

14-BIT REGISTERED BUFFER WITH SSTL I/O

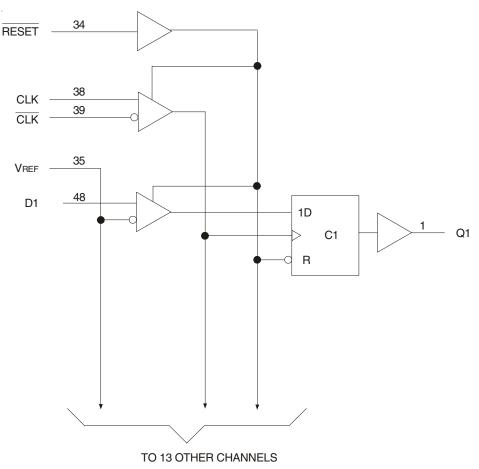
IDT74SSTVF16857

FEATURES:

- 2.3V to 2.7V Operation
- SSTL_2 Class I style data inputs/outputs
- · Differential CLK input
- RESET control compatible with LVCMOS levels
- Flow-through architecture for optimum PCB design
- Drive up to equivalent of 14 SDRAM loads
- Latch-up performance exceeds 100mA
- ESD >2000V per MIL-STD-883, Method 3015; >200V using machine model (C = 200pF, R = 0)
- Available in TSSOP package

APPLICATIONS:

 Along with CSPT857C, Zero Delay PLL Clock buffer, provides complete solution for DDR1 DIMMs

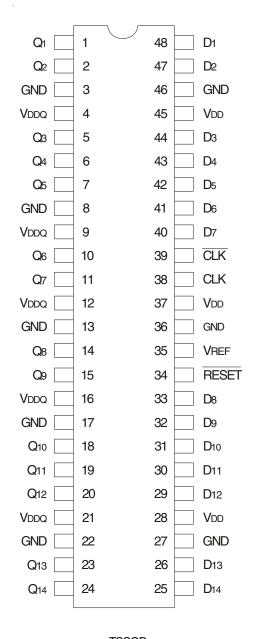

FUNCTIONAL BLOCK DIAGRAM

DESCRIPTION:

The SSTVF16857 is a 14-bit registered buffer designed for 2.3V-2.7V VDD and supports low standby operation. All data inputs and outputs are SSTL_2 level compatible with JEDEC standard for SSTL_2.

 $\overline{\text{RESET}}$ is an LVCMOS input since it must operate predictably during the power-up phase. $\overline{\text{RESET}}$, which can be operated independent of CLK and $\overline{\text{CLK}}$, must be held in the low state during power-up in order to ensure predictable outputs (low state) before a stable clock has been applied.

 $\overline{\text{RESET}}$, when in the low state, will disable all input receivers, reset all registers, and force all outputs to a low state, before a stable clock has been applied. With inputs held low and a stable clock applied, outputs will remain low during the Low-to-High transition of $\overline{\text{RESET}}$.


COMMERCIAL TEMPERATURE RANGE

JUNE 2003

14-BIT REGISTERED BUFFER WITH SSTLI/O

COMMERCIAL TEMPERATURE RANGE

PIN CONFIGURATION

TSSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Description	Max.	Unit
VDD or VDDQ	Supply Voltage Range	-0.5 to 3.6	V
VI ⁽²⁾	Input Voltage Range	-0.5 to VDD +0.5	V
Vo ⁽³⁾	Output Voltage Range	-0.5 to VDDQ +0.5	V
Ік	Input Clamp Current, VI < 0	-50	mA
Іок	Output Clamp Current,	±50	mA
	Vo < 0 or Vo > VDDQ		
lo	Continuous Output Current,	±50	mA
	Vo = 0 to VDDQ		
Vdd	Continuous Current through each	±100	mA
	VDD, VDDQ or GND		
Tstg	Storage Temperature Range	-65 to +150	°C

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. The input and output negative voltage ratings may be exceeded if the ratings of the I/P and O/P clamp current are observed.
- The output current will flow if the following conditions are observed:
 a) Output in HIGH state

b) VO = VDDQ

FUNCTION TABLE (1)

RESET	CLK	CLK	D	Q Outputs
Н	\uparrow	\rightarrow	L	L
Н	\uparrow	\rightarrow	Н	Н
н	L or H	L or H	х	Qo ⁽²⁾
L	х	х	х	L

NOTES:

1. H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care $\uparrow = 1 \text{ OW to HIC}$

 \uparrow = LOW to HIGH

 \downarrow = HIGH to LOW

2. Qo = Output level before the indicated steady-state conditions were established.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: TA = 0°C to +70°C, VDD = 2.5V \pm 0.2V, VDDQ = 2.5V \pm 0.2V

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit	
νικ	Control Inputs	VDD = 2.3V, II = -18mA	_	_	-1.2	V	
Vон		VDD = 2.3V to 2.7V, IOH = -100µА	Vdd - 0.2	—	_	V	
		VDD = 2.3V, IOH = -8mA	1.95	_	_		
Vol		VDD = 2.3V to 2.7V, IOL = 100µA	_	_	0.2	V	
		VDD = 2.3V, IOL = 8mA	_	—	0.35		
lı	All Inputs	VDD = 2.7V, VI = VDD or GND	-	_	±5	μΑ	
IDD	Static Standby	IO = 0, VDD = 2.7V, $\overline{\text{RESET}}$ = GND	_	_	0.01	mA	
	Static Operating	IO = 0, VDD = 2.7V, $\overline{\text{RESET}}$ = VDD, VI = VIH (AC) or VIL (AC)	-	6	_		
IDDD	Dynamic Operating (Clock Only)	IO = 0, VDD = 2.7V, $\overline{\text{RESET}}$ = VDD, VI = VIH (AC) or VIL (AC),	_	_	_	µA/Clock	
		CLK and CLK Switching 50% Duty Cycle.				MHz	
	Dynamic Operating	IO = 0, VDD = 2.7V, $\overline{\text{RESET}}$ = VDD, VI = VIH (AC) or VIL (AC),	-	_	_	µA/Clock	
	(Per Each Data Input)	CLK and CLK Switching 50% Duty Cycle. One Data Input				MHz/Data	
		Switching at Half Clock Frequency, 50% Duty Cycle.				Input	
	Data Inputs	Vdd = 2.5V, VI = Vref \pm 310mV	2.5		3.5		
Сі	CLK and CLK	VICR = 1.25V, VI (PP) = 360mV	2.5	_	3.5	pF	
	RESET	VI = VDD or GND	_	_	_		

OPERATING CHARACTERISTICS, $T_A = 25^{\circ}C$ ⁽¹⁾

Symbol	Parameter		Min.	Typ. ⁽¹⁾	Max.	Unit
VDD	Supply Voltage		VDDQ	_	2.7	V
VDDQ	Output Supply Voltage		2.3	2.5	2.7	V
VREF	Reference Voltage (VREF=VDDQ/2)		1.15	1.25	1.35	V
Vtt	Termination Voltage		VREF-40mV	VREF	VREF+ 40mV	V
Vı	Input Voltage		0	—	Vdd	V
Vін	AC High-Level Input Voltage	Data Inputs	VREF+ 310mV	_	—	V
VIL	AC Low-Level Input Voltage	Data Inputs	—	_	VREF-310mV	V
Vін	DC High-Level Input Voltage	Data Inputs	VREF+ 150mV	—	—	V
VIL	DC Low-Level Input Voltage	Data Inputs	—	—	VREF-150mV	V
VIH	High-Level Input Voltage	RESET	1.7	_	—	V
VIL	Low-Level Input Voltage	RESET	—	—	0.7	V
VICR	Common-Mode Input Range	CLK, CLK	0.97	—	1.53	V
VI (PP)	Peak-to-Peak Input Voltage	CLK, CLK	360	_	—	mV
Іон	High-Level Output Current		—		-20	mA
IOL	Low-Level Output Current		_		20	
Та	Operating Free-Air Temperature		0		+70	°C

NOTE:

1. The RESET input of the device must be held at VDD or GND to ensure proper device operation.

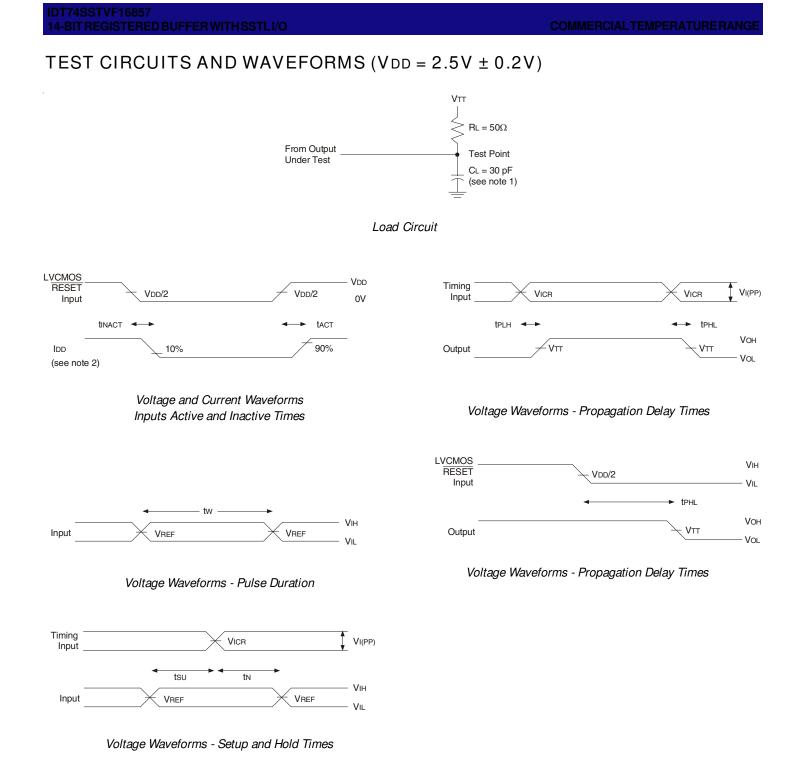
TIMING REQUIREMENTS OVER RECOMMENDED OPERATING FREE-AIR TEMPERATURE RANGE

			$V\text{DD} = 2.5V\pm~0.2V$		
Symbol	Parameter		Min.	Max.	Unit
CLOCK	Clock Frequency		—	200	MHz
tw	Pulse Duration, CLK, CLK HIGH or LOW		2.5	—	ns
tact	Differential Inputs Active Time ⁽¹⁾		—	22	ns
tINACT	Differential Inputs Inactive Time ⁽²⁾		—	22	ns
ts∪	Setup Time, Fast Slew Rate ^(3,5) Data Before $CLK\uparrow$, $CLK\downarrow$		0.75		ns
	Setup Time, Slow Slew Rate ^(4, 5)		0.9	-	ns
ħ	Hold Time, Fast Slew Rate ^(3,5)	Data Before CLK \uparrow , CLK \downarrow	0.75	—	ns
	Hold Time, Slow Slew Rate ^(2,5)		0.9	_	ns

NOTES:

1. Data inputs must be low a minimum time of tACT max., after RESET is taken HIGH.

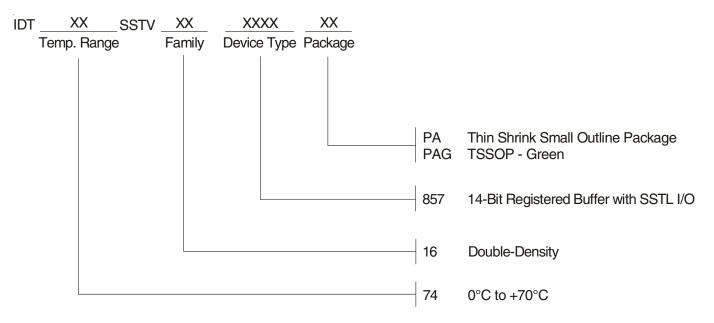
2. Data and clock inputs must be held at valid levels (not floating) a minimum time of tINACT max., after RESET is taken LOW.


3. For data signal input slew rate is ≥ 1 V/ns.

4. For data signal input slew rate is ≥ 0.5 V/ns and <1V/ns.

5. CLK, $\overline{\text{CLK}}$ signal input slew rates are ≥ 1 V/ns.

SWITCHING CHARACTERISTICS OVER RECOMMENDED FREE-AIR OPERATING RANGE (UNLESS OTHERWISE NOTED)


		VDD = 2		
Symbol	Parameter	Min	Max.	Unit
fMAX		200	—	MHz
tPD	CLK and CLK to Q	1.1	2.8	ns
t PHL	RESET to Q	—	5	ns

- 1. CL includes probe and jig capacitance.
- 2. IDD tested with clock and data inputs held at VDD or GND, and IO = 0mA.
- 3. All input pulses are supplied by generators having the following characteristics: PRR \leq 10MHz, Zo = 50 Ω , input slew rate = 1 V/ns ±20% (unless otherwise specified).
- 4. The outputs are measured one at a time with one transition per measurement.
- 5. VTT = VREF = VDDQ/2
- 6. VIH = VREF + 310mV (AC voltage levels) for differential inputs. VIH = VDD for LVCMOS input.
- 7. VIL = VREF 310mV (AC voltage levels) for differential inputs. VIL = GND for LVCMOS input.
- 8. tPLH and tPHL are the same as tPD.

ORDERINGINFORMATION

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. **Contact Information**

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: <u>www.renesas.com/contact/</u>