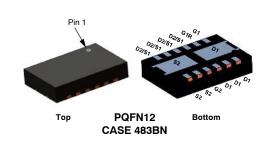
onsemi

MOSFET – Dual, N-Channel, POWERTRENCH[®]

40 V, 98 A , 2.6 mohm

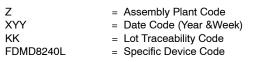
FDMD8240L

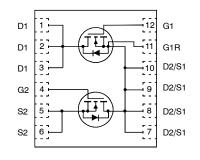
Description


This device includes two 40 V N–Channel MOSFETs in a dual Power (3.3 mm X 5 mm) package. HS source and LS Drain are internally connected for half/full bridge, low source inductance package, low $R_{DS(on)}/Qg$ FOM silicon.

Features

- Max $R_{DS(on)}$ = 2.6 m Ω at V_{GS} = 10 V, I_D = 23 A
- Max $R_{DS(on)} = 3.95 \text{ m}\Omega$ at $V_{GS} = 4.5 \text{ V}$, $I_D = 19 \text{ A}$
- Ideal for Flexible Layout in Primary Side of Bridge Topology
- 100% UIL Tested
- Kelvin High Side MOSFET Drive Pin-out Capability
- This Device is Pb-Free, Halide-Free and is RoHS Compliant


Applications


- Synchronous Buck : Primary Switch of Half / Full Bridge Converter for Telecom
- Motor Bridge : Primary Switch of Half / Full bridge Converter for BLDC Motor
- MV POL: Synchronous Buck Switch

MARKING DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping [†]
FDMD8240L	PQFN12 (Pb-Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, <u>BRD8011/D</u>.

MOSFET MAXIMUM RATINGS (T_A = 25° C unless otherwise noted)

Symbol		Parameter		Ratings	Unit
V _{DS}	Drain to Source Voltage			40	V
V _{GS}	Gate to Source Voltage			±20	V
Ι _D	Drain Current	Continuous	T _C = 25°C (Note 5)	98	A
		Continuous	T _C = 100°C (Note 5)	62	
		Continuous	T _A = 25°C (Note 1a)	23	
		Pulsed (Note 4)	-	464	
E _{AS}	Single Pulse Avalanche Ener	gy (Note 3)		216	mJ
PD	Power Dissipation $T_{C} = 25^{\circ}C$		$T_{C} = 25^{\circ}C$	42	W
	Power Dissipation		T _A = 25°C (Note 1a)	2.1	
T _J , T _{STG}	Operating and Storage Junct	ion Temperature Range		–55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

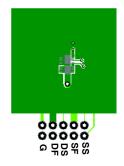
Symbol	Parameter	Ratings	Unit
R_{\thetaJC}	Thermal Resistance, Junction-to-Case	3.0	°C/W
R_{\thetaJA}	Thermal Resistance, Junction-to-Ambient (Note 1a)	60	

ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
FF CHARA	CTERISTICS				-	
BV _{DSS}	Drain-to-Source Breakdown Voltage	$I_D=250~\mu A,~V_{GS}=0~V$	40	-	-	V
$\frac{\Delta \text{BV}_{\text{DSS}}}{\Delta \text{T}_{\text{J}}}$	Breakdown Voltage Temperature Coefficient	I_D = 250 µA, referenced to 25°C	-	23	-	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 32 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$	-	-	1	μΑ
I _{GSS}	Gate-to-Source Leakage Current	$V_{GS} = \pm 20$ V, $V_{DS} = 0$ V	-	-	±100	nA
N CHARAC	CTERISTICS					
V _{GS(th)}	Gate-to-Source Threshold Voltage	V_{GS} = V_{DS} , I_D = 250 μ A	1.0	2.0	3.0	V
$\frac{\Delta {\rm V}_{\rm GS(th)}}{\Delta {\rm T}_{\rm J}}$	Gate-to-Source Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, referenced to 25°C	-	-6	-	mV/°C
R _{DS(on)}	Static Drain-to-Source	V_{GS} = 10 V, I _D = 23 A	-	2.0	2.6	mΩ
	On Resistance	V_{GS} = 4.5 V, I _D = 19 A	-	3.2	3.95	1
		V_{GS} = 10 V, I _D = 23 A, T _J = 125°C	-	3.0	3.9	
9 _{FS}	Forward Transconductance	V _{DD} = 5 V, I _D = 23 A	_	107	-	S

C _{iss}	Input Capacitance	V_{DS} = 20 V, V_{GS} = 0 V, f = 1 MHz	-	3020	4230	pF
C _{oss}	Output Capacitance		-	876	1230	
C _{rss}	Reverse Transfer Capacitance		-	33	52	
Rg	Gate Resistance		0.1	2.8	6	Ω

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)


Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit		
SWITCHING	CHARACTERISTICS							
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 20 \text{ V}, \text{ I}_{D} = 23 \text{ A}, \text{ V}_{GS} = 10 \text{ V},$	-	12	22	ns		
t _r	Rise Time	$-$ R _{GEN} = 6 Ω	-	8	16			
t _{d(off)}	Turn-Off Delay Time		-	36	58			
t _f	Fall Time		-	9	18			
Q _{g(tot)}	Total Gate Charge	V_{GS} = 0 V to 10 V, V_{DD} = 20 V, I_{D} = 23 A	-	40	56	nC		
	Total Gate Charge	V_{GS} = 0 V to 5 V, V_{DD} = 20 V, I_D = 23 A	-	21	30			
Q _{gs}	Gate-to-Source Charge	V _{DD} = 20 V, I _D = 23 A	-	9	-			
Q _{gd}	Gate-to-Drain "Miller" Charge	V _{DD} = 20 V, I _D = 23 A	-	5	-			
RAIN-SOL	RAIN-SOURCE DIODE CHARACTERISTICS							

V _{SD}	Source-to-Drain Diode Forward	V _{GS} = 0 V, I _S = 23 A (Note 2)	-	0.8	1.3	V
	Voltage	V _{GS} = 0 V, I _S = 1.6 A (Note 2)	-	0.7	1.2	
t _{rr}	Reverse Recovery Time	I _F = 23 A, di/dt = 100 A/µs	-	41	65	ns
Q _{rr}	Reverse Recovery Charge		-	21	32	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

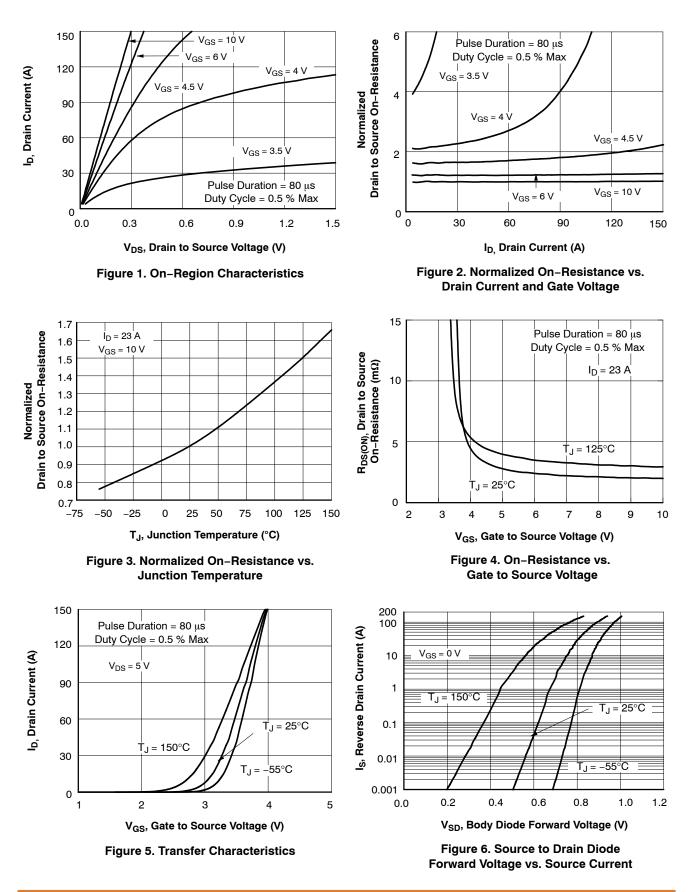
NOTES:

1. $R_{\theta,JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 × 1.5 in. board of FR-4 material. $R_{\theta,JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

- 2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%. 3. E_{AS} of 216 mJ is based on starting T_J = 25 °C, L = 3 mH, I_{AS} = 12 A, V_{DD} = 40 V, V_{GS} = 10 V. 100% tested at L = 0.1 mH, I_{AS} = 37 A. 4. Pulsed Id please refer to Figure 11 SOA graph for more details.

a) $60^{\circ}C/W$ when mounted on

a 1 in² pad of 2 oz copper


5. Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & electro-mechanical application board design.

b) 130°C/W when mounted on a minimum pad of 2 oz copper

TYPICAL CHARACTERISTICS

(T_J = 25°C unless otherwise noted)

TYPICAL CHARACTERISTICS (continued)

(T_J = 25°C unless otherwise noted)

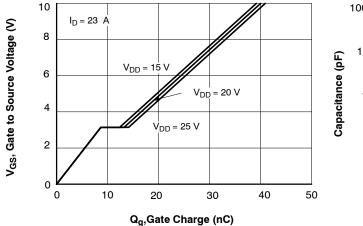


Figure 7. Gate Charge Characteristics

125

0.1

T_J = 100°C

t_{AV}, Time in Avalanche (ms)

Figure 9. Unclamped Inductive Switching Capability

1

10

100

10

100 µs

1 ms

10 ms 00 ms/DC

25°C

100

10

0.001

1000

100

10

1

0.1

0.1

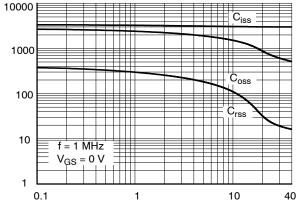
I_{D,} Drain Current (A)

HH

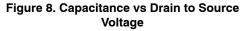
0.01

This Area is

Limited by R_{DS(ON)}


T_J = Max Rated

 $R_{\theta JC} = 3.0^{\circ}C/W$


T_C = 25°C

1

I_{AS}, Avalanche Current (A)

V_{DS} Drain to Source Voltage (V)

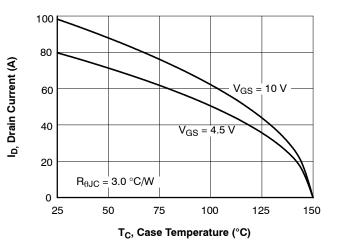
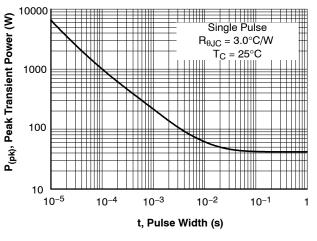




Figure 10. Maximum Continuous Drain Current vs. Case Temperature

V_{DS}, Drain to Source Voltage (V)

Curve Bent to Measured Data

10

100

TYPICAL CHARACTERISTICS (continued)

(T_J = 25° C unless otherwise noted)

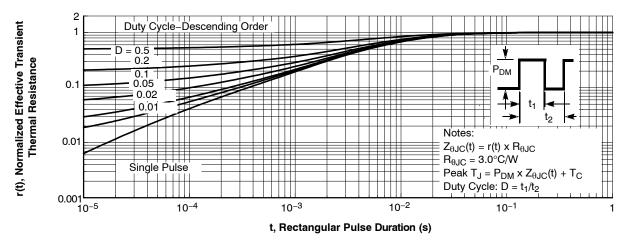
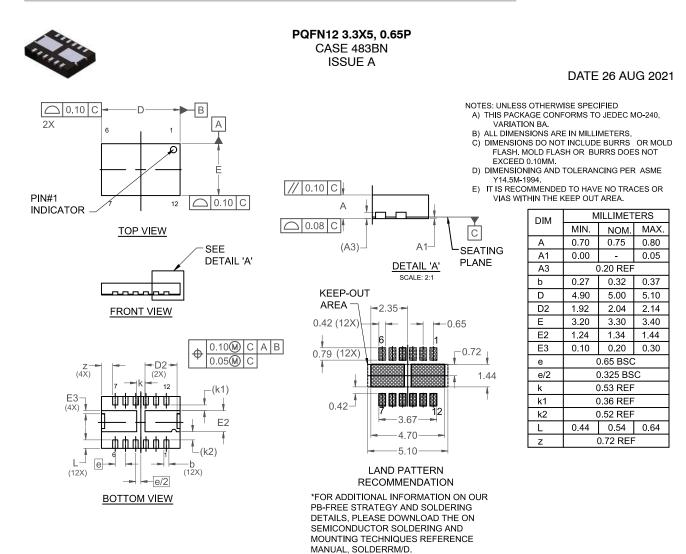



Figure 13. Junction-to-Case Transient Thermal Response Curve

POWERTRENCH is a registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

DOCUMENT NUMBER:	98AON13670G	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION: PQFN12 3.3X5, 0.65P		PAGE 1 OF 1			
ON Semiconductor and 🔊 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the					

© Semiconductor Components Industries, LLC, 2019

rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales