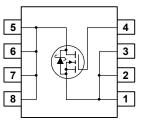


FDS6690S

30V N-Channel PowerTrench[®] SyncFET[™]

General Description

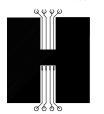
The FDS6690S is designed to replace a single SO-8 MOSFET and Schottky diode in synchronous DC:DC power supplies. This 30V MOSFET is designed to maximize power conversion efficiency, providing a low $R_{DS(ON)}$ and low gate charge. The FDS6690S includes an integrated Schottky diode using Fairchild's monolithic SyncFET technology. The performance of the FDS6690S as the low-side switch in a synchronous rectifier is close to the performance of the FDS6690A in parallel with a Schottky diode.


Applications

- DC/DC converter
- Motor drives

Features

- 10 A, 30 V. $R_{DS(ON)} = 0.016 \ \Omega \ @ V_{GS} = 10 \ V$ $R_{DS(ON)} = 0.025 \ \Omega \ @ V_{GS} = 4.5 \ V$
- Includes SyncFET Schottky diode
- Low gate charge (20 nC typical)
- High performance trench technology for extremely low
 R_{DS(ON)}
- High power and current handling capability


Absolute Maximum Ratings TA=25°C unless otherwise noted

Symbol	Parameter			Ratings	Units
V _{DSS}	Drain-Source	Voltage	30	V	
V _{GSS}	Gate-Source Voltage			±20	V
I _D	Drain Current – Continuous (N		(Note 1a)	10	A
		 Pulsed 		50	
P _D	Power Dissipation for Single Operation		(Note 1a)	2.5	W
			(Note 1b)	1.2	
			(Note 1c)	1	
T _J , T _{STG}	Operating an	d Storage Junction Tempe	erature Range	-55 to +150	°C
Therma	I Characte	eristics			
R _{0JA}	Thermal Resistance, Junction-to-Ambient (N		ent (Note 1a)	50	°C/W
R _{θJC}	Thermal Resistance, Junction-to-Case (No		(Note 1)	25	°C/W
Packag	e Marking	and Ordering Ir	formation		·
Device Marking		Device	Reel Size	Tape width	Quantity
FDS6690S		FDS6690S	13"	12mm	2500 units

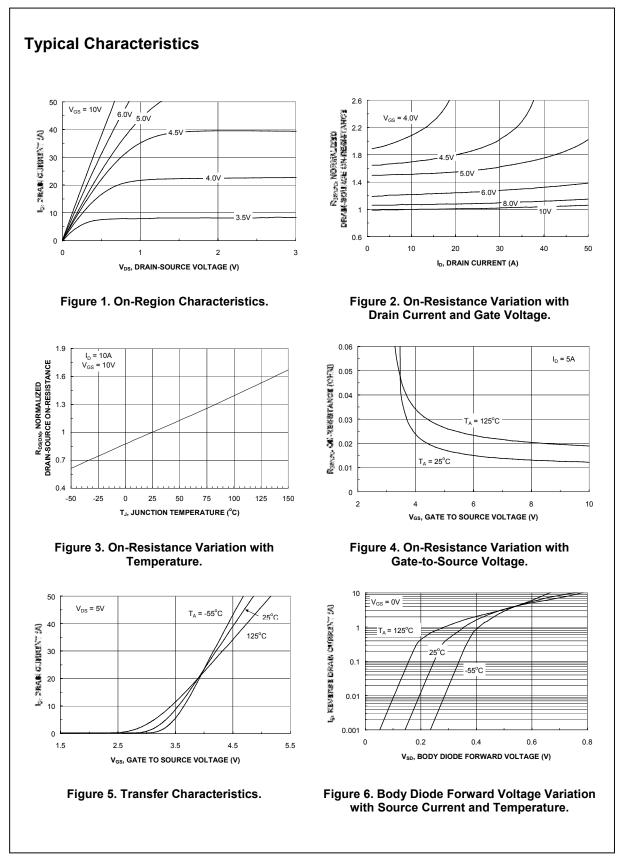
©2000 Fairchild Semiconductor Corporation

Symbol	Parameter	Test Conditions	Min	Тур	Мах	Units
Off Char	racteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} = 0 V, I _D = 1 mA	30			V
<u>ΔBV_{DSS}</u> ΔT _J	Breakdown Voltage Temperature Coefficient	I_D = 1 mA, Referenced to 25°C		23		mV/°C
DSS	Zero Gate Voltage Drain Current	$V_{DS} = 24 V$, $V_{GS} = 0 V$			500	μA
GSSF	Gate–Body Leakage, Forward	$V_{GS} = 20 V$, $V_{DS} = 0 V$			100	nA
I _{GSSR}	Gate–Body Leakage, Reverse	V _{GS} = -20 V V _{DS} = 0 V			-100	nA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 1 \text{ mA}$	1	2.4	3	V
<u>ΔV_{GS(th)}</u> ΔT _J	Gate Threshold Voltage Temperature Coefficient	I_D = 1 mA, Referenced to 25°C		-6		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance			13 20 19	16 25 26	mΩ
D(on)	On–State Drain Current	V _{GS} = 10 V, V _{DS} = 5 V	50			Α
g FS	Forward Transconductance	$V_{DS} = 15 V$, $I_{D} = 10 A$		26		S
Dvnamio	c Characteristics					
C _{iss}	Input Capacitance	$V_{DS} = 15 V$, $V_{GS} = 0 V$,		1233		pF
C _{oss}	Output Capacitance	f = 1.0 MHz		344		pF
C _{rss}	Reverse Transfer Capacitance			106		pF
Switchir	ng Characteristics (Note 2)					
d(on)	Turn–On Delay Time	$V_{DS} = 15 V$, $I_D = 1 A$,		8	16	ns
F	Turn–On Rise Time	V_{GS} = 10 V, R_{GEN} = 6 Ω		5	10	ns
d(off)	Turn–Off Delay Time			25	40	ns
ł	Turn–Off Fall Time			11	20	ns
Qg	Total Gate Charge	$V_{DS} = 15 V$, $I_D = 10 A$,		11	16	nC
Q _{gs}	Gate–Source Charge	$V_{GS} = 5 V$		5		nC
Q _{gd}	Gate–Drain Charge			4		nC
Drain–S	ource Diode Characteristics	and Maximum Ratings				
s	Maximum Continuous Drain-Source				3.5	Α
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 V$, $I_S = 3.5 A$ (Note 2)		0.5	0.7	V
t _{rr}	Diode Reverse Recovery Time	I _F = 10A		17		nS
Q _{rr}	Diode Reverse Recovery Charge	$d_{iF}/d_t = 300 \text{ A}/\mu \text{s}$ (Note 3)		12.5		nC

the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

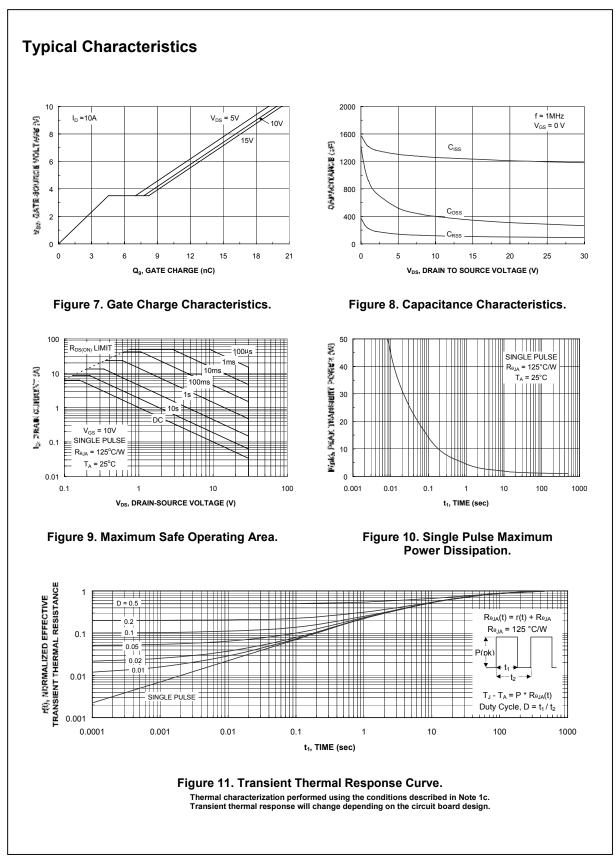
a) 50°/W when mounted on a 1in² pad of 2 oz copper

b) 105°/W when mounted on a .04 in² pad of 2 oz copper c) 125°/W when mounted on a minimum pad.


Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0%

3. See "SyncFET Schottky body diode characteristics" below.

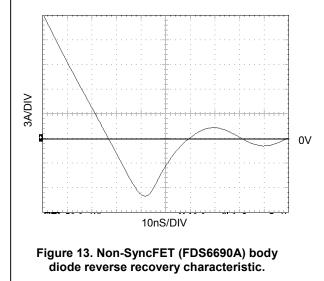

FDS6680S Rev C (W)

FDS6690S

FDS6690S

FDS6680S Rev C (W)

FDS6690S


Typical Characteristics (continued)

SyncFET Schottky Body Diode Characteristics

Fairchild's SyncFET process embeds a Schottky diode in parallel with PowerTrench MOSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 12 shows the reverse recovery characteristic of the FDS6690S.

For comparison purposes, Figure 13 shows the reverse recovery characteristics of the body diode of an equivalent size MOSFET produced without SyncFET (FDS6690A).

Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.

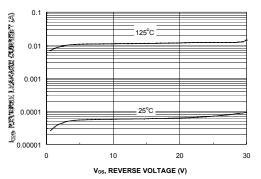


Figure 14. SyncFET body diode reverse leakage versus drain-source voltage and temperature.

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ DOME™ E²CMOS[™] EnSigna™ FACT™ FACT Quiet Series™ **FAST[®]**

FASTr™ GlobalOptoisolator™ GTO™ HiSeC™ **ISOPLANAR™** MICROWIRE™ **OPTOLOGIC**[™] OPTOPLANAR™ POP™ PowerTrench[®]

QFET™ QS™ QT Optoelectronics[™] Quiet Series™ SuperSOT™-3 SuperSOT™-6 SuperSOT[™]-8 SyncFET™ TinyLogic™ UHC™

VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	•	Rev. F1