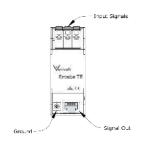
Three Phase Voltage Sensor

The Entube-TE series is designed for high quality three-phase measurements in a very compact form factor without need for power supplies. This series covers the ranges of ±100V, ±200V, ± 300 V, ± 400 V, ± 500 V, ± 750 V and ± 1000 V, with up to 85kHz bandwidth and 0.2% accuracy. The Entube-TE sensor operates as a differential divider network with an anti-aliasing filter on its output. It generates a ±5V or ±10V scaled down version of the line-to-line and line-to-ground voltage on its input terminals. Depending on the software configuration, the sensor outputs phase-to-phase voltages for Delta configuration, or phase-to-ground for Wye configurations. This signal can then be processed by most computer based measurement platforms. One Entube-TE replaces 3 sensors, and only requires one cable for all three signals. This allows for very high channel densities, while delivering high performance for a low cost.

SPECIFICATION

Entube TE	100V	200V	300V	400V	500V	750V	1000V
Bandwidth (-3dB point)	85kHz		50kHz			25kHz	
Integrated sensor noise (Referenced to input)	< 30 µV	< 60µV	< 100 µV	< 130 µV	< 170 µV	< 220 µV	< 290 µV
Gain (Using 10V standard output voltage)	10	20	30	40	50	75	100
Input Impedance	> 1 MΩ		> 2 MΩ			> 3 MΩ	
Line Output Impedance	50kΩ	25kΩ	33kΩ	25kΩ	20kΩ	20kΩ	15kΩ


HARDWARE DESCRIPTION

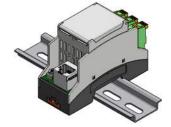
The Entube-TE is a differential voltage down-converter designed for 3-phase systems. It outputs all line-to-line and line-to-ground signal pairs. Delta or Wye measurements can be made depending on the input configuration of the digitizer being used (NRSE or Differential).

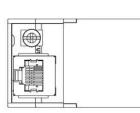
Eletrical	
Accuracy (percentage of reading)	±0.2% (±0.05% Typical)
Gain (Using 10V standard o	output voltage)
Max total phase shift at 60Hz	< 0.05°
Common mode rejection	±2000V
Withstanding differential mode surge voltage	±1000V
Mechanical	
Mounting Type	DIN Rail
Connectivity (Connector for power in and signal out to/ from the sensor)	RJ45 Ethernet jack
Outer Dimensions	1.4" x 1.4" x 4.5"
Weight	198 g (7.0 oz)

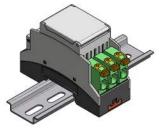
Integrated sensor noise (Referenced to input)					
Input-Output non-linearity	< 250 ppm				
Output voltage	±10V , ±5V				
Gain temperature drift	±50 ppm/°C				
Differential input dynamic range					
Common mode rejection	52 dB				
Power Supply Voltage	None				
Output type	Single-ended signal				
Output Offset Voltage	< ± 10µV (on ±10V signal)				
Environmental					
Operating temperature	– 25 to 70 °C				
Storage temperature	– 40 to 80 °C				

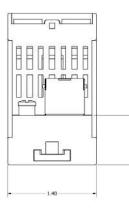
OVERVIEW

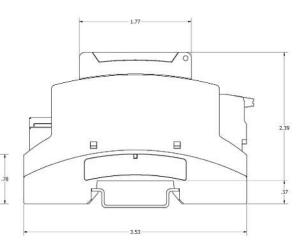
Signal Layout

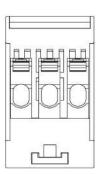

The three input phases connect to the sensor via a Spring-cage. while the conditioned signals from the sensor come out on a standard Ethernet jack. The Entube-TE can be mounted anywhere between the signal source and the data acquisition system. A female-screw on the

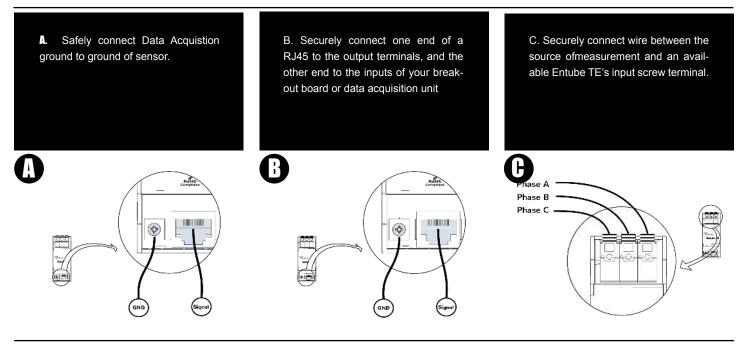

low voltage side of the sensor allows for DIN rail mounting, and serves as a safety ground.


A standard Ethernet cable is used to carry the conditioned signals from the sensor. The orange, brown and blue pairs carry phase voltages; the green connects to ground and DAQ reference. To avoid limiting the signal bandwidth and to eliminate cross-talk between pairs, a shielded STP Ethernet cable with a maximum length of 100m (330') should be used. This will keep good resolution beyond the 10th harmonic on a typical 60Hz system




MERCHANICAL DIMENSIONS





HARDWARE **CONFIGURATION**

Standards and Certifications

• CE

RoHS Compliant

DANGER THIS SENSOR IS NOT A SAFETY DEVICE AND IS NOT INTENDED TO BE USED AS A SAFETY DEVICE. This sensor is designed only to detect and read certain data in an elec-tronic manner and perform no use apart from that, specifically no safetyrelated use. This sensor product does not include self-checking redundant circuitry, and the failure of this sensor product could cause either an energized or de-energized output condition, which could result in death, serious bodily injury, or property damage.