | Z                |           |
| 19  | SD_D7/MS_D6/xD_D1            | none        | Z                |           |

## Table 3.5 USB4640/USB4640i Reset States Table (continued)

|     |                     | RE          | RESET STATE      |           |  |
|-----|---------------------|-------------|------------------|-----------|--|
| PIN | PIN NAME            | FUNCTION    | INPUT/<br>OUTPUT | PU/<br>PD |  |
| 20  | SD_D6/MS_D7/xD_D0   | none        | Z                |           |  |
| 21  | SD_CLK/MS_BS/xD_nWP | none        | Z                |           |  |
| 22  | xD_nWE              | xD_nWE      | Z                |           |  |
| 23  | SD_D5/MS_D1/xD_ALE  | none        | Z                |           |  |
| 24  | SD_CMD/MS_D0/xD_CLE | none        | Z                |           |  |
| 26  | xD_nCE              | xD_nCE      | Z                |           |  |
| 27  | xD_nRE              | xD_nRE      | Z                |           |  |
| 28  | xD_nB/R             | xD_nB/R     | Z                |           |  |
| 29  | GPIO14/xD_nCD       | GPIO        | IP               | PU        |  |
| 30  | SD_D4/MS_D2/xD_D7   | none        | Z                |           |  |
| 31  | GPIO12/MS_INS       | GPIO        | IP               | PU        |  |
| 32  | SD_D3/MS_D3/xD_D6   | none        | Z                |           |  |
| 33  | SD_D2/xD_D5         | none        | Z                |           |  |
| 35  | GPIO10 (CRD_PWR)    | GPIO        | Z                |           |  |
| 36  | GPIO2/RXD           | GPIO        | 0                |           |  |
| 37  | GPIO1/LED/TXD       | GPIO        | 0                |           |  |
| 38  | nRESET              | nRESET      | IP               |           |  |
| 39  | HSIC_IMP            | HSIC_IMP    | Z                |           |  |
| 40  | TEST                | TEST        | IP               | PD        |  |
| 42  | HSIC_DAT            | HSIC_DAT    | IP               |           |  |
| 43  | HSIC_STROBE         | HSIC_STROBE | IP               |           |  |

# **Chapter 4 Configuration Options**

# 4.1 Hub

SMSC's USB 2.0 hub is fully compliant to the Universal Serial Bus Specification [1].

The hub provides 1 transaction translator (TT) that is shared by both downstream ports defined as a single-TT configuration. The TT contains 4 non-periodic buffers. The hub supports a large number of features (some are mutually exclusive), and must be configured in order to correctly function when attached to a USB host controller. There are two principal ways to configure the hub:

- Internal default settings
- External EEPROM or SPI Flash device
- **Note:** See Chapter 11 (Hub Specification) of the USB specification for general details regarding hub operation and functionality.

# 4.2 Card Reader

The SMSC USB4640/USB4640i is fully compliant with the following flash media card reader specifications:

- Secure Digital 2.0/MultiMediaCard 4.2
  - -SD 2.0, HS-SD, HC-SD

—TransFlash  ${}^{\rm T\!M}$  and reduced form factor media

- -1/4/8 bit MMC 4.2
- Memory Stick 1.43
- Memory Stick Pro Format 1.02
- Memory Stick Pro-HG Duo Format 1.01
   —Memory Stick, MS Duo, HS-MS, MS Pro-HG, MS Pro
- Memory Stick Duo 1.10
- xD-Picture Card 1.2

# 4.3 System Configurations

# 4.3.1 EEPROM/SPI Interface

The USB4640/USB4640i can be configured via a 2-wire I<sup>2</sup>C EEPROM (512x8) or an external SPI flash device containing the USB4640/USB4640i firmware. If an external configuration device does not exist the internal default values will be used. If one of the external devices is used for configuration, the USB4640/USB4640i values can be updated through the USB interface. The hub will then attach to the upstream USB host.

The USBDM tool set is available in the USB264x Hub Card reader combo software release package. To download the software package from SMSC's website, visit:

https://www2.smsc.com/mkt/CW\_SFT\_PUB.nsf/Agreements/OBJ+Hub+Card+Reader

Review the license and select the *I* agree checkbox, followed by the *Confirm* button. Download the *USB264x Hub Card reader combo Release Package* zip file with the USBDM tool set will then be available for download.

# 4.3.2 EEPROM Data Descriptor

| ADDRESS | REGISTER NAME   | DESCRIPTION                                       | INTERNAL DEFAULT VALUE                  |
|---------|-----------------|---------------------------------------------------|-----------------------------------------|
| 00h     | USB_SER_LEN     | USB Serial String<br>Descriptor Length            | 1Ah                                     |
| 01h     | USB_SER_TYP     | USB Serial String<br>Descriptor Type              | 03h                                     |
| 02h-19h | USB_SER_NUM     | USB Serial Number                                 | 000008264001<br>(Note 4.1)              |
| 1Ah-1Bh | USB_VID         | USB Vendor Identifier                             | 0424                                    |
| 1Ch-1Dh | USB_PID         | USB Product Identifier                            | 4040                                    |
| 1Eh     | USB_LANG_LEN    | USB Language String<br>Descriptor Length          | 04h                                     |
| 1Fh     | USB_LANG_TYP    | USB Language String<br>Descriptor Type            | 03h                                     |
| 20h     | USB_LANG_ID_LSB | USB Language Identifier<br>Least Significant Byte | 09h<br>(Note 4.3)                       |
| 21h     | USB_LANG_ID_MSB | USB Language Identifier<br>Most Significant Byte  | 04h<br>(Note 4.3)                       |
| 22h     | USB_MFR_STR_LEN | USB Manufacturer String<br>Descriptor Length      | 10h                                     |
| 23h     | USB_MFR_STR_TYP | USB Manufacturer String<br>Descriptor Type        | 03h                                     |
| 24h-31h | USB_MFR_STR     | USB Manufacturer String                           | Generic<br>(Note 4.1)                   |
| 32h-5Dh | rsvd            |                                                   | 00h                                     |
| 5Eh     | USB_PRD_STR_LEN | USB Product String<br>Descriptor Length           | 30h                                     |
| 5Fh     | USB_PRD_STR_TYP | USB Product String<br>Descriptor Type             | 03h                                     |
| 60h-99h | USB_PRD_STR     | USB Product String                                | Ultra Fast Media Reader<br>— (Note 4.1) |
| 9Ah     | USB_BM_ATT      | USB BmAttribute                                   | 80h                                     |
| 9Bh     | USB_MAX_PWR     | USB Max Power                                     | 30h (96 mA)                             |
| 9Ch     | ATT_LB          | Attribute Lo byte                                 | 40h (reverse SD_WP only)                |
| 9Dh     | ATT_HLB         | Attribute Hi Lo byte                              | 80h (reverse SD2_WP only)               |
| 9Eh     | ATT_LHB         | Attribute Lo Hi byte                              | 00h                                     |
| 9Fh     | ATT_HB          | Attribute Hi byte                                 | 00h                                     |
| A0h     | MS_PWR_LB       | Memory Stick Device<br>Power Lo byte              | 00h                                     |
| A1h     | MS_PWR_HB       | Memory Stick Device<br>Power Hi byte              | 0Ah                                     |

| ADDRESS   | REGISTER NAME | DESCRIPTION                            | INTERNAL DEFAULT VALUE |
|-----------|---------------|----------------------------------------|------------------------|
| A2h-A3h   | N/A           |                                        | 00h                    |
| A4h       | SM_PWR_LB     | Smart Media Device<br>Power Lo byte    | 00h<br>(Note 4.2)      |
| A5h       | SM_PWR_HB     | Smart Media Device<br>Power Hi byte    | 0Ah<br>(Note 4.2)      |
| A6h       | SD_PWR_LB     | Secure Digital Device<br>Power Lo byte | 00h                    |
| A7h       | SD_PWR_HB     | Secure Digital Device<br>Power Hi byte | 0Ah                    |
| A8h       | LED_BLK_INT   | LED Blink Interval                     | 02h                    |
| A9h       | LED_BLK_DUR   | LED Blink After Access                 | 28h                    |
| AAh - B0h | DEV0_ID_STR   | Device 0 Identifier String             | N/A                    |
| B1h - B7h | DEV1_ID_STR   | Device 1 Identifier String             | MS                     |
| B8h - BEh | DEV2_ID_STR   | Device 2 Identifier String             | SM<br>(Note 4.2)       |
| BFh - C5h | DEV3_ID_STR   | Device 3 Identifier String             | SD/MMC                 |
| C6h - CDh | INQ_VEN_STR   | Inquiry Vendor String                  | Generic                |
| CEh - D2h | INQ_PRD_STR   | Inquiry Product String                 | 82640                  |
| D3h       | DYN_NUM_LUN   | Dynamic Number of LUNs                 | 01h                    |
| D4h - D7h | DEV_LUN_MAP   | Device to LUN Mapping                  | FFh, 00h, 00h, 00h     |
| D8h - DAh | rsvd          |                                        | 00h, 06h, 0Dh          |
| DBh - DDh | rsvd          |                                        | 59h, 56h, 97h          |

Table 4.1 Internal Flash Media Controller Configurations (continued)

**Note 4.1** This value is a UNICODE UTF-16LE encoded string value that meets the USB 2.0 Specification [1].

Note 4.2 A value of SM will be overridden with xD once an xD-Picture Card has been identified.

**Note 4.3** Current 16-bit language ID's are defined by the USB-IF, see *The Unicode Standard, Worldwide Character Encoding* [4].

| ADDRESS | REGISTER NAME | DESCRIPTION                       | INTERNAL DEFAULT VALUE |
|---------|---------------|-----------------------------------|------------------------|
| DEh     | VID_LSB       | Vendor ID Least Significant Byte  | 24h                    |
| DFh     | VID_MSB       | Vendor ID Most Significant Byte   | 04h                    |
| E0h     | PID_LSB       | Product ID Least Significant Byte | 40h                    |
| E1h     | PID_MSB       | Product ID Most Significant Byte  | 26h                    |
| E2h     | DID_LSB       | Device ID Least Significant Byte  | A1h                    |
| E3h     | DID_MSB       | Device ID Most Significant Byte   | 08h                    |

Table 4.2 Hub Controller Configurations

| ADDRESS | REGISTER NAME | DESCRIPTION                       | INTERNAL DEFAULT VALUE |
|---------|---------------|-----------------------------------|------------------------|
| E4h     | CFG_DAT_BYT1  | Configuration Data Byte 1         | 8Bh                    |
| E5h     | CFG_DAT_BYT2  | Configuration Data Byte 2         | 28h                    |
| E6h     | CFG_DAT_BYT3  | Configuration Data Byte 3         | 00h                    |
| E7h     | NR_DEVICE     | Non-Removable Devices             | 02h                    |
| E8h     | PORT_DIS_SP   | Port Disable (Self)               | 00h                    |
| E9h     | PORT_DIS_BP   | Port Disable (Bus)                | 00h                    |
| EAh     | MAX_PWR_SP    | Max Power (Self)                  | 01h                    |
| EBh     | MAX_PWR_BP    | Max Power (Bus)                   | 32h                    |
| ECh     | HC_MAX_C_SP   | Hub Controller Max Current (Self) | 01h                    |
| EDh     | HC_MAX_C_BP   | Hub Controller Max Current (Bus)  | 32h                    |
| EEh     | PWR_ON_TIME   | Power-on Time                     | 32h                    |
| EFh     | BOOST_UP      | Boost_Up                          | 00h                    |
| F0h     | BOOST_3:0     | Boost_3:0                         | 00h                    |
| F1h     | PRT_SWP       | Port Swap                         | 00h                    |
| F2h     | PRTM12        | Port Map 12                       | 00h                    |
| F3h     | PRTM3         | Port Map 3                        | 00h                    |

### Table 4.2 Hub Controller Configurations

### Table 4.3 Other Internal Configurations

| ADDRESS | REGISTER NAME | DESCRIPTION                    | INTERNAL DEFAULT VALUE |
|---------|---------------|--------------------------------|------------------------|
| F4h     | rsvd          |                                | 00h                    |
| F5h     | rsvd          |                                | 66h                    |
| F6h     | rsvd          |                                | 00h                    |
| F7-FAh  | N/A           |                                | N/A                    |
| FBh     | N/A           |                                | 00h                    |
| FCh-FFh | NVSTORE_SIG   | Non-Volatile Storage Signature | ATA2                   |

# 4.4 Internal Flash Media Controller Extended Configurations

Set bit 7 of bmAttribute to enable these extended configuration registers.

| ADDRESS     | REGISTER NAME | DESCRIPTION                   | INTERNAL DEFAULT VALUE |
|-------------|---------------|-------------------------------|------------------------|
| 100h - 106h | CLUN0_ID_STR  | Combo LUN 0 Identifier String | СОМВО                  |

### Table 4.4 Internal Flash Media Controller Extended Configurations

N/A

107h- 129h

N/A

### Table 4.4 Internal Flash Media Controller Extended Configurations (continued)

| ADDRESS     | REGISTER NAME | DESCRIPTION                    | INTERNAL DEFAULT VALUE  |
|-------------|---------------|--------------------------------|-------------------------|
| 12Ah-145h   | N/A           |                                | 00h                     |
| 146h        | N/A           |                                | 01h                     |
| 147h - 14Bh | N/A           |                                | 01h, FFh, FFh, FFh, FFh |
| 14Ch        | N/A           |                                | 0Ah                     |
| 14Dh-17Bh   | N/A           |                                | 00h                     |
| 17Ch-17Fh   | NVSTORE_SIG2  | Non-Volatile Storage Signature | ecfl                    |

# 4.4.1 EEPROM Data Descriptor Register Descriptions

# 4.4.1.1 00h: USB Serial String Descriptor Length

| BYTE | NAME        | DESCRIPTION                                                                                                                                                                                                              |
|------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0    | USB_SER_LEN | USB serial string descriptor length as defined by Section 9.6.7: <i>String</i> of the <i>USB 2.0 Specification</i> [1]. This field is the <i>bLength</i> , which describes the size of the string descriptor (in bytes). |

# 4.4.1.2 01h: USB Serial String Descriptor Type

| BYTE | NAME        | DESCRIPTION                                                                                                                                                                                                                 |
|------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | USB_SER_TYP | USB serial string descriptor type as defined by Section 9.6.7: <i>String</i> of the <i>USB 2.0 Specification</i> [1]. This field is the <i>bDescriptorType</i> , a constant value associated with a string descriptor type. |

### 4.4.1.3 02h-19h: USB Serial Number Option

| BYTE | NAME        | DESCRIPTION                                                            |
|------|-------------|------------------------------------------------------------------------|
| 25:2 | USB_SER_NUM | Maximum string length is 12 hex digits. Must be unique to each device. |

# 4.4.1.4 1Ah-1Bh: USB Vendor ID Option

| BYTE | NAME    | DESCRIPTION                                                                                   |
|------|---------|-----------------------------------------------------------------------------------------------|
| 1:0  | USB_VID | This ID is unique for every vendor. The vendor ID is assigned by the USB Implementer's Forum. |

### 4.4.1.5 1Ch-1Dh: USB Product ID Option

| BYTE | NAME    | DESCRIPTION                                                       |
|------|---------|-------------------------------------------------------------------|
| 1:0  | USB_PID | The product ID: assigned by the vendor; unique for every product. |

# 4.4.1.6 1Eh: USB Language Identifier Descriptor Length

| BYTE | NAME         | DESCRIPTION                                                                                                                                                                                                                   |
|------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0    | USB_LANG_LEN | USB language ID string descriptor length as defined by Section 9.6.7: <i>String</i> of the <i>USB 2.0 Specification</i> [1]. This field is the <i>bLength</i> , which describes the size of the string descriptor (in bytes). |

# 4.4.1.7 1Fh: USB Language Identifier Descriptor Type

| BYTE | NAME         | DESCRIPTION                                                                                                                                                                                                                      |
|------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | USB_LANG_TYP | USB language ID string descriptor type as defined by Section 9.6.7: <i>String</i> of the <i>USB 2.0 Specification</i> [1]. This field is the <i>bDescriptorType</i> , a constant value associated with a string descriptor type. |

# 4.4.1.8 20h: USB Language Identifier Least Significant Byte

| BYTE | NAME                | DESCRIPTION                                                                                   |
|------|---------------------|-----------------------------------------------------------------------------------------------|
| 2    | USB_LANG_ID<br>_LSB | English language code = 0409. See Note 4.3 for additional language IDs defined by the USB-IF. |

### 4.4.1.9 21h: USB Language Identifier Most Significant Byte

| BYTE | NAME                | DESCRIPTION                                                                                   |
|------|---------------------|-----------------------------------------------------------------------------------------------|
| 3    | USB_LANG_ID<br>_MSB | English language code = 0409. See Note 4.3 for additional language IDs defined by the USB-IF. |

### 4.4.1.10 22h: USB Manufacturer String Descriptor Length

| BYTE | NAME                | DESCRIPTION                                                                                                                                                                                                                 |  |
|------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0    | USB_MFR_STR<br>_LEN | USB manufacturer string descriptor length as defined by Section 9.6.7 <i>String</i> of the <i>USB 2.0 Specification</i> [1]. This field is the <i>bLength</i> which describes the size of the string descriptor (in bytes). |  |

### 4.4.1.11 23h: USB Manufacturer String Descriptor Type

| BYTE | NAME                | DESCRIPTION                                                                                                                                                                                                                      |  |
|------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1    | USB_MFR_STR<br>_TYP | USB manufacturer string descriptor type as defined by Section 9.6.7 <i>String</i> of the <i>USB 2.0 Specification</i> [1]. This field is the <i>bDescriptorType</i> , a constant value associated with a string descriptor type. |  |

### 4.4.1.12 24h-31h: USB Manufacturer String Option

| BYTE | NAME        | DESCRIPTION                                 |
|------|-------------|---------------------------------------------|
| 15:2 | USB_MFR_STR | The maximum string length is 28 characters. |

### 4.4.1.13 32h-5Dh: Reserved

| BYTE  | NAME | DESCRIPTION |
|-------|------|-------------|
| 59:16 | rsvd |             |

# 4.4.1.14 5Eh: USB Product String Descriptor Length

| BYTE | NAME                | DESCRIPTION                                                                                                                                                                                                              |  |
|------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0    | USB_PRD_STR<br>_LEN | USB product string descriptor length as defined by Section 9.6.7 <i>String</i> of the <i>USB 2.0 Specification</i> [1]. This field is the <i>bLength</i> , which describes the size of the string descriptor (in bytes). |  |

# 4.4.1.15 5Fh: USB Product String Descriptor Type

| BYTE | NAME                | DESCRIPTION                                                                                                                                                                                                                 |  |
|------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1    | USB_PRD_STR<br>_TYP | USB product string descriptor type as defined by Section 9.6.7 <i>String</i> of the <i>USB 2.0 Specification</i> [1]. This field is the <i>bDescriptorType</i> , a constant value associated with a string descriptor type. |  |

### 4.4.1.16 60h-99h: USB Product String Option

| BYTE | NAME        | AME DESCRIPTION                                                                                                                                   |  |
|------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 59:2 | USB_PRD_STR | This string will be used during the USB enumeration process in the Windows <sup>®</sup> operating system. Maximum string length is 28 characters. |  |

### 4.4.1.17 9Ah: USB BmAttribute (1 Byte)

| BIT | NAME       | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|-----|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 7:0 | USB_BM_ATT | Self- or Bus-Power: selects between self- and bus-powered operation.                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|     |            | The hub is either self-powered (draws less than 2 mA) or bus-powered (limited to 100 mA maximum power prior to being configured by the host controller).                                                                                                                                                                                                                                                                                                                     |  |
|     |            | When configured as a bus-powered device, the hub consumes less than 100 mA of current prior to being configured. After configuration, the bus-<br>powered SMSC hub (along with all associated hub circuitry, any embedded devices if part of a compound device, and 100 mA per externally available downstream port) must consume no more than 500 mA of current. The current consumption is system dependent and must follow the <i>USB 2.0 Specification</i> requirements. |  |
|     |            | When configured as a self-powered device, <1 mA of current is consumed and all ports are available, with each port being capable of sourcing 500 mA of current.                                                                                                                                                                                                                                                                                                              |  |
|     |            | <ul> <li>80: (default) Bus-powered operation</li> <li>C0: Self-powered operation</li> <li>A0: Bus-powered operation with remote wake-up</li> <li>E0: Self-powered operation with remote wake-up</li> </ul>                                                                                                                                                                                                                                                                   |  |

# 4.4.1.18 9Bh: USB MaxPower (1 Byte)

| BIT | NAME        | DESCRIPTION                                                                                        |  |
|-----|-------------|----------------------------------------------------------------------------------------------------|--|
| 7:0 | USB_MAX_PWR | USB Max Power per the <i>USB 2.0 Specification</i> [1]. Do NOT set this value greater than 100 mA. |  |

# 4.4.1.19 9Ch-9Fh: Attribute Byte Descriptions

| BYTE | BYTE<br>NAME | BIT | DESCRIPTION                                                                                                                                             |  |
|------|--------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0    | ATT_LB       | 3:0 | Always read as 0                                                                                                                                        |  |
|      |              | 4   | Inquire Manufacturer and Product ID Strings                                                                                                             |  |
|      |              |     | <ol> <li>use the Inquiry Manufacturer and Product ID Strings</li> <li>: (default) use the USB Descriptor Manufacturer and Product ID Strings</li> </ol> |  |
|      |              | 5   | Always read as 0                                                                                                                                        |  |
|      |              | 6   | Reverse SD Card Write Protect Sense                                                                                                                     |  |
|      |              |     | <code>1</code> : (default) SD cards will be write protected when $W_nWP$ is high, and writable when $SW_nWP$ is low.                                    |  |
|      |              |     | <code>0</code> : SD cards will be write protected when SW_nWP is low, and writable when SW_nWP is high.                                                 |  |
|      |              | 7   | Extended Configuration Enable                                                                                                                           |  |
|      |              |     | 1 : enables editing, updating, and reading from registers 100h-17Fh.                                                                                    |  |
|      |              |     | <ul><li>0 : internal configuration is loaded, where it will not read from registers<br/>100h-17Fh.</li></ul>                                            |  |
| 1    | ATT_HLB      | 3:0 | Always read as 0                                                                                                                                        |  |
|      |              | 4   | Activity LED True Polarity                                                                                                                              |  |
|      |              |     | <ul> <li>1 : activity LED to low true</li> <li>0 : (default) - activity LED polarity to high true</li> </ul>                                            |  |
|      |              | 5   | Common Media Insert/Media Activity LED                                                                                                                  |  |
|      |              |     | 1 : activity LED will function as a common media inserted/media access LED.                                                                             |  |
|      |              |     | 0 : (default) - activity LED will remain in its idle state until media is accessed.                                                                     |  |
|      |              | 6   | Always read as 0                                                                                                                                        |  |
|      |              | 7   | Reverse SD2 Card Write Protect Sense                                                                                                                    |  |
|      |              |     | 1 : (default) - SD cards in LUN 1 will be write protected when $W_nWP$ is high, and writable when $W_nWP$ is low.                                       |  |
|      |              |     | <code>0</code> : SD cards in LUN 1 will be write protected when $SW_nWP$ is low, and writable when $SW_nWP$ is high.                                    |  |

| BYTE | BYTE<br>NAME | BIT | DESCRIPTION                                                                                                                                                 |  |
|------|--------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 2    | ATT_LHB      | 0   | Attach on Card Insert/Detach on Card Removal                                                                                                                |  |
|      |              |     | <ol> <li>attach on insert is enabled</li> <li>(default) - attach on insert is disabled</li> </ol>                                                           |  |
|      |              | 1   | Always read as 0                                                                                                                                            |  |
|      |              | 2   | Enable Device Power Configuration                                                                                                                           |  |
|      |              |     | <ul> <li>1 : Custom Device Power Configuration stored in the NVSTORE is used</li> <li>0 : (default) - Default Device Power Configuration is used</li> </ul> |  |
|      |              | 7:3 | Always read as 0                                                                                                                                            |  |
| 3    | ATT_HB       | 6:0 | Always read as 0                                                                                                                                            |  |
|      |              | 7   | xD Player Mode                                                                                                                                              |  |

# 4.4.2 A0h-A7h: Device Power Configuration

The USB4640/USB4640i has one internal FET which can be utilized for card power. This section describes the default internal configuration. The settings are stored in **NVSTORE** and provide the following features:

- 1. A card can be powered by an external FET or by an internal FET.
- 2. The power limit can be set to 100 mA or 200 mA (default) for the internal FET.

Each media uses two bytes to store its device power configuration. Bit 3 selects between internal or external card power FET options. For internal FET card power control, bits 0 through 2 are used to set the power limit. The *Device Power Configuration* bits are ignored unless the Enable Device Power Configuration bit is set. See Section 4.4.1.19 on page 32.

### 4.4.2.1 A0h-A1h: Memory Stick Device Power Configuration

| FET | NAME      | BITS | BIT TYPE    | DESCRIPTION                                                                                                                                      |
|-----|-----------|------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 0   | MS_PWR_LB | 3:0  | Low Nibble  | FET Lo Byte                                                                                                                                      |
| 1   |           | 7:4  | High Nibble | 0000 : disabled                                                                                                                                  |
| 2   | MS_PWR_HB | 3:0  | Low Nibble  | FET Hi Byte                                                                                                                                      |
|     |           |      |             | 0000 : disabled<br>0001 : external FET enabled<br>1000 : internal FET - 100 mA power limit<br>1010 : (default) internal FET - 200 mA power limit |
| 3   |           | 7:4  | High Nibble | 0000 : disabled                                                                                                                                  |

### 4.4.2.2 A2h-A3h: Not Applicable

| BYTE | NAME | DESCRIPTION |
|------|------|-------------|
| 1:0  | N/A  |             |

# 4.4.2.3 A4h-A5h: Smart Media Device Power Configuration

| FET | NAME      | BITS | BIT TYPE    | DESCRIPTION                                                                                                                                      |
|-----|-----------|------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 0   |           | 3:0  | Low Nibble  | FET Lo Byte:                                                                                                                                     |
| 1   | SM_PWR_LB | 7:4  | High Nibble | 0000 : disabled                                                                                                                                  |
| 2   | SM_PWR_HB | 3:0  | Low Nibble  | FET Hi Byte                                                                                                                                      |
|     |           |      |             | 0000 : disabled<br>0001 : external FET enabled<br>1000 : internal FET - 100 mA power limit<br>1010 : (default) internal FET - 200 mA power limit |
| 3   |           | 7:4  | High Nibble | 0000 : disabled                                                                                                                                  |

# 4.4.2.4 A6h-A7h: Secure Digital Device Power Configuration

| FET | NAME      | BITS | BIT TYPE    | DESCRIPTION                                                                                                                                      |
|-----|-----------|------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 0   | SD_PWR_LB | 3:0  | Low Nibble  | FET Lo Byte:                                                                                                                                     |
| 1   |           | 7:4  | High Nibble | 0000 : disabled                                                                                                                                  |
| 2   | SD_PWR_HB | 3:0  | Low Nibble  | FET Hi Byte                                                                                                                                      |
|     |           |      |             | 0000 : disabled<br>0001 : external FET enabled<br>1000 : internal FET - 100 mA power limit<br>1010 : (default) internal FET - 200 mA power limit |
| 3   |           | 7:4  | High Nibble | 0000b : disabled                                                                                                                                 |

# 4.4.2.5 A8h: LED Blink Interval

| BYTE | NAME        | DESCRIPTION                                                                                   |
|------|-------------|-----------------------------------------------------------------------------------------------|
| 0    | LED_BLK_INT | The blink rate is programmable in 50 ms intervals. The high bit (7) indicates an idle state:  |
|      |             | 0 : off<br>1 : on                                                                             |
|      |             | The remaining bits (6:0) are used to determine the blink interval up to a max of 128 x 50 ms. |

# 4.4.2.6 A9h: LED Blink Duration

| BYTE | NAME        | DESCRIPTION                                                                                                                                                                                                             |
|------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | LED_BLK_DUR | LED Blink After Access: designates the number of seconds that the GPIO1 LED will continue to blink after a drive access. Setting this byte to 05 will cause the GPIO 1 LED to blink for 5 seconds after a drive access. |

# 4.4.3 Device ID Strings

These bytes are used to specify the LUN descriptor returned by the device. These bytes are used in combination with the device to LUN mapping bytes in applications where the LUNs need to be reordered and renamed. If multiple devices are mapped to the same LUN (a COMBO LUN), then the **CLUN#\_ID\_STR** will be used to name the COMBO LUN instead of the individual device strings. When applicable, the SM value will be overridden with xD once an xD-Picture Card has been identified.

### 4.4.3.1 AAh-B0h: Device 0 Identifier String

| BYTE | NAME        | DESCRIPTION |
|------|-------------|-------------|
| 6:0  | DEV0_ID_STR | N/A         |

### 4.4.3.2 B1h-B7h: Device 1 Identifier String

| BYTE | NAME        | DESCRIPTION                                          |
|------|-------------|------------------------------------------------------|
| 6:0  | DEV1_ID_STR | ID string is associated with the Memory Stick device |

### 4.4.3.3 B8h-BEh: Device 2 Identifier String

| BYTE | NAME        | DESCRIPTION                                                    |
|------|-------------|----------------------------------------------------------------|
| 6:0  | DEV2_ID_STR | ID string is associated with the Smart Media (Note 4.2) device |

### 4.4.3.4 BFh-C5h: Device 3 Identifier String

| BYTE | NAME        | DESCRIPTION                                                           |
|------|-------------|-----------------------------------------------------------------------|
| 6:0  | DEV3_ID_STR | ID string is associated with the Secure Digital/MultiMediaCard device |

### 4.4.3.5 C6h-CDh: Inquiry Vendor String

| BYTE | NAME        | DESCRIPTION                                                                                                                                                                             |
|------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0  | INQ_VEN_STR | If bit 4 of the first attribute byte is set, the device will use these strings in response to a USB inquiry command, instead of the USB descriptor manufacturer and product ID strings. |

### 4.4.3.6 CEh-D2h: Inquiry Product String

| BYTE | NAME        | DESCRIPTION                                                                                                                                                                             |
|------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4:0  | INQ_PRD_STR | If bit 4 of the first attribute byte is set, the device will use these strings in response to a USB inquiry command, instead of the USB descriptor manufacturer and product ID strings. |

# 4.4.3.7 D3h: Dynamic Number of LUNs

| BIT | NAME        | DESCRIPTION                                                                                                                                                                                                                                                                                                        |
|-----|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0 | DYN_NUM_LUN | These bytes are used to specify the number of LUNs the device exposes to the host. These bytes are also used for icon sharing by assigning more than one LUN to a single icon. This is used in applications where the device utilizes a combo socket with only a single icon displayed for one or more interfaces. |
|     |             | If this field is set to FF, the program assumes that you are using the default value and icons will be configured per the default configuration.                                                                                                                                                                   |

# 4.4.3.8 D4h-D7h: Device to LUN Mapping

| BYTE | NAME        | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3:0  | DEV_LUN_MAP | These registers map a device controller (SD/MMC, SM (Note 4.2), and MS) to a Logical Unit Number (LUN). The device reports the mapped LUNs to the USB host in the USB descriptor during enumeration. The icon installer associates custom icons with the LUNs specified in these fields.<br>Setting a register to FF indicates that the device is not mapped. Setting all of the DEV_LUN_MAP registers for all devices to FF forces the use of the default mapping configuration. Not all configurations are valid. Valid configurations depend on the hardware, packaging, and the board layout. The number of unique LUNs mapped must match the value in the Section 4.4.3.7 on page 36. |

### 4.4.3.9 D8h-DDh: Reserved

| BYTE | NAME | DESCRIPTION |
|------|------|-------------|
| 2:0  | rsvd |             |

# 4.4.4 Hub Controller Configurations

# 4.4.4.1 DEh: Vendor ID (LSB)

| BIT | BYTE NAME | DESCRIPTION                                                                                                                                         |
|-----|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0 | VID_LSB   | Least Significant Byte of the Vendor ID: a unique 16-bit value that identifies the vendor of the user device (assigned by USB Implementer's Forum). |

### 4.4.4.2 DFh: Vendor ID (MSB)

| BIT | BYTE NAME | DESCRIPTION                                                                                                                                        |
|-----|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0 | VID_MSB   | Most Significant Byte of the Vendor ID: a unique 16-bit value that identifies the vendor of the user device (assigned by USB Implementer's Forum). |

## 4.4.4.3 E0h: Product ID (LSB)

| BIT | NAME    | DESCRIPTION                                                                                                             |
|-----|---------|-------------------------------------------------------------------------------------------------------------------------|
| 7:0 | PID_LSB | Least Significant Byte of the Product ID: a unique 16-bit value that identifies a particular product (vender assigned). |

## 4.4.4.4 E1h: Product ID (MSB)

| BIT | NAME    | DESCRIPTION                                                                                                            |
|-----|---------|------------------------------------------------------------------------------------------------------------------------|
| 7:0 | PID_MSB | Most Significant Byte of the Product ID. a unique 16-bit value that identifies a particular product (vender assigned). |

## 4.4.4.5 E2h: Device ID (LSB)

| BIT | NAME    | DESCRIPTION                                                                                                   |
|-----|---------|---------------------------------------------------------------------------------------------------------------|
| 7:0 | DID_LSB | Least Significant Byte of the Device ID: a 16-bit device release number in BCD (binary coded decimal) format. |

## 4.4.4.6 E3h: Device ID (MSB)

| BIT | NAME    | DESCRIPTION                                                                           |
|-----|---------|---------------------------------------------------------------------------------------|
| 7:0 | DID_MSB | Most Significant Byte of the Device ID: a 16-bit device release number in BCD format. |

## 4.4.4.7 E4h: Configuration Data Byte 1 (CFG\_DAT\_BYT1)

| BIT | NAME         | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | SELF_BUS_PWR | Self- or Bus-Power: Selects between self- and bus-powered operation.                                                                                                                                                                                                                                                                                                                                                                                                               |
|     |              | The hub is either self-powered (draws less than 2 mA) or bus-powered (limited to 100 mA maximum power prior to being configured by the host controller).                                                                                                                                                                                                                                                                                                                           |
|     |              | When configured as a bus-powered device, the SMSC hub consumes less<br>than 100 mÅ of current prior to being configured. After configuration, the bus-<br>powered hub (along with all associated hub circuitry, any embedded devices<br>if part of a compound device, and 100 mÅ per externally available<br>downstream port) must consume no more than 500 mÅ of current. The<br>current consumption is system dependent, and the USB 2.0 specifications<br>must not be violated. |
|     |              | When configured as a self-powered device, <1 m A of current is consumed and all ports are available, with each port being capable of sourcing 500 mA of current.                                                                                                                                                                                                                                                                                                                   |
|     |              | <ul><li>0 : Bus-powered operation</li><li>1 : Self-powered operation</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6:3 | rsvd         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| BIT | NAME        | DESCRIPTION                                                                                                                                                                                                                                                          |
|-----|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2:1 | CURRENT_SNS | Over-Current Sense                                                                                                                                                                                                                                                   |
|     |             | Selects current sensing on a port-by-port basis, all ports ganged, or none (only for bus-powered hubs). The ability to support current sensing on a per port or ganged basis is dependent upon the hardware implementation.                                          |
|     |             | <ul> <li>00 : Ganged sensing (all ports together)</li> <li>01 : individual (port-by-port)</li> <li>1x : over-current sensing not supported (must only be used with buspowered configurations)</li> </ul>                                                             |
| 0   | PORT_PWR    | Port Power Switching                                                                                                                                                                                                                                                 |
|     |             | Enables power switching on all ports simultaneously (ganged), or port power is individually switched on and off on a port-by-port basis (individual). The ability to support power enabling on a port or ganged basis is dependent upon the hardware implementation. |
|     |             | <ul><li>0 : ganged switching (all ports together)</li><li>1 : individual port-by-port switching</li></ul>                                                                                                                                                            |

## 4.4.4.8 E5h: Configuration Data Byte 2 (CFG\_DAT\_BYT2)

| BIT | NAME     | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:6 | rsvd     |                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5:4 | OC_TIMER | OverCurrent Timer: over-current timer delay<br>00 : 50 ns<br>01 : 100 ns<br>10 : 200 ns<br>11 : 400 ns                                                                                                                                                                                                                                                                                                                            |
| 3   | COMPOUND | Compound Device: allows OEM to indicate that the hub is part of a compound device (per the USB 2.0 Specification). The applicable port(s) must also be defined as having a "non-removable device".<br>When configured via strapping options, declaring a port as non-removable automatically causes the hub controller to report that it is part of a compound device.<br>0 : no<br>1 : yes, the hub is part of a compound device |
| 2:0 | rsvd     |                                                                                                                                                                                                                                                                                                                                                                                                                                   |

## 4.4.4.9 E6h: Configuration Data Byte 3 (CFG\_DAT\_BYT3)

| BIT | NAME      | DESCRIPTION                                                                                                                                                                                                                                                                                                                                       |
|-----|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:4 | rsvd      |                                                                                                                                                                                                                                                                                                                                                   |
| 3   | PRTMAP_EN | Port Mapping Enable: selects the method used by the hub to assign port numbers and disable ports.                                                                                                                                                                                                                                                 |
|     |           | 0 : Standard Mode. Strap options or the following registers are used to define<br>which ports are enabled, and the ports are mapped as port 'n' on the hub is<br>reported as port 'n' to the host, unless one of the ports is disabled, then the<br>higher numbered ports are remapped in order to report contiguous port<br>numbers to the host. |
|     |           | Register 300Ah: Port disable for self-powered operation (Reset = 0x00)<br>Register 300Bh: Port disable for bus-powered operation (Reset = 0x00)                                                                                                                                                                                                   |
|     |           | 1 : Port Map mode. The mode enables remapping via the registers defined below.                                                                                                                                                                                                                                                                    |
|     |           | Register 30FBh: Port Map 12 (Reset = 0x00)<br>Register 30FCh: Port Map 3 (Reset = 0x00)                                                                                                                                                                                                                                                           |
| 2:0 | rsvd      |                                                                                                                                                                                                                                                                                                                                                   |

## 4.4.4.10 E7h: Non-Removable Device

| BIT | BYTE NAME | DESCRIPTION                                                                                                                                                                              |
|-----|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0 | NR_DEVICE | Indicates which port(s) include non-removable devices.                                                                                                                                   |
|     |           | 0 : Port is removable<br>1 : Port is non-removable                                                                                                                                       |
|     |           | Informs the host if one of the active ports has a permanent device that is undetachable from the hub. The device must provide its own descriptor data.                                   |
|     |           | When using the internal default option, NON_REM[1:0] designates the appropriate ports as being non-removable.                                                                            |
|     |           | Bit 7 : rsvd<br>Bit 6 : rsvd<br>Bit 5 : rsvd<br>Bit 4 : rsvd<br>Bit 3 : controls physical port 3<br>Bit 2 : controls physical port 2<br>Bit 1 : controls physical port 1<br>Bit 0 : rsvd |
|     |           | <b>Note:</b> Bit 1 must be set to a 1 by the firmware for proper identification of the card reader as a non-removable device.                                                            |

## 4.4.4.11 E8h: Port Disable For Self-Powered Operation

| BIT | BYTE NAME   | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0 | PORT_DIS_SP | Disables 1 or more ports.                                                                                                                                                                                                                                                                                                                                                                                        |
|     |             | 0 : port is available<br>1 : port is disabled                                                                                                                                                                                                                                                                                                                                                                    |
|     |             | During self-powered operation this register selects the ports which will be<br>permanently disabled. The ports are unavailable to be enabled or<br>enumerated by a host controller. The ports can be disabled in any order<br>since the internal logic will automatically report the correct number of<br>enabled ports to the USB host and will reorder the active ports in order to<br>ensure proper function. |
|     |             | Bit 7 : rsvd<br>Bit 6 : rsvd<br>Bit 5 : rsvd<br>Bit 4 : rsvd<br>Bit 3 : controls physical port 3<br>Bit 2 : controls physical port 2<br>Bit 1 : controls physical port 1<br>Bit 0 : rsvd                                                                                                                                                                                                                         |

## 4.4.4.12 E9h: Port Disable For Bus-Powered Operation

| BIT | BYTE NAME   | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0 | PORT_DIS_BP | Disables 1 or more ports.                                                                                                                                                                                                                                                                                                                                                                                    |
|     |             | 0 : port is available<br>1 : port is disabled                                                                                                                                                                                                                                                                                                                                                                |
|     |             | During self-powered operation, this register selects the ports which will be<br>permanently disabled. The ports are unavailable to be enabled or<br>enumerated by a host controller. The ports can be disabled in any order, the<br>internal logic will automatically report the correct number of enabled ports to<br>the USB host and will reorder the active ports in order to ensure proper<br>function. |
|     |             | When using the internal default option, <b>PRT_DIS[1:0]</b> disable the appropriate ports.                                                                                                                                                                                                                                                                                                                   |
|     |             | Bit 7 : rsvd<br>Bit 6 : rsvd<br>Bit 5 : rsvd<br>Bit 4 : rsvd<br>Bit 3 : controls physical port 3<br>Bit 2 : controls physical port 2<br>Bit 1 : controls physical port 1<br>Bit 0 : rsvd                                                                                                                                                                                                                     |

## 4.4.4.13 EAh: Max Power For Self-Powered Operation

| BIT | BYTE NAME  | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0 | MAX_PWR_SP | Value in 2 mA increments that the hub consumes when operating as a self-<br>powered hub. This value includes the hub silicon along with the combined<br>power consumption of all associated circuitry on the board. This value also<br>includes the power consumption of a permanently attached peripheral if the<br>hub is configured as a compound device, and the embedded peripheral<br>reports 0 mA in its descriptors.<br><b>Note:</b> Per <i>USB 2.0 Specification</i> : this value cannot exceed 100 mA. |

## 4.4.4.14 EBh: Max Power For Bus-Powered Operation

| BIT | BYTE NAME  | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|-----|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 7:0 | MAX_PWR_BP | Value in 2 mA increments that the hub consumes when operating as a bus-<br>powered hub. This value includes the hub silicon along with the combined<br>power consumption of all associated circuitry on the board. This value also<br>includes the power consumption of a permanently attached peripheral if the<br>hub is configured as a compound device, and the embedded peripheral<br>reports 0 mA in its descriptors. |  |

## 4.4.4.15 ECh: Hub Controller Max Current For Self-Powered Operation

| BIT | BYTE NAME   | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                     |  |
|-----|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 7:0 | HC_MAX_C_SP | Value in 2 mA increments that the hub consumes when operating as a self-<br>powered hub. This value includes the hub silicon along with the combined<br>power consumption of all associated circuitry on the board. This value does<br>NOT include the power consumption of a permanently attached peripheral if<br>the hub is configured as a compound device. |  |
|     |             | <b>Note:</b> Per <i>USB 2.0 Specification:</i> this value cannot exceed 100 mA. A value of 50 (decimal) indicates 100 mA, which is the default value.                                                                                                                                                                                                           |  |

## 4.4.4.16 EDh: Hub Controller Max Current For Bus-Powered Operation

| BIT | BYTE NAME   | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                       |  |
|-----|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 7:0 | HC_MAX_C_BP | Value in 2 mA increments that the hub consumes when operating as a bus<br>powered hub. This value will include the hub silicon along with the combined<br>power consumption of all associated circuitry on the board. This value will<br>NOT include the power consumption of a permanently attached peripheral is<br>the hub is configured as a compound device. |  |
|     |             | A value of 50 (decimal) would indicate 100 mA, which is the default value.                                                                                                                                                                                                                                                                                        |  |

## 4.4.4.17 EEh: Power-On Time

| BIT | BYTE NAME   | DESCRIPTION                                                                                                                                                                                                                                                                                                  |
|-----|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0 | PWR_ON_TIME | The length of time that it takes (in 2 ms intervals) from the time the host initiated power-on sequence begins on a port until power is adequate on that port. If the host requests the power-on time, the system software uses this value to determine how long to wait before accessing a powered-on port. |

## 4.4.4.18 EFh: Boost\_Up

| BIT | NAME       | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|-----|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 7:2 | rsvd       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 1:0 | BOOST_IOUT | <ul> <li>USB electrical signaling drive strength boost bit for the upstream port A.</li> <li>00 : Normal electrical drive strength - no boost</li> <li>01 : Elevated electrical drive strength - low (approximately 4% boost)</li> <li>10 : Elevated electrical drive strength - medium (approximately 8% boost)</li> <li>11 : Elevated electrical drive strength - high (approximately 12% boost)</li> <li>Note: Boost could result in non-USB compliant parameters. Therefore, a value of 00 should be implemented unless specific implementation issues require additional signal boosting to correct for degraded USB signalling levels.</li> </ul> |  |

## 4.4.4.19 F0h: Boost\_3:0

| BIT | NAME         | DESCRIPTION                                                                                                                                                                                                                                                                                                               |  |
|-----|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 7:6 | rsvd         |                                                                                                                                                                                                                                                                                                                           |  |
| 5:4 | BOOST_IOUT_3 | Upstream USB electrical signaling drive strength boost bit for downstream port 3.                                                                                                                                                                                                                                         |  |
|     |              | <ul> <li>00 : normal electrical drive strength - no boost</li> <li>01 : elevated electrical drive strength - low (approximately 4% boost)</li> <li>10 : elevated electrical drive strength - medium (approximately 8% boost)</li> <li>11 : elevated electrical drive strength - high (approximately 12% boost)</li> </ul> |  |
| 3:2 | BOOST_IOUT_2 | Upstream USB electrical signaling drive strength boost bit for downstream port 2.                                                                                                                                                                                                                                         |  |
|     |              | <ul> <li>00 : normal electrical drive strength - no boost</li> <li>01 : elevated electrical drive strength - low (approximately 4% boost)</li> <li>10 : elevated electrical drive strength - medium (approximately 8% boost)</li> <li>11 : elevated electrical drive strength - high (approximately 12% boost)</li> </ul> |  |
|     |              | <b>Note:</b> Boost could result in non-USB compliant parameters. Therefore, a value of 00 should be implemented unless specific implementation issues require additional signal boosting to correct for degraded USB signalling levels.                                                                                   |  |
| 1:0 | rsvd         | Always read as 0                                                                                                                                                                                                                                                                                                          |  |

## 4.4.4.20 F1h: Port Swap

| BIT | BYTE NAME | DESCRIPTION                                                                                                                                                                              |  |
|-----|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 7:0 | PRT_SWP   | Port Swap: swaps the upstream and downstream USB DP and DM pins for ease of board routing to devices and connectors.                                                                     |  |
|     |           | 0 : USB D+ functionality is associated with the DP pin and D- functionality<br>is associated with the DM pin.                                                                            |  |
|     |           | ${\tt 1}$ : USB D+ functionality is associated with the DM pin and D- functionality is associated with the DP pin.                                                                       |  |
|     |           | Bit 7 : rsvd<br>Bit 6 : rsvd<br>Bit 5 : rsvd<br>Bit 4 : rsvd<br>Bit 3 : controls physical port 3<br>Bit 2 : controls physical port 2<br>Bit 1 : rsvd<br>Bit 0 : controls physical port 0 |  |

## 4.4.4.21 F2h: Port Map 12

| BIT | BYTE NAME |                                                                     |                                           | DESCRIPTION                                                                                                                                                                                                                    |
|-----|-----------|---------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0 | PRTM12    | host controller, the<br>hub is not permitte<br>controller will numb | hub is only<br>d to select<br>per the dow | and 2: when a hub is enumerated by a USB<br>permitted to report how many ports it has; the<br>a numerical range or assignment. The host<br>nstream ports of the hub starting with the<br>of ports that the hub reports having. |
|     |           | port on the hub is<br>enabled (see <b>PORT</b>                      | the Physica<br>MAP12.PRT                  | ed the Logical Port Number and the physical<br>I Port Number. When mapping mode is<br>MAP_EN) the hub's downstream port numbers<br>gical port numbers (assigned by the host).                                                  |
|     |           | from num<br>ensures th                                              | ber 1 up to<br>hat the hub'               | ort numbers must be implemented, starting<br>the maximum number of enabled ports. This<br>s ports are numbered in accordance with the<br>nunicate with the ports.                                                              |
|     |           |                                                                     | 1                                         |                                                                                                                                                                                                                                |
|     |           | Bit [7:4]                                                           | 0000                                      | Physical port 2 is disabled                                                                                                                                                                                                    |
|     |           |                                                                     | 0001                                      | Physical port 2 is mapped to logical port 1                                                                                                                                                                                    |
|     |           |                                                                     | 0010                                      | Physical port 2 is mapped to logical port 2                                                                                                                                                                                    |
|     |           |                                                                     | 0011                                      | Physical port 2 is mapped to logical port 3                                                                                                                                                                                    |
|     |           |                                                                     | 0100<br><b>to</b><br>1111                 | Illegal; do not use                                                                                                                                                                                                            |
|     |           | Bit [3:0]                                                           | 0000                                      | Physical port 1 is disabled                                                                                                                                                                                                    |
|     |           |                                                                     | 0001                                      | Physical port 1 is mapped to logical port 1                                                                                                                                                                                    |
|     |           |                                                                     | 0010                                      | Physical port 1 is mapped to logical port 2                                                                                                                                                                                    |
|     |           |                                                                     | 0011                                      | Physical port 1 is mapped to logical port 3                                                                                                                                                                                    |
|     |           |                                                                     | 0100<br><b>to</b><br>1111                 | Illegal; do not use                                                                                                                                                                                                            |
|     |           | Table                                                               | e 4.5 Port I                              | Map Register for Ports 1 and 2                                                                                                                                                                                                 |

## 4.4.4.22 F3h: Port Map 3

| BIT | BYTE NAME |                                                                                                                                                                                                                                                                                                                                                                          |                                           | DESCRIPTION                                                                                                                                                                         |
|-----|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:0 | PRTM3     | PortMap Register for Ports 1 and 2: when a hub is enumerated by a USB host controller, the hub is only permitted to report how many ports it has; the hub is not permitted to select a numerical range or assignment. The host controller will number the downstream ports of the hub starting with the number 1, up to the number of ports that the hub reports having. |                                           |                                                                                                                                                                                     |
|     |           | port on the hub is<br>enabled (see <b>POR</b>                                                                                                                                                                                                                                                                                                                            | the Physica<br>IMAP12.PRTI<br>Jumbers can | ed the Logical Port Number and the physical<br>I Port Number. When mapping mode is<br>MAP_EN: Configuration Data Byte 3) the hub's<br>be remapped to different logical port numbers |
|     |           | from num<br>ensures f                                                                                                                                                                                                                                                                                                                                                    | ber 1 up to<br>that the hub's             | ort numbers must be implemented, starting<br>the maximum number of enabled ports. This<br>s ports are numbered in accordance with the<br>nunicate with the ports.                   |
|     |           |                                                                                                                                                                                                                                                                                                                                                                          | -                                         |                                                                                                                                                                                     |
|     |           | Bit [7:4]                                                                                                                                                                                                                                                                                                                                                                | 0000                                      | rsvd                                                                                                                                                                                |
|     |           |                                                                                                                                                                                                                                                                                                                                                                          | 0001                                      | rsvd                                                                                                                                                                                |
|     |           |                                                                                                                                                                                                                                                                                                                                                                          | 0010                                      | rsvd                                                                                                                                                                                |
|     |           |                                                                                                                                                                                                                                                                                                                                                                          | 0011                                      | rsvd                                                                                                                                                                                |
|     |           |                                                                                                                                                                                                                                                                                                                                                                          | 0100<br><b>to</b><br>1111                 | Illegal; do not use                                                                                                                                                                 |
|     |           | Bit [3:0]                                                                                                                                                                                                                                                                                                                                                                | 0000                                      | Physical port 3 is disabled                                                                                                                                                         |
|     |           |                                                                                                                                                                                                                                                                                                                                                                          | 0001                                      | Physical port 3 is mapped to logical port 1                                                                                                                                         |
|     |           |                                                                                                                                                                                                                                                                                                                                                                          | 0010                                      | Physical port 3 is mapped to logical port 2                                                                                                                                         |
|     |           |                                                                                                                                                                                                                                                                                                                                                                          | 0011                                      | Physical port 3 is mapped to logical port 3                                                                                                                                         |
|     |           |                                                                                                                                                                                                                                                                                                                                                                          | 0100<br>to<br>1111                        | Illegal; do not use                                                                                                                                                                 |
|     |           | <b></b>                                                                                                                                                                                                                                                                                                                                                                  | Table 4.6 Po                              | ort Map Register for Port 3                                                                                                                                                         |

## 4.4.4.23 F4h-F6h: Reserved

| BYTE | BYTE NAME | DESCRIPTION |
|------|-----------|-------------|
| 6:0  | rsvd      |             |

## 4.4.4.24 F7h-FBh: Not Applicable

| BIT | BYTE NAME | DESCRIPTION |
|-----|-----------|-------------|
| 7:0 | N/A       |             |

## 4.4.4.25 FCh-FFh: Non-Volatile Storage Signature

| BYTE | NAME        | DESCRIPTION                                                                                                                                                         |
|------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3:0  | NVSTORE_SIG | This signature is used to verify the validity of the data in the first 256 bytes of the configuration area. The signature must be set to ATA2 for USB4640/USB4640i. |

## 4.4.5 Internal Flash Media Controller Extended Configurations

Enable registers 100h-17Fh by setting bit 7 of bmAttribute.

## 4.4.5.1 100h-106h: Combo LUN 0 Identifier String

| BYTE | NAME         | DESCRIPTION                                                                                                                                                                   |
|------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6:0  | CLUN0_ID_STR | If the device to LUN mapping bytes have configured this LUN to be a combo LUN, then these strings will be used to identify the LUN rather than the device identifier strings. |

## 4.4.5.2 107h-17Bh: Not Applicable

| BYTE  | NAME | DESCRIPTION |
|-------|------|-------------|
| 116:0 | N/A  |             |

## 4.4.5.3 17Ch -17Fh: Non-Volatile Storage Signature for Extended Configuration

| BYTE | NAME         | DESCRIPTION                                                                                                                                                                                                 |
|------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3:0  | NVSTORE_SIG2 | This signature is used to verify the validity of the data in the upper 256 bytes if a 512 byte EEPROM is used, otherwise this bank is a read-only configuration area. The signature must be set to $ecfl$ . |

## 4.4.6 I<sup>2</sup>C EEPROM

The I<sup>2</sup>C EEPROM interface implements a subset of the I<sup>2</sup>C Master Specification (refer to I<sup>2</sup>C-Bus Specification [6] for I<sup>2</sup>C bus protocols). The device's I<sup>2</sup>C EEPROM interface is designed to attach to a single dedicated I<sup>2</sup>C EEPROM, and it conforms to the Standard-mode I<sup>2</sup>C Specification (100 kbps transfer rate and 7-bit addressing) for protocol and electrical compatibility.

**Note:** Extensions to the  $l^2C$  Specification are not supported. The device acts as the master and generates the serial clock SCL, controls the bus access (determines which device acts as the transmitter and which device acts as the receiver), and generates the START and STOP conditions.

#### 4.4.6.1 **Protocol Implementation**

The hub will only access an EEPROM using the sequential read protocol as outlined in Chapter 8 of the MicroChip 24AA02/24LC02B Data Sheet [8].

#### 4.4.6.2 **Pull-Up Resistor**

The circuit board designer is required to place external pull-up resistors (10 k $\Omega$  recommended) on the SPI DO/GPIO5/SDA/SPI SPD SEL and SPI CLK/GPIO4/SCL lines (per SMBus 1.0 Specification [7] and EEPROM manufacturer quidelines) to VDD33 in order to assure proper operation.

#### 4.4.7 In-Circuit EEPROM Programming

The EEPROM can be programmed via automatic test equipment (ATE). Pulling nRESET low tri-states the device's EEPROM interface and allows an external source to program the EEPROM.

#### 4.5 Default Configuration Option

The SMSC device can be configured via its internal default configuration. Please see Section 4.3.2 on page 26 for specific details on how to enable default configuration. Please refer to Table 4.1 for the internal default values that are loaded when this option is selected.

#### 4.5.1 External Hardware nRESET

A valid hardware reset is defined as assertion of nRESET for a minimum of 1 µs after all power supplies are within operating range. While reset is asserted, the device (and its associated external circuitry) consumes less than 500 µA of current.

Assertion of nRESET (external pin) causes the following:

- 1. All downstream ports are disabled and PRTCTL power to downstream devices is removed
- 2. The PHYs are disabled and the differential pairs will be in a high-impedance state
- 3. All transactions immediately terminate; no states are saved
- 4. All internal registers return to the default state (in most cases, 00h)
- 5. The external crystal oscillator is halted
- 6. The PLL is halted

#### 4.5.1.1 nRESET for EEPROM Configuration

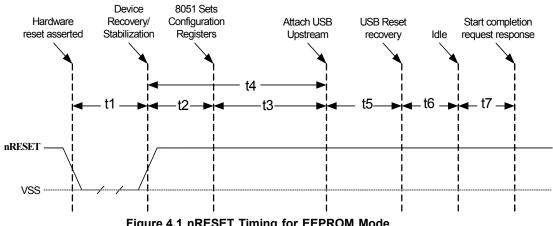



Figure 4.1 nRESET Timing for EEPROM Mode

| Table 4.7 | nRESET | <b>Timing for</b> | EEPROM Mode |
|-----------|--------|-------------------|-------------|
|-----------|--------|-------------------|-------------|

| NAME | DESCRIPTION                                               | MIN | ТҮР       | МАХ | UNITS |
|------|-----------------------------------------------------------|-----|-----------|-----|-------|
| t1   | nRESET asserted                                           | 1   |           |     | μsec  |
| t2   | Device recovery/stabilization                             |     |           | 500 | μsec  |
| t3   | 8051 programs device configuration                        |     | 20        | 50  | msec  |
| t4   | USB attach (Note)                                         |     |           | 100 | msec  |
| t5   | Host acknowledges attach and signals USB reset            | 100 |           |     | msec  |
| t6   | USB idle                                                  |     | Undefined |     | msec  |
| t7   | Completion time for requests (with or without data stage) |     |           | 5   | msec  |

**Note:** All power supplies must have reached the operating levels mandated in Chapter 6 on page 51, prior to (or coincident with) the assertion of **nRESET**.

## 4.5.2 USB Bus Reset

In response to the upstream port signaling a reset to the device, the device does the following:

- 1. Sets default address to 0
- 2. Sets configuration to: Unconfigured
- 3. Negates PRTCTL[3:2] to all downstream ports
- 4. Clears all TT buffers
- 5. Moves device from suspended to active (if suspended)
- 6. Complies with Section 11.10 of the USB 2.0 Specification for behavior after completion of the reset sequence

Note: The device does not propagate the upstream USB reset to downstream devices.

The host then configures the device and the device's downstream port devices in accordance with the USB 2.0 Specification.

# **Chapter 5 AC Specifications**

## 5.1 Oscillator/Crystal

Parallel Resonant, Fundamental Mode, 24 MHz  $\pm$  350 ppm.

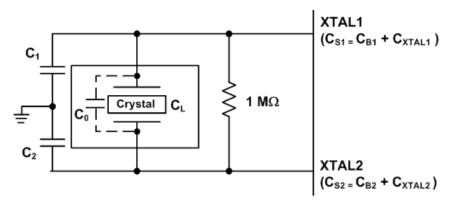



Figure 5.1 Typical Crystal Circuit

Table 5.1 Crystal Circuit Legend

| SYMBOL                | DESCRIPTION                               | IN ACCORDANCE WITH                                                            |
|-----------------------|-------------------------------------------|-------------------------------------------------------------------------------|
| <b>C</b> <sub>0</sub> | Crystal shunt capacitance                 | Crystal manufacturer's specification (See Note 5.1)                           |
| CL                    | Crystal load capacitance                  | Crystal manufacturer's specification (See Note 5.1)                           |
| <b>c</b> <sub>B</sub> | Total board or trace<br>capacitance       | OEM board design                                                              |
| <b>c</b> <sub>s</sub> | Stray capacitance                         | SMSC IC and OEM board design                                                  |
| C <sub>XTAL</sub>     | XTAL pin input capacitance                | SMSC IC                                                                       |
| <b>C</b> <sub>1</sub> | Load capacitors installed on<br>OEM board | Calculated values based on Figure 5.2:<br>Capacitance Formulas (See Note 5.2) |
| <b>C</b> <sub>2</sub> |                                           | Capacitance Formulas (See Note 5.2)                                           |

$$C_1 = 2 \times (C_L - C_0) - C_{S1}$$

$$C_2 = 2 \times (C_L - C_0) - C_{S2}$$

### Figure 5.2 Capacitance Formulas

- **Note 5.1**  $C_0$  is usually included (subtracted by the crystal manufacturer) in the specification for  $C_L$ and should be set to '0' for use in the calculation of the capacitance formulas in Figure 5.2: *Capacitance Formulas*. However, the PCB may present a parasitic capacitance between XTAL1 and XTAL2. For an accurate calculation of  $C_1$  and  $C_2$ , take the parasitic capacitance between traces XTAL1 and XTAL2 into account.
- **Note 5.2** Each of these capacitance values is typically approximately 18 pF.

High-Speed Inter-Chip (HSIC) USB 2.0 Hub and Flash Media Controller

### Datasheet

## 5.2 Ceramic Resonator

24 MHz  $\pm$  350 ppm

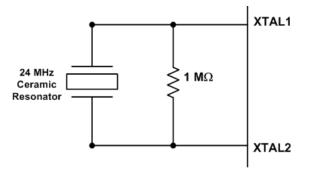



Figure 5.3 Ceramic Resonator Usage with SMSC IC

## 5.3 External Clock

50% Duty cycle  $\pm$  10%, 24 MHz  $\pm$  350 ppm, Jitter < 100 ps rms.

The external clock is recommended to conform to the signaling level designated in the *JESD76-2 Specification* on 1.8 V CMOS Logic. **XTAL2** should be treated as a no connect.

## 5.3.1 I<sup>2</sup>C EEPROM

Frequency is fixed at 58.6 kHz  $\pm$  20%

## 5.3.2 USB 2.0

The SMSC device conforms to all voltage, power, and timing characteristics and specifications as set forth in the USB 2.0 Specification. Please refer to the USB 2.0 Specification for more information.

# **Chapter 6 DC Parameters**

## 6.1 Maximum Guaranteed Ratings

| PARAMETER                           | SYMBOL            | MIN  | МАХ                                         | UNITS | COMMENTS                                                                                                                                                                                                                                                 |
|-------------------------------------|-------------------|------|---------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Storage<br>Temperature              | T <sub>STOR</sub> | -55  | 150                                         | °C    |                                                                                                                                                                                                                                                          |
| Lead<br>Temperature                 |                   |      |                                             | °C    | Refer to JEDEC Specification J-STD-020D [5].                                                                                                                                                                                                             |
| 1.2 V supply voltage                | VDD12             | -0.5 | 1.5                                         | V     |                                                                                                                                                                                                                                                          |
| 3.3 V supply voltage                | VDD33             | -0.5 | 4.0                                         | V     |                                                                                                                                                                                                                                                          |
| Voltage on<br>USB+ and<br>USB- pins |                   | -0.5 | $(3.3 \text{ V supply voltage } + 2) \le 6$ | V     |                                                                                                                                                                                                                                                          |
| Voltage on<br>GPIO10                |                   | -0.5 | VDD33 + 0.3                                 | V     | When internal power FET operation of these pins are enabled, these pins may be simultaneously shorted to ground or any voltage up to 3.63 V indefinitely, without damage to the device as long as VDD33 is less than 3.63 V and $T_A$ is less than 70°C. |
| Voltage on<br>any signal pin        |                   | -0.5 | VDD33 + 0.3                                 | V     |                                                                                                                                                                                                                                                          |
| Voltage on<br>XTAL1                 |                   | -0.5 | 3.6                                         | V     |                                                                                                                                                                                                                                                          |
| Voltage on<br>XTAL2                 |                   | -0.5 | 2.0                                         | V     |                                                                                                                                                                                                                                                          |

### Notes:

- Stresses above the specified parameters could cause permanent damage to the device. This is a stress rating only. Therefore, functional operation of the device at any condition above those indicated in the operation sections of this specification are not implied.
- When powering this device from laboratory or system power supplies, it is important that the absolute maximum ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes on their outputs when the AC power is switched on or off. In addition, voltage transients on the AC power line may appear on the DC output. When this possibility exists, it is suggested that a clamp circuit be used.

# 6.2 **Operating Conditions**

| PARAMETER                                          | SYMBOL            | MIN  | MAX   | UNITS | Comments                                                                                                                             |
|----------------------------------------------------|-------------------|------|-------|-------|--------------------------------------------------------------------------------------------------------------------------------------|
| Commercial<br>USB4640<br>Operating<br>Temperature  | T <sub>A</sub>    | 0    | 70    | °C    | Ambient temperature in still air.                                                                                                    |
| Industrial<br>USB4640i<br>Operating<br>Temperature | T <sub>A</sub>    | -40  | 85    | °C    | Ambient temperature in still air.                                                                                                    |
| 1.2 V supply voltage                               | VDD12             | 1.1  | 1.3   | V     | The ripple on VDD12 must be less than 50 mV peak to peak.                                                                            |
| 1.2 V supply rise time                             | t <sub>RT12</sub> | 0    | 400   | μs    | Under all conditions the voltage<br>on the 1.2 V supply must be<br>below the 3.3 V supply.<br>(Figure 6.1)                           |
| 3.3 V supply voltage                               | VDD33             | 3.0  | 3.6   | V     | A 3.3 V regulator with an output tolerance of 1% must be used if the output of the internal power FET's must support a 5% tolerance. |
| 3.3 V supply rise time                             | t <sub>RT33</sub> | 0    | 400   | μs    | (Figure 6.1)                                                                                                                         |
| Voltage on<br>USB+ and USB- pins                   |                   | -0.3 | 5.5   | V     | If any 3.3 V supply voltage drops below 3.0 V, then the MAX becomes:                                                                 |
|                                                    |                   |      |       |       | (3.3 V supply voltage) + 0.5 $\leq$ 5.5                                                                                              |
| Voltage on any signal pin                          |                   | -0.3 | VDD33 | V     |                                                                                                                                      |
| Voltage on XTAL1                                   |                   | -0.3 | 2.0   | V     |                                                                                                                                      |
| Voltage on XTAL2                                   |                   | -0.3 | 2.0   | V     |                                                                                                                                      |

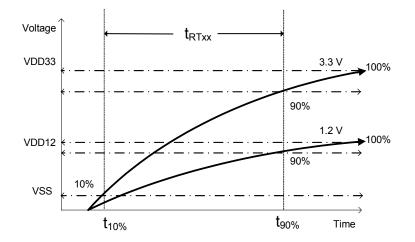



Figure 6.1 Supply Rise Time Model

## 6.3 DC Electrical Characteristics

| PARAMETER                               | SYMBO<br>L        | MIN                       | ТҮР | MAX | UNITS | COMMENTS                                   |
|-----------------------------------------|-------------------|---------------------------|-----|-----|-------|--------------------------------------------|
| I, IPU, IPD Type Input Buffer           |                   |                           |     |     |       |                                            |
| Low Input Level                         | V <sub>ILI</sub>  |                           |     | 0.8 | V     | TLL Levels                                 |
| High Input Level                        | V <sub>IHI</sub>  | 2.0                       |     |     | V     |                                            |
| Pull Down                               | PD                |                           | 72  |     | μA    |                                            |
| Pull Up                                 | PU                |                           | 58  |     | μA    |                                            |
| IS Type Input Buffer                    |                   |                           |     |     |       |                                            |
| Low Input Level                         | V <sub>ILI</sub>  |                           |     | 0.8 | V     | TTL Levels                                 |
| High Input Level                        | V <sub>IHI</sub>  | 2.0                       |     |     | V     |                                            |
| Hysteresis                              | V <sub>HYSI</sub> |                           | 420 |     | mV    |                                            |
| ICLK Input Buffer                       |                   |                           |     |     |       |                                            |
| Low Input Level                         | V <sub>ILCK</sub> |                           |     | 0.5 | V     |                                            |
| High Input Level                        | V <sub>IHCK</sub> | 1.4                       |     |     | V     |                                            |
| Input Leakage                           | Ι <sub>ΙL</sub>   | -10                       |     | +10 | μA    | $V_{IN}$ = 0 to VDD33                      |
| Input Leakage<br>(All I and IS buffers) |                   |                           |     |     |       |                                            |
| Low Input Leakage                       | Ι <sub>ΙL</sub>   | -10                       |     | +10 | μA    | $V_{IN} = 0$                               |
| High Input Leakage                      | I <sub>IH</sub>   | -10                       |     | +10 | μA    | V <sub>IN</sub> = VDD33                    |
| I/O6, I/OD6PU Type Buffers              |                   |                           |     |     |       |                                            |
| Low Output Level                        | V <sub>OL</sub>   |                           |     | 0.4 | V     | I <sub>OL</sub> = 6 mA @<br>VDD33 = 3.3 V  |
| High Output Level                       | V <sub>OH</sub>   | V <sub>DD33</sub><br>-0.4 |     |     | V     | I <sub>OH</sub> = -6 mA @<br>VDD33 = 3.3 V |
| Output Leakage                          | I <sub>OL</sub>   | -10                       |     | +10 | μA    | V <sub>IN</sub> = 0 to VDD33<br>(Note 6.1) |
| Pull Down                               | PD                |                           | 72  |     | μA    |                                            |
| Pull Up                                 | PU                |                           | 58  |     | μA    |                                            |

High-Speed Inter-Chip (HSIC) USB 2.0 Hub and Flash Media Controller

## Datasheet

| PARAMETER                                             | SYMBO<br>L        | MIN                        | ТҮР | МАХ | UNITS | COMMENTS                                    |
|-------------------------------------------------------|-------------------|----------------------------|-----|-----|-------|---------------------------------------------|
| O8, O8PD, 08PU, I/O8, I/O8PD, and I/O8PU Type Buffers |                   |                            |     |     |       |                                             |
| Low Output Level                                      | V <sub>OL</sub>   |                            |     |     | V     | I <sub>OL</sub> = 8 mA @<br>VDD33 = 3.3 V   |
| High Output Level                                     | V <sub>OH</sub>   | V <sub>DD33</sub><br>- 0.4 |     |     | V     | I <sub>OH</sub> = -8 mA @<br>VDD33 = 3.3 V  |
| Output Leakage                                        | I <sub>OL</sub>   | -10                        |     | +10 | μA    | V <sub>IN</sub> = 0 to VDD33<br>(Note 6.1)  |
| Pull Down                                             | PD                |                            | 72  |     | μΑ    |                                             |
| Pull Up                                               | PU                |                            | 58  |     | μA    |                                             |
| O12, I/O12, and I/O12PD<br>Type Buffers               |                   |                            |     |     |       |                                             |
| Low Output Level                                      | V <sub>OL</sub>   |                            |     | 0.4 | V     | I <sub>OL</sub> = 12 mA @<br>VDD33 = 3.3 V  |
| High Output Level                                     | V <sub>OH</sub>   | V <sub>DD33</sub><br>- 0.4 |     |     | V     | I <sub>OH</sub> = -12 mA @<br>VDD33 = 3.3 V |
| Output Leakage                                        | I <sub>OL</sub>   | -10                        |     | +10 | μA    | V <sub>IN</sub> = 0 to VDD33<br>(Note 6.1)  |
| Pull Down                                             | PD                |                            | 72  |     | μA    |                                             |
| Pull Up                                               | PU                |                            | 58  |     | μΑ    |                                             |
| IO-U                                                  |                   |                            |     |     |       | (Note 6.2)                                  |
| I-R                                                   |                   |                            |     |     |       | (Note 6.3)                                  |
| I/O200 Integrated Power FET for GPIO10                |                   |                            |     |     |       |                                             |
| High Output Current                                   | I <sub>OUT</sub>  | 200                        |     |     | mA    | Vdrop <sub>FET</sub> = 0.46 V               |
| Low Output Current (Note 6.4)                         | I <sub>OUT</sub>  | 100                        |     |     | mA    | Vdrop <sub>FET</sub> = 0.23 V               |
| On Resistance (Note 6.4)                              | R <sub>DSON</sub> |                            |     | 2.1 | Ω     | I <sub>FET</sub> = 70 mA                    |
| Output Voltage Rise Time                              | t <sub>DSON</sub> |                            |     | 800 | μs    | $C_{LOAD}$ = 10 $\mu$ F                     |
| Integrated Power FET Set to 100 mA                    |                   |                            |     |     |       |                                             |
| Output Current (Note 6.4)                             | I <sub>OUT</sub>  | 100                        |     |     | mA    | Vdrop <sub>FET</sub> = 0.22 V               |
| Short Circuit Current Limit                           | I <sub>SC</sub>   |                            |     | 140 | mA    | Vout <sub>FET</sub> = 0 V                   |
| On Resistance (Note 6.4)                              | R <sub>DSON</sub> |                            |     | 2.1 | Ω     | I <sub>FET</sub> = 70 mA                    |
| Output Voltage Rise Time                              | t <sub>DSON</sub> |                            |     | 800 | μs    | $C_{LOAD}$ = 10 $\mu$ F                     |

| PARAMETER                                                    | SYMBO<br>L        | MIN | ТҮР | МАХ | UNITS | COMMENTS                      |
|--------------------------------------------------------------|-------------------|-----|-----|-----|-------|-------------------------------|
| Integrated Power FET Set to 200 mA                           |                   |     |     |     |       |                               |
| Output Current (Note 6.4)                                    | I <sub>OUT</sub>  | 200 |     |     | mA    | Vdrop <sub>FET</sub> = 0.46 V |
| Short Circuit Current Limit                                  | I <sub>SC</sub>   |     |     | 181 | mA    | Vout <sub>FET</sub> = 0 V     |
| On Resistance (Note 6.4)                                     | R <sub>DSON</sub> |     |     | 2.1 | Ω     | I <sub>FET</sub> = 70 mA      |
| Output Voltage Rise Time                                     | t <sub>DSON</sub> |     |     | 800 | μs    | $C_{LOAD}$ = 10 $\mu$ F       |
| Supply Current Unconfigured                                  |                   |     |     |     |       | (Note 6.6)                    |
| USB4640                                                      | ICCINTHS          |     | 58  | 60  | mA    |                               |
| USB4640i                                                     | ICCINTHS          |     | 58  | 62  | mA    |                               |
| Supply Current Configured<br>1 downstream port               |                   |     |     |     |       | (Note 6.6)                    |
| USB4640                                                      | I <sub>HCH1</sub> |     | 155 | 160 | mA    |                               |
| USB4640i                                                     | I <sub>HCH1</sub> |     | 155 | 165 | mA    |                               |
| Supply Current Configured<br>Each additional downstream port |                   |     |     |     |       | (Note 6.6)                    |
| USB4640                                                      |                   |     | 30  | 35  | mA    |                               |
| USB4640i                                                     |                   |     | 30  | 40  | mA    |                               |
| HSIC_DAT, HSIC_STROBE<br>Driver Impedance                    | ۱ <sub>D</sub>    | 40  | 46  | 60  | Ω     | (Note 6.5)                    |
| Supply Current Suspend                                       |                   |     |     |     |       | (Note 6.6)                    |
| USB4640                                                      | I <sub>CSBY</sub> |     | 210 | 375 | μA    |                               |
| USB4640i                                                     | I <sub>CSBY</sub> |     | 210 | 450 | μA    |                               |
| Supply Current Reset                                         |                   |     |     |     |       | (Note 6.6)                    |
| USB4640                                                      | I <sub>RST</sub>  |     | 220 | 400 | μA    |                               |
| USB4640i                                                     | I <sub>RST</sub>  |     | 220 | 500 | μA    |                               |

**Note 6.1** Output leakage is measured with the current pins in high impedance.

Note 6.2 See the USB 2.0 Specification, Chapter 7, for USB DC electrical characteristics

- **Note 6.3** RBIAS is a 3.3 V tolerant analog pin.
- **Note 6.4** Output current range is controlled by program software. The software disables the FET during short circuit condition.
- Note 6.5 Refer to the High-Speed Inter-Chip USB Electrical Specification Revision 1.0 [2].
- **Note 6.6** Typical and maximum values were characterized using the following temperature ranges: The USB4640 supports the commercial temperature range of 0°C to +70°C The USB4640i supports the industrial temperature range of -40°C to +85°C

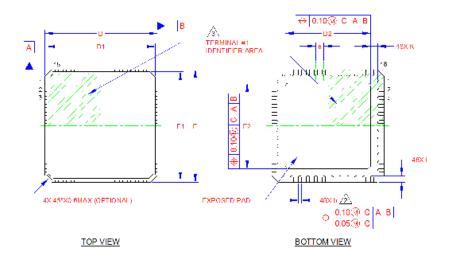
High-Speed Inter-Chip (HSIC) USB 2.0 Hub and Flash Media Controller

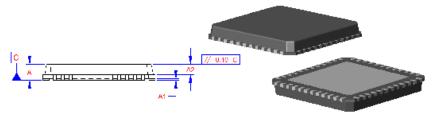
## Datasheet

## 6.4 Capacitance

 $T_A = 25^{\circ}C$ ; fc = 1 MHz; VDD33 = 3.3 V

## Table 6.1 Pin Capacitance


|                         |                   |     | LIMITS |     |      |                                                                             |
|-------------------------|-------------------|-----|--------|-----|------|-----------------------------------------------------------------------------|
| PARAMETER               | SYMBOL            | MIN | ТҮР    | MAX | UNIT | TEST CONDITION                                                              |
| Clock Input Capacitance | C <sub>XTAL</sub> |     |        | 2   | pF   | All pins (except USB pins<br>and pins under test) are tied<br>to AC ground. |
| Input Capacitance       | C <sub>IN</sub>   |     |        | 10  | pF   |                                                                             |
| Output Capacitance      | C <sub>OUT</sub>  |     |        | 20  | pF   |                                                                             |


# **Chapter 7 GPIO Usage**

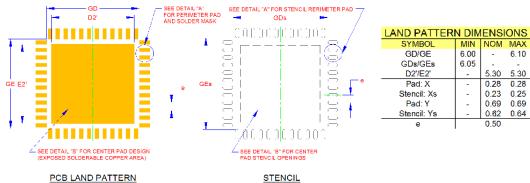
| NAME   | ACTIVE<br>LEVEL | SYMBOL       | DESCRIPTION AND NOTE                        |
|--------|-----------------|--------------|---------------------------------------------|
| GPIO1  | Н               | LED / TxD    | LED indicator / Serial port transmit line   |
| GPIO2  | Н               | RxD          | Serial port receive line                    |
| GPIO4  | Н               | SCL          | Serial EEPROM clock                         |
| GPIO5  | Н               | SDA          | Serial EEPROM data                          |
| GPIO6  | L               | SD_WP        | Secure Digital card write protect assertion |
| GPIO10 | L               | CRD_PWR_CTRL | Card power control                          |
| GPIO12 | L               | MS_nCD       | Memory Stick card detect                    |
| GPIO14 | L               | xD_nCD       | xD-Picture card detect                      |
| GPIO15 | L               | SD_nCD       | Secure Digital card detect                  |

## Table 7.1 USB4640/USB4640i GPIO Usage

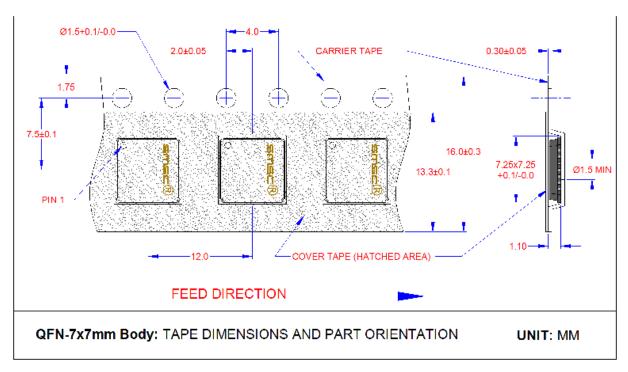
# **Chapter 8 Package Specifications**



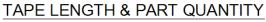



SIDE VIEW

3-D VIEWS


| COMMON DIMENSIONS |               |          |      |      |                             |  |
|-------------------|---------------|----------|------|------|-----------------------------|--|
| SYMBOL            | MIN           | NOM      | MAX  | NOTE | REMARK                      |  |
| А                 | 0.70          | 0.85     | 1.00 | -    | OVERALL PACKAGE HEIGHT      |  |
| A1                | 0             | 0.02     | 0.05 | -    | STANDOFF                    |  |
| A2                | -             | -        | 0.90 | -    | MOLD CAP THICKNESS          |  |
| D/E               | 6. <b>8</b> 5 | 7.00     | 7.15 | -    | X/Y BODY SIZE               |  |
| D1/E1             | 6.55          | 6.75     | 6.95 | -    | X/Y MOLD CAP SIZE           |  |
| D2/E2             | 5.20          | 5.30     | 5.40 | -    | X/Y EXPOSED PAD SIZE        |  |
| L                 | 0.30          | 0.40     | 0.50 | -    | TERMINAL LENGTH             |  |
| b                 | 0.18          | 0.25     | 0.30 | 2    | TERMINAL WIDTH              |  |
| K                 | 0.35          | -        | -    | -    | CENTER PAD TO PIN CLEARANCE |  |
| e                 | (             | 0.50 BSC | :    | -    | TERMINAL PITCH              |  |

NOTES: 1. ALL DIMENSIONS ARE IN MILLIMETER. 2. DIMENSIONS '5' APPLIES TO PLATED TERMINALS AND IT IS MEASURED BETWEEN 0.15 AND 0.30 mm FROM THE TERMINAL TIP. 3. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE AREA INDICATED.






### Figure 8.1 USB4640/USB4640i 48-Pin QFN



## 8.1 Tape and Reel Specifications



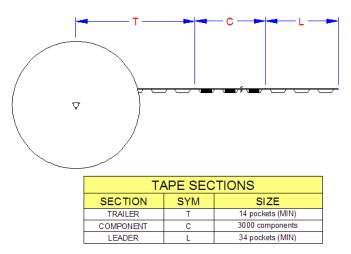
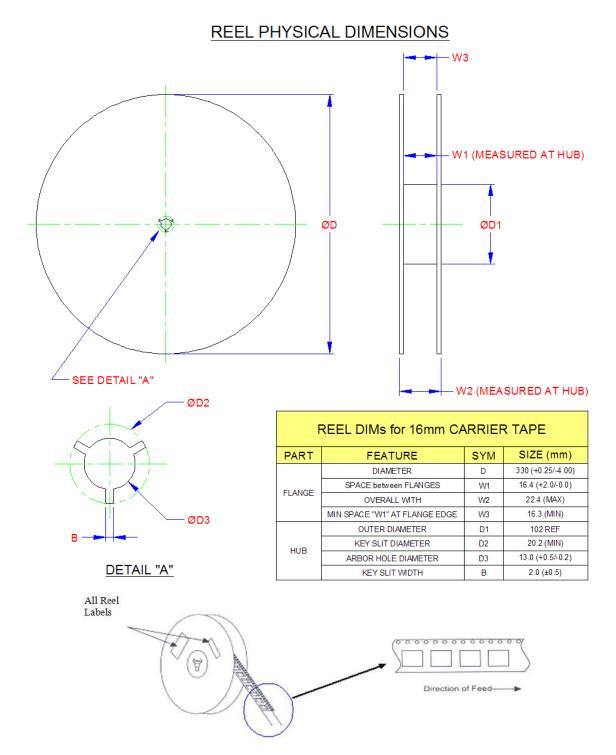




Figure 8.2 48-Pin Package Tape Specifications





# **Appendix A (Acronyms)**

ACK: Handshake packet (positive acknowledgement)

EOF: End of (micro) Frame

FM: Flash Media

FMC: Flash Media Controller

FS: Full-Speed Device

LS: Low-Speed Device

HS: Hi-Speed Device

I<sup>2</sup>C<sup>®</sup>: Inter-Integrated Circuit<sup>1</sup>

MMC: MultiMediaCard

MS: Memory Stick

MSC: Memory Stick Controller

**OCS:** Over-current Sense

PHY: Physical Layer

PLL: Phase-Locked Loop

SD: Secure Digital

**SDC:** Secure Digital Controller

TXD: Transmit eXchange Data

UART: Universal Asynchronous Receiver-Transmitter

UCHAR: Unsigned Character

**UINT: Unsigned Integer** 

Standard Microsystems is a registered trademark and SMSC is a trademark of Standard Microsystems Corporation. Other product and company names are trademarks or registered trademarks of their respective holders.

\*Note: In order to develop, make, use, or sell readers and/or other products using or incorporating any of the SMSC devices made the subject of this document or to use related SMSC software programs, technical information and licenses under patent and other intellectual property rights from or through various persons or entities, including without limitation media standard companies, forums, and associations, and other patent holders may be required. These media standard companies, forums, and associations (Memory Stick Proj; SD3 LLC (Secure Digital); MultiMedia Card Association (MultiMediaCard); the SSFDC Forum (SmartMedia); the Compact Flash Association (Compact Flash); and Fuji Photo Film Co., Ltd., Olympus Optical Co., Ltd., and Toshiba Corporation (xD-Picture Card). SMSC does not make such licenses or technical information available; does not promise or represent that any such licenses or technical information will actually be obtainable from or through the various persons or entities (including the media standard companies, forums, and associations), or with respect to the terms under which they may be made available; and is not responsible for the accuracy or sufficiency of, or otherwise with respect to, any such technical information.

SMSC's obligations (if any) under the Terms of Sale Agreement, or any other agreement with any customer, or otherwise, with respect to infringement, including without limitation any obligations to defend or settle claims, to reimburse for costs, or to pay damages, shall not apply to any of the devices made the subject of this document or any software programs related to any of such devices, or to any combinations involving any of the devices in fringement or claimed infringement of any existing or future patents related to solid state disk or other flash memory technology or applications ("Solid State Disk Patents"). By making any purchase of any of the devices made the subject of this document, the customer represents, warrants, and agrees that it has obtained all necessary licenses under then-existing Solid State Disk Patents for the manufacture, use and sale of solid state disk and other flash memory products and that the customer will timely obtain at no cost or expense to SMSC all necessary licenses under Solid State Disk Patents; that the manufacture and testing by or for SMSC of the units of any of the devices made the subject of this document which may be sold to the customer, are valid exercises of the customer's rights and licenses under such Solid State Disk Patents; that SMSC shall have no obligation for rany costs or expenses related to the customer's obtaining or having obtained rights or licenses under any Solid State Disk Patents; by Reagant to asset manufacture, use, or sale of such units; and that SMSC shall have no obligation for rany costs or expenses related to the customer's obtaining or having obtained rights or licenses under any Solid State Disk Patents. SMSC MAKES NO WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, IN REGARD TO INFRINGEMENT OR OTHER VIOLATION OF INTELLECTUAL PROPERTY RIGHTS. SMSC DISCLAIMS AND EXCLUDES ANY AND ALL WARRANTIES AGAINST INFRINGEMENT AND THE LIKE.

No license is granted by SMSC expressly, by implication, by estoppel or otherwise, under any patent, trademark, copyright, mask work right, trade secret, or other intellectual property right.

\*\*To obtain this software program the appropriate SMSC Software License Agreement must be executed and in effect. Forms of these Software License Agreements may be obtained by contacting SMSC.

<sup>1.</sup> I<sup>2</sup>C is a registered trademark of Philips Corporation.

High-Speed Inter-Chip (HSIC) USB 2.0 Hub and Flash Media Controller

### Datasheet

# **Appendix B (References)**

- Universal Serial Bus Specification, Version 2.0, April 27, 2000 (12/7/2000 and 5/28/2002 Errata) USB Implementers Forum, Inc. http://www.usb.org
- USB 2.0 Supplement High-Speed Inter-Chip USB Electrical Specification Revision 1.0. 09/23/07. USB Implementers Forum, Inc. http://www.usb.org/developers/docs/
- [3] HSIC ECN. May 25, 2010USB Implementers Forum, Inc. http://www.usb.org/developers/docs/
- [4] The Unicode Standard, Worldwide Character Encoding Version 4.0 The Unicode Consortium. http://www.unicode.org
- [5] JEDEC Specification J-STD-020D JEDEC Global Standards for the Microelectronics Industry.http://www.jedec.org/standards-documents
- [6] I<sup>2</sup>C-Bus Specification Version 1.1
   NXP (formerly a division of Philips). http://www.nxp.com/products/interface\_control/i2c/
- [7] System Management Bus Specification, version 1.0 SMBus. http://smbus.org/specs/
- [8] MicroChip 24AA02/24LC02B
   Microchip Technology Inc. http://www.microchip.com/