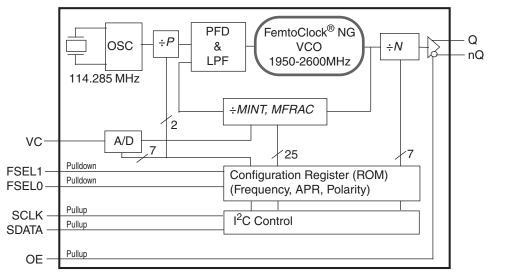
IDT8N4QV01 REV G

DATASHEET

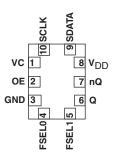
General Description

The IDT8N4QV01 is a Quad-Frequency Programmable VCXO with very flexible frequency and pull-range programming capabilities. The device uses IDT's fourth generation FemtoClock® NG technology for an optimum of high clock frequency and low phase noise performance. The device accepts 2.5V or 3.3V supply and is packaged in a small, lead-free (RoHS 6) 10-lead ceramic 5mm x 7mm x 1.55mm package.

VCXO


RENESAS Quad-Frequency Programmable

Besides the 4 default power-up frequencies set by the FSEL0 and FSEL1 pins, the IDT8N4QV01 can be programmed via the I^2C interface to any output clock frequency between 15.476MHz to 866.67MHz and from 975MHz to 1,300MHz to a very high degree of precision with a frequency step size of 435.9Hz $\div N$ (*N* is the PLL output divider). Since the FSEL0 and FSEL1 pins are mapped to 4 independent PLL, P, M and N divider registers (P, MINT, MFRAC and N), reprogramming those registers to other frequencies under control of FSEL0 and FSEL1 is supported. The extended temperature range supports wireless infrastructure, tele-communication and networking end equipment requirements.


Features

- Fourth generation FemtoClock® NG technology
- Programmable clock output frequency from 15.476MHz to 866.67MHz and from 975MHz to 1,300MHz
- Four power-up default frequencies (see part number order codes), re-programmable by I²C
- I²C programming interface for the output clock frequency, APR and internal PLL control registers
- Frequency programming resolution is 435.9Hz ÷N
- Absolute pull-range (APR) programmable from ±4.5ppm to ±754.5ppm
- One 2.5V or 3.3V LVDS differential clock output
- Two control inputs for the power-up default frequency
- LVCMOS/LVTTL compatible control inputs
- RMS phase jitter @ 156.25MHz (12kHz 20MHz): 0.494ps (typical)
- RMS phase jitter @ 156.25MHz (1kHz 40MHz): 0.594ps (typical)
- 2.5V or 3.3V supply voltage modes
- -40°C to 85°C ambient operating temperature
- Lead-free (RoHS 6) packaging

Block Diagram

Pin Assignment

IDT8N4QV01 REV G DATA SHEET 10-lead ceramic 5mm x 7mm x 1.55mm package body CD Package Top View

Table 1. Pin Descriptions

Number	Name	Ту	ре	Description
1	VC	Input		VCXO Control Voltage. The control voltage versus frequency characteristics are set by the ADC_GAIN[5:0] register bits.
2	OE	Input	Pullup	Output enable pin. See Table 3B for function. LVCMOS/LVTTL interface levels.
3	GND	Power		Power supply ground.
4, 5	FSEL0, FSEL1	Input	Pulldown	Default frequency select pins. See Table 3A for function and Table 8 for the default frequency order codes. LVCMOS/LVTTL interface levels.
6, 7	Q, nQ	Output		Differential clock output. LVDS interface levels.
8	V _{DD}	Power		Power supply pin.
9	SDATA	Input	Pullup	I ² C Data Input. LVCMOS/LVTTL interface levels.
10	SCLK	Input	Pullup	I ² C Clock Input. LVCMOS/LVTTL interface levels.

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
	Input Capacitanaa	FSEL[1:0], SDATA, SCLK		5.5		pF
C _{IN}	Input Capacitance	VC		10		pF
R _{PULLUP}	Input Pullup Resistor			50		kΩ
R _{PULLDOWN}	Input Pulldown Resistor			50		kΩ

Function Tables

Table 3A. Default Frequency Selection

Input		
FSEL1	FSEL0	Operation
0 (default)	0 (default)	Default frequency 0
0	1	Default frequency 1
1	0	Default frequency 2
1	1	Default frequency 3

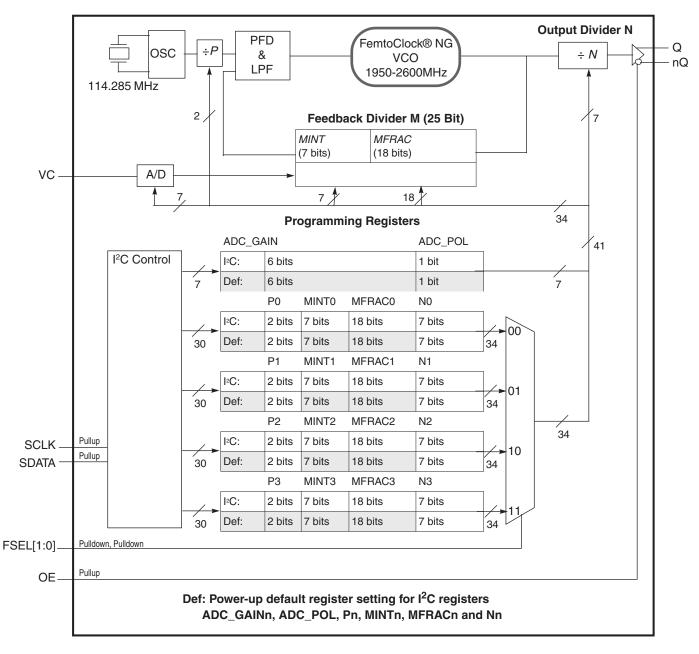

NOTE: The default frequency is the output frequency after power-up. One of four default frequencies is selected by FSEL[1:0]. See programming section for details.

Table 3B. OE Configuration

Input	
OE	Output Enable
0	Outputs Q, nQ are in high-impedance state.
1 (default)	Outputs are enabled.

NOTE: OE is an asynchronous control.

Block Diagram with Programming Registers

Principles of Operation

The block diagram consists of the internal 3^{rd} overtone crystal and oscillator which provide the reference clock f_{XTAL} of either 114.285MHz or 100MHz. The PLL includes the FemtoClock NG VCO along with the Pre-divider (*P*), the feedback divider (*M*) and the post divider (*N*). The *P*, *M*, and *N* dividers determine the output frequency based on the f_{XTAL} reference and must be configured correctly for proper operation. The feedback divider is fractional supporting a huge number of output frequencies. The configuration of the feedback divider to integer-only values results in an improved output phase noise characteristics at the expense of the range of output frequencies. In addition, internal registers are used to hold up to four different factory pre-set *P*, *M*, and *N* configuration settings. These default pre-sets are stored in the I²C registers at power-up. Each configuration is selected via the FSEL[1:0] pins and can be read back using the SCLK and SDATA pins.

The user may choose to operate the device at an output frequency different than that set by the factory. After power-up, the user may write new P, N and M settings into one or more of the four configuration registers and then use the FSEL[1:0] pins to select the newly programmed configuration. Note that the I²C registers are volatile and a power supply cycle will reload the pre-set factory default conditions.

If the user does choose to write a different *P*, *M*, and *N* configuration, it is recommended to write to a configuration which is not currently selected by FSEL[1:0] and then change to that configuration after the I^2C transaction has completed. Changing the FSEL[1:0] controls results in an immediate change of the output frequency to the selected register values. The *P*, *M*, and *N* frequency configurations support an output frequency range 15.476MHz to 866.67MHz and 975MHz to 1,300MHz.

The devices use the fractional feedback divider with a delta-sigma modulator for noise shaping and robust frequency synthesis capability. The relatively high reference frequency minimizes phase noise generated by frequency multiplication and allows more efficient shaping of noise by the delta-sigma modulator.

The output frequency is determined by the 2-bit pre-divider (P), the feedback divider (M) and the 7-bit post divider (N). The feedback divider (M) consists of both a 7-bit integer portion (MINT) and an 18-bit fractional portion (MFRAC) and provides the means for high-resolution frequency generation. The output frequency f_{OUT} is calculated by:

$$f_{OUT} = f_{XTAL} \cdot \frac{1}{P \cdot N} \cdot \left[MINT + \frac{MFRAC + 0.5}{2^{18}} \right] (1)$$

The four configuration registers for the *P*, *M* (*MINT & MFRAC*) and *N* dividers which are named Pn, MINTn, MFRACn and Nn with n = 0 to 3. "n" denominates one of the four possible configurations.

As identified previously, the configurations of *P*, *M* (*MINT* & *MFRAC*) and *N* divider settings are stored the I^2C register, and the configuration loaded at power-up is determined by the FSEL[1:0] pins.

Table 4. Frequency Selection	Table	4.	Freq	uency	Selection
------------------------------	-------	----	------	-------	-----------

Input			
FSEL1	FSEL0	Selects Register	
0 (def.)	0 (def.)	Frequency 0	P0, MINT0, MFRAC0, N0
0	1	Frequency 1	P1, MINT1, MFRAC1, N1
1	0	Frequency 2	P2, MINT2, MFRAC2, N2
1	1	Frequency 3	P3, MINT3, MFRAC3, N3

Frequency Configuration

An order code is assigned to each frequency configuration programmed by the factory (default frequencies). For more information on the available default frequencies and order codes, please see the Ordering Information Section in this document. For available order codes, see the *FemtoClock NG Ceramic-Package XO* and VCXO Ordering Product Information document.

For more information and guidelines on programming of the device for custom frequency configurations, the register description, the pull-range programming and the serial interface description, see the *FemtoClock NG Ceramic 5x7 Module Programming Guide.*

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics or AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V _{DD}	3.63V
Inputs, V _I	-0.5V to V _{DD} + 0.5V
Outputs, I _O (SDATA)	10mA
Outputs, I _O (LVDS)	
Continuous Current	10mA
Surge Current	15mA
Package Thermal Impedance, θ_{JA}	49.4°C/W (0 mps)
Storage Temperature, T _{STG}	-65°C to 150°C

DC Electrical Characteristics

Table 5A. Power Supply DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Power Supply Voltage		3.135	3.3	3.465	V
I _{DD}	Power Supply Current				160	mA

Table 5B. Power Supply DC Characteristics, V_{DD} = 2.5V ±5%, T_A = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Power Supply Voltage		2.375	2.5	2.625	V
I _{DD}	Power Supply Current				155	mA

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
M	Input High	SEL [1:0], OE	V _{CC} =3.3V +5%	1.7		V _{CC} +0.3	V
VIH	Voltage	SEL [1:0], OE	V _{CC} =2.5V +5%	1.7		V _{CC} +0.3	V
		SEL [1:0]	V _{CC} =3.3V +5%	-0.3		0.5	V
V	$ \begin{array}{c c} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & $	V _{CC} =3.3V +5%	-0.3		0.8	V	
VIL	Voltage	SEL [1:0]	V _{CC} =2.5V +5%	-0.3		0.5	V
		OE	V _{CC} =2.5V +5%	-0.3		0.8	V
IIH		OE				10	μA
			$V_{DD} = V_{IN} = 3.465 V \text{ or } 2.625 V$			5	μA
			$V_{DD} = V_{IN} = 3.465 V \text{ or } 2.625 V$			V _{CC} +0.3 V _{CC} +0.3 0.5 0.8 0.5 0.8 10	μA
		OE		-500			μA
IIL	· ·		$V_{DD} = 3.465V \text{ or } 2.625V,$ $V_{IN} = 0V$	-150			μA
		FSEL0, FSEL1	$V_{DD} = 3.465V \text{ or } 2.625V,$ $V_{IN} = 0V$	-5		$\begin{array}{c} V_{CC} + 0.3 \\ V_{CC} + 0.3 \\ 0.5 \\ 0.8 \\ 0.5 \\ 0.8 \\ 10 \\ 5 \\ \end{array}$	μA

Table 5C. LVCMOS/LVTTL DC Characteristic, V_{DD} = 3.3V $\pm 5\%$ or 2.5V $\pm 5\%,$ T_A = -40°C to $85^\circ C$

Table 5D. LVDS DC Characteristics, V_{DD} = 3.3V $\pm 5\%$ or ~2.5V $\pm 5\%,~T_A$ = -40°C to $85^\circ C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{OD}	Differential Output Voltage		247	350	454	mV
ΔV _{OD}	V _{OD} Magnitude Change				50	mV
V _{OS}	Offset Voltage		1.0	1.20	1.375	V
ΔV _{OS}	V _{OS} Magnitude Change				50	mV

AC Electrical Characteristics

Table 6A. VCXO Control Voltage Input (V_C) Characterisitics, V_{DD} = 3.3V ±5% or 2.5V ±5%, T_A = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
		ADC_GAIN[5:0] = 000001		7.57		ppm/V
		$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		ppm/V		
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		ppm/V			
		ADC_GAIN[5:0] = 111110		469.69		ppm/V
K		ADC_GAIN[5:0] = 111111		477.27		ppm/V
K _V		ADC_GAIN[5:0] = 000001		10		ppm/V
	-	ADC_GAIN[5:0] = 000010		20		ppm/V
		ADC_GAIN[5:0] = XXXXXX				ppm/V
	-	ADC_GAIN[5:0] = 111110		620		ppm/V
	-	ADC_GAIN[5:0] = 111111		630		ppm/V
1		BSL Variation; NOTE 4	-5	±1	+5	%
L _{VC}	Control voltage Linearity	Incremental; NOTE 5	-10	±5	+10	%
BW	Modulation Bandwidth			100		kHz
Z _{VC}	VC Input Impedance			500		kΩ
VC _{NOM}	Nominal Control Voltage			V _{DD} ÷2		V
V _C			0		V _{DD}	V

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE 1: $V_C = 0V$ to V_{DD} .

NOTE 2: Nominal oscillator gain: Pull range divided by the control voltage tuning range of 3.3V.

E.g. for ADC_GAIN[6:0] = 00.0001 the pull range is ±12.5ppm, resulting in an oscillator gain of 2 * 12.5ppm ÷ 3.3V = 7.57ppm/V.

NOTE 3: For best phase noise performance, use the lowest K_V that meets the requirements of the application.

NOTE 4: BSL = Best Straight Line Fit: Variation of the output frequency vs. control voltage V_C, in percent. V_C ranges from 10% to 90% V_{DD}.

NOTE 5: Incremental slope is defined as the linearity in percent of the raw data (not relative to BSL) from 10% to 90% V_{DD}.

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{ouт}	a	Output Divider, $N = 3$ to 126	15.476		866.67	MHz
	Output Frequency Q, nQ	Output Divider, N = 2	975		1,300	MHz
f _{vco}	VCO Frequency		1980		2600	MHz
f _l	Initial Accuracy	Measured at 25°C			±10	ppm
		Option code = A or B			±100	ppm
f _S	Temperature Stability	Option code = E or F			±50	ppm
		Option code = K or L			±20	ppm
£	Aging	Frequency drift over 10 year life			±3	ppm
f _A		Frequency drift over 15 year life			±5	ppm
		Option code A or B (10 year life)			±113	ppm
f _T	Total Stability	Option code E or F (10 year life)			±63	ppm
		Option code K or L (10 year life)			±33	ppm
<i>t</i> jit(cc)	Cycle-to-Cycle Jitter; NOTE 1				20	ps
<i>t</i> jit(per)	Period Jitter; NOTE 1			2.85	4	ps
	RMS Phase Jitter (Random) Fractional PLL feedback and f _{XTAL} =114.285MHz (0xxx order codes)	$\begin{array}{l} 17 MHz \leq f_{OUT} \leq 1300 MHz, \\ NOTE \ 2,3,4 \end{array}$		0.475	0.990	ps
<i>t</i> jit(Ø)		f _{OUT} = 156.25MHz, NOTE 2, 3, 4		0.494	0.757	ps
		f _{OUT} = 156.25MHz, NOTE 2, 3, 5		0.594		ps
Φ _N (100)	Single-side band phase noise, 100 Hz from Carrier	156.25MHz		-73.8		dBc/Hz
Φ _N (1k)	Single-side band phase noise, 1kHz from Carrier	156.25MHz		-99.8		dBc/Hz
$\Phi_{\sf N}(10k)$	Single-side band phase noise, 10kHz from Carrier	156.25MHz		-126.1		dBc/Hz
Φ _N (100k)	Single-side band phase noise, 100kHz from Carrier	156.25MHz		-129.3		dBc/Hz
Φ _N (1M)	Single-side band phase noise, 1MHz from Carrier	156.25MHz		-140.3		dBc/Hz
Φ _N (10M)	Single-side band phase noise, 10MHz from Carrier	156.25MHz		-144.3		dBc/Hz
PSNR	Power Supply Noise Rejection	50mV Sinusoidal Noise 1kHz - 50MHz		-54		db
t _R / t _F	Output Rise/Fall Time	20% to 80%	100		425	ps
odc	Output Duty Cycle		45		55	%
tosc	Oscillator Start-Up Time				20	ms
t _{SET}	Output Frequency Settling Time after FSEL0 and FSEL1 Values are Changed			470		μs

Table 6B. AC Characteristics, $V_{DD} = 3.3V \pm 5\%$ or 2.5V $\pm 5\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

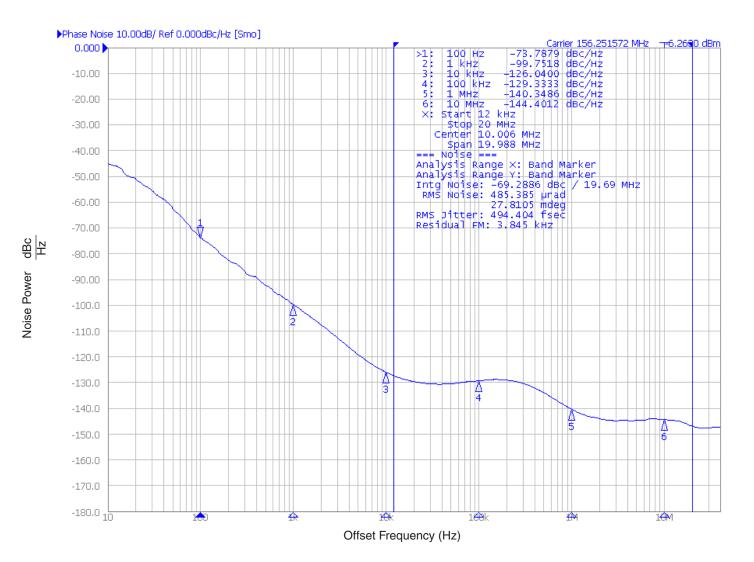
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions. All AC parameters are characterized with P=1 and pull range ± 250 ppm.

NOTE: XTAL parameters (initial accuracy, temperature stability, aging and total stability) are guaranteed by manufacturing.

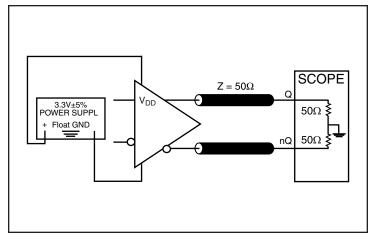
NOTE 1: This parameter is defined in accordance with JEDEC standard 65.

NOTE 2: Please refer to the phase noise plots.

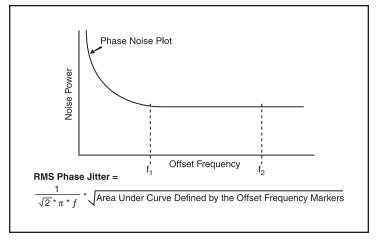
NOTES continued on next page.



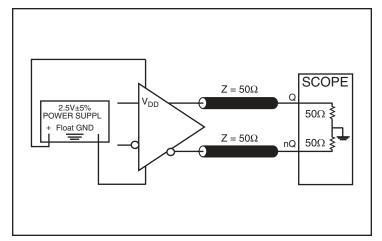
NOTE 3: Please see the FemtoClock NG Ceramic 5x7 Modules Programming guide for more information on finding the optimum configuration for phase noise.

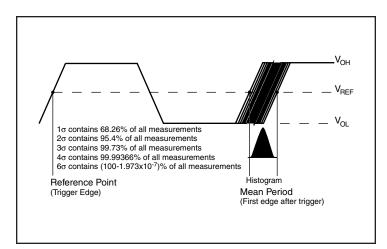

NOTE 4: Integration range: 12kHz-20MHz.

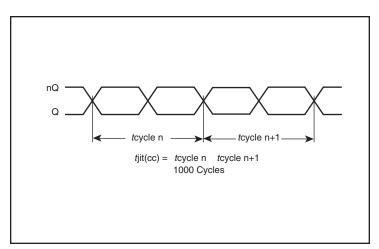
NOTE 5: Integration range: 1kHz-40MHz.


Typical Phase Noise at 156.25MHz (12kHz - 20MHz)

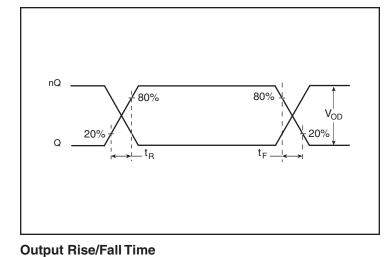
Parameter Measurement Information

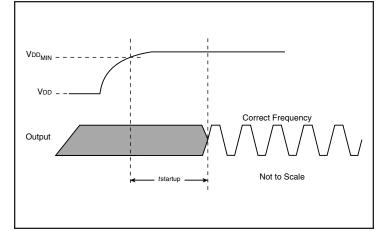

3.3V LVDS Output Load AC Test Circuit


RMS Phase Jitter

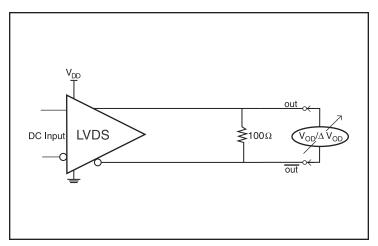

Output Duty Cycle/Pulse Width/Period

2.5V LVDS Output Load AC Test Circuit

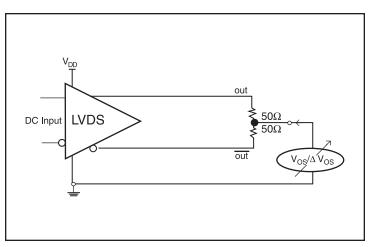

Period Jitter



Cycle-to-Cycle Jitter


RENESAS

Parameter Measurement Information (continued)



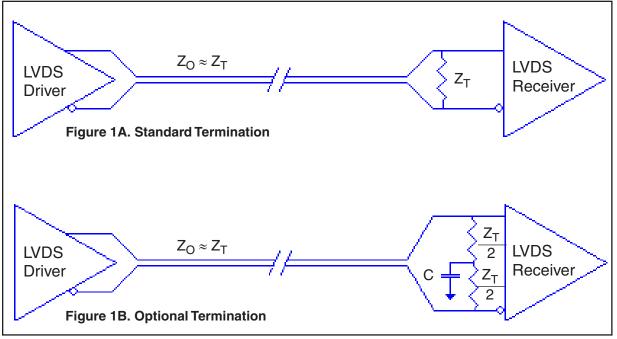
Differential Output Voltage Setup

Offset Voltage Setup

Applications Information

Recommendations for Unused Input Pins

Inputs:


LVCMOS Select Pins

All control pins have internal pulldowns; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used.

LVDS Driver Termination

For a general LVDS interface, the recommended value for the termination impedance (Z_T) is between 90 Ω and 132 Ω . The actual value should be selected to match the differential impedance (Z₀) of your transmission line. A typical point-to-point LVDS design uses a 100 Ω parallel resistor at the receiver and a 100 Ω differential transmission-line environment. In order to avoid any transmission-line reflection issues, the components should be surface mounted and must be placed as close to the receiver as possible. IDT offers a full line of LVDS compliant devices with two types of output structures: current source and voltage source. The

standard termination schematic as shown in *Figure 1A* can be used with either type of output structure. *Figure 1B*, which can also be used with both output types, is an optional termination with center tap capacitance to help filter common mode noise. The capacitor value should be approximately 50pF. If using a non-standard termination, it is recommended to contact IDT and confirm if the output structure is current source or voltage source type. In addition, since these outputs are LVDS compatible, the input receiver's amplitude and common-mode input range should be verified for compatibility with the output.

LVDS Termination

Power Considerations

This section provides information on power dissipation and junction temperature for the IDT8N4QV01. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the IDT8N4QV01 is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{DD} = 3.3V + 5\% = 3.465V$, which gives worst case results.

Power (core)_{MAX} = V_{DD MAX} * I_{DD MAX} = 3.465V * 160mA = 554.4mW

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond wire and bond pad temperature remains below 125°C.

The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + T_A

Tj = Junction Temperature

 θ_{JA} = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 49.4°C/W per Table 7 below.

Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:

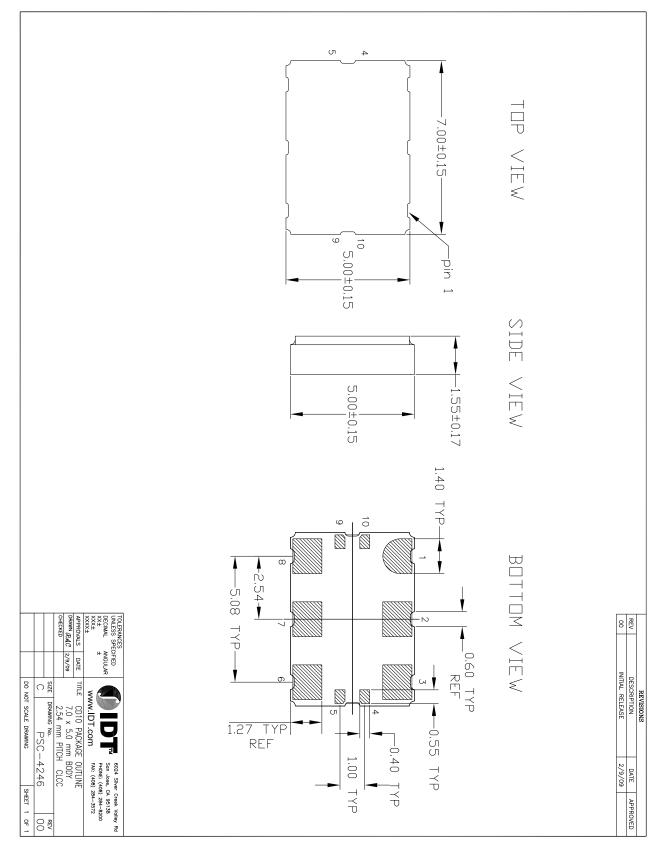
 $85^{\circ}C + 0.554W * 49.4^{\circ}C/W = 112.4^{\circ}C$. This is below the limit of $125^{\circ}C$.

This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).

Table 7. Thermal Resistance θ_{JA} for 10 Lead Ceramic 5mm x 7mm Package, Forced Convection

θ_{JA} by Velocity				
Meters per Second	0	1	2.5	
Multi-Layer PCB, JEDEC Standard Test Boards	49.4°C/W	44.2°C/W	41°C/W	

Reliability Information

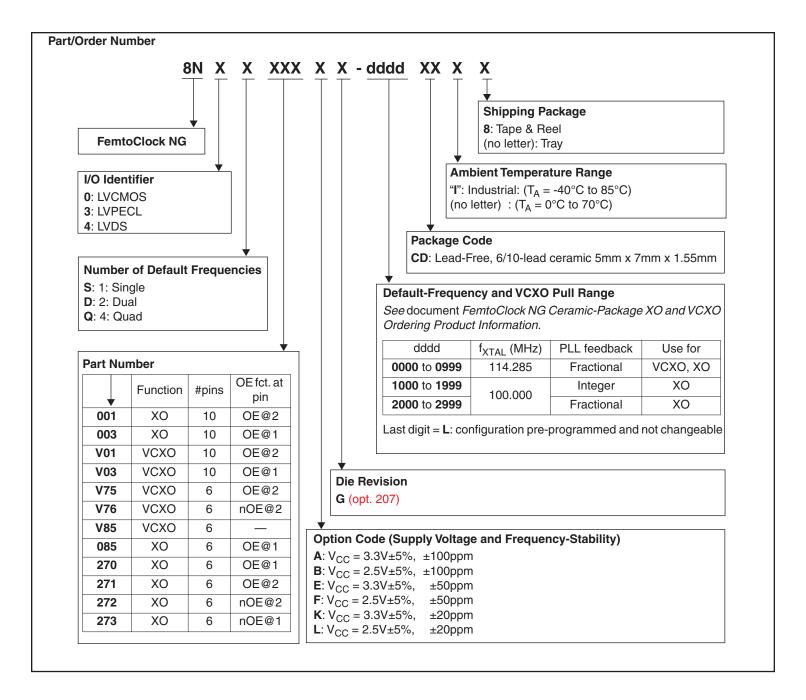

Table 8. θ_{JA} vs. Air Flow Table for a 10-lead Ceramic 5mm x 7mm Package

$ heta_{JA}$ vs. Air Flow				
Meters per Second	0	1	2.5	
Multi-Layer PCB, JEDEC Standard Test Boards	49.4°C/W	44.2°C/W	41°C/W	

Transistor Count

The transistor count for IDT8N4QV01 is: 47,372

Package Outline and Package Dimensions



Ordering Information for FemtoClock NG Ceramic-Package XO and VCXO Products

The programmable VCXO and XO devices support a variety of devices options such as the output type, number of default frequencies, internal crystal frequency, power supply voltage, ambient temperature range and the frequency accuracy. The device options, default frequencies and default VCXO pull range must be specified at the time of order and are programmed by IDT before the shipment. The table below specifies the available order codes, including the device options and default frequency configurations. Example part number: the order code 8N3QV01FG-0001CDI specifies a programmable, quad default-frequency VCXO with a voltage supply of 2.5V, a LVPECL output, a \pm 50 ppm crystal frequency accuracy,

contains a 114.285MHz internal crystal as frequency source, industrial temperature range, a lead-free (6/6 RoHS) 10-lead ceramic 5mm x 7mm x 1.55mm package and is factory-programmed to the default frequencies of 100, 122.88, 125 and 156.25MHz and to the VCXO pull range of min. ±100 ppm.

Other default frequencies and order codes are available from IDT on request. For more information on available default frequencies, see the *FemtoClock NG Ceramic-Package XO and VCXO Ordering Product Information* document.

Table 9. Device Marking

	Industrial Temperature Range (T _A = -40°C to 85°C)	Commercial Temperature Range (T _A = 0°C to 70°C)	
Marking	IDT8N4xV01yG-	IDT8N4xV01yG-	
Marking	ddddCDI	ddddCD	
	x = Number of Default Frequencies, y = Option Code, dddd=Default-Frequency and VCXO Pull Range		

Revision History Sheet

Rev	Table	Page	Description of Change	Date
A	Т9	18	Table 9 Device Marking, corrected marking.	
A	T1 T6A	2 8	Deleted "(see table 3C)" from the first table row, description column. NOTE 2; Deleted "from table 3C".	3/13/14

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. **Contact Information**

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: <u>www.renesas.com/contact/</u>