

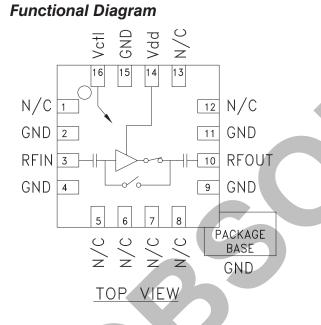
v03.1206

Typical Applications

The HMC491LP3 / HMC491LP3E is ideal for:

- Wireless Local Loop (WLL)
- Fixed Wireless Access
- Microwave & VSAT Radios

HMC491LP3 / 491LP3E


GaAs MMIC LOW NOISE AMPLIFIER w/ BYPASS MODE, 3.4 - 3.8 GHz

Features

Gain: 16 dB Noise Figure: 2 dB Single Supply: +3V @ 9 mA Integrated Bypass Mode 50 Ohm Matched Input/Output 3 x 3 x 1 mm QFN SMT Package

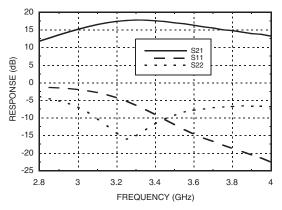
General Description

The HMC491LP3 & HMC491LP3E are versatile, integrated, Low Noise Amplifiers (LNA) featuring a bypass mode intended for 3.4 to 3.8 GHz Fixed Wireless & WLL applications. The amplifier provides 16 dB of gain, 2 dB noise figure and +3 dBm input IP3 while requiring only 9 mA from a +3V supply. Using a single control line, the LNA can be switched into a low loss 2.2 dB bypass mode reducing the current consumption to 20 μ A. A low cost, leadless 3x3 mm QFN surface mount package (LP3) houses the amplifier. No external RF matching components are required.

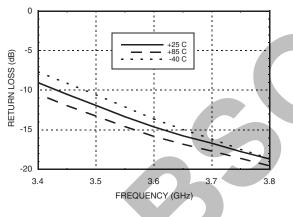
Electrical Specifications, $T_A = +25^{\circ}$ C, Vdd = +3V

Descenter		LNA Mode		LNA Mode			Bypass Mode			
Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range	3.4 - 3.6		3.6 - 3.8		3.4 - 3.8		GHz			
Gain	14.5	17		13	15.5		-2.8	-2.3		dB
Gain Variation Over Temperature		0.012	0.02		0.012	0.02		0.004	0.008	dB/°C
Noise Figure		2.2	2.7		2.0	2.5				dB
Input Return Loss		12			17			18		dB
Output Return Loss		9			7			11		dB
Reverse Isolation		34			33					dB
Input or Output Power for 1dB Compression (P1dB)*	3	6		4	7		25	28		dBm
Input Third Order Intercept (IP3) (-20 dBm Input Power per tone, 1 MHz tone spacing)		1			3			11		dBm
Supply Current (Idd)		9			9			0.03		mA

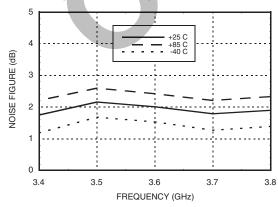
* P1dB for LNA Mode is referenced to RFOUT while P1dB for Bypass Mode is referenced to RFIN.

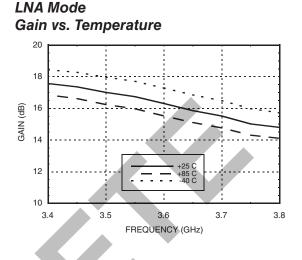

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

GaAs MMIC LOW NOISE AMPLIFIER w/ BYPASS MODE, 3.4 - 3.8 GHz

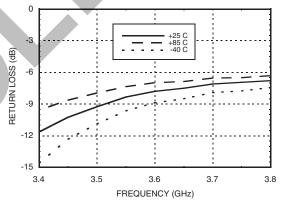


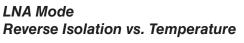
LNA Mode Broadband Gain & Return Loss

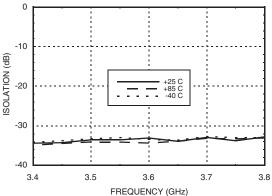



v03.1206

LNA Mode Input Return Loss vs. Temperature

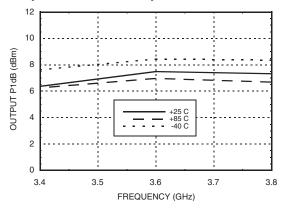


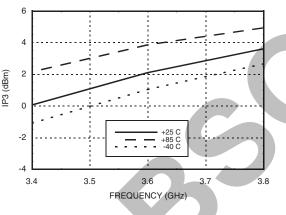

LNA Mode Noise Figure vs. Temperature

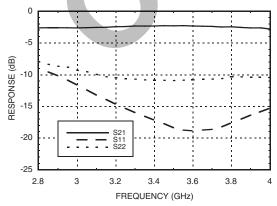


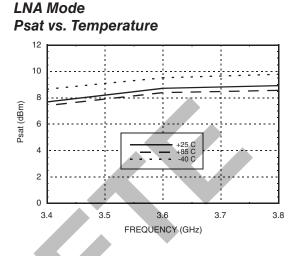
LNA Mode Output Return Loss vs. Temperature

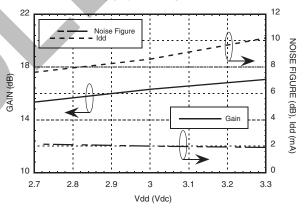
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

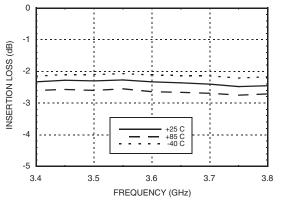

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D 8


v03.1206


LNA Mode Output P1dB vs. Temperature


LNA Mode Input IP3 vs. Temperature

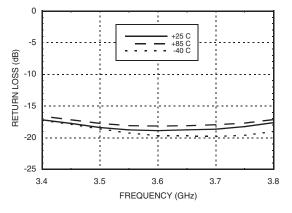

Bypass Mode Broadband Insertion Loss & Return Loss



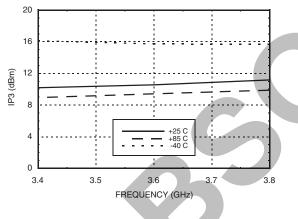
LNA Mode Gain, Noise Figure & Supply Current vs. Supply Voltage @ 3.6 GHz

Bypass Mode Insertion Loss vs. Temperature

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


GaAs MMIC LOW NOISE AMPLIFIER w/ BYPASS MODE, 3.4 - 3.8 GHz

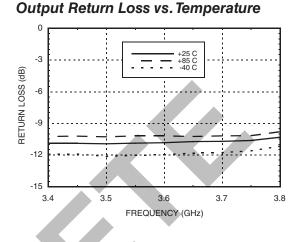
Bypass Mode



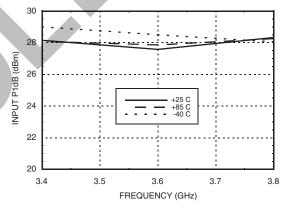
Bypass Mode Input Return Loss vs. Temperature

v03.1206

Bypass Mode Input IP3 vs. Temperature



Absolute Maximum Ratings


Drain Bias Voltage (Vdd)	+7.0 Vdc	
RF Input Power (RFIN)LNA Mode(Vdd = +3.0 Vdc)Bypass Mode	0 dBm +30 dBm	
Channel Temperature	150 °C	
Continuous Pdiss (T = 85 °C) (derate 1.8 mW/°C above 85 °C)	0.117 W	
Thermal Resistance (channel to ground paddle)	556 °C/W	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-40 to +85 °C	

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Bypass Mode Input P1dB vs. Temperature

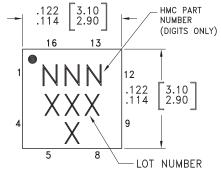
Typical Supply Current vs. Vdd

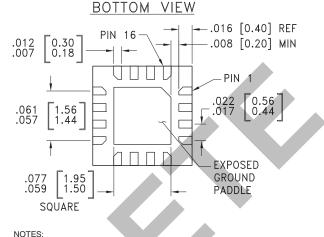
Vdd (Vdc)	ldd (mA)
+2.7	7.6
+3.0	9.0
+3.3	10.2

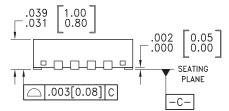
Truth Table

LNA Mode	Vctl= Vdd @ 1.6 mA				
Bypass Mode	Vctl= 0Vdc @ -13 µA				
Vdd= +3V ±10%					

8


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


GaAs MMIC LOW NOISE AMPLIFIER w/ BYPASS MODE, 3.4 - 3.8 GHz



Outline Drawing

v03.1206

1. LEADFRAME MATERIAL: COPPER ALLOY

- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 4. PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM.
 - PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM. 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
 REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.
- 7. REFER TO HITTITE APPLICATION NO

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC491LP3	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 ^[1]	491 XXXX
HMC491LP3E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 ^[2]	<u>491</u> XXXX

[1] Max peak reflow temperature of 235 °C

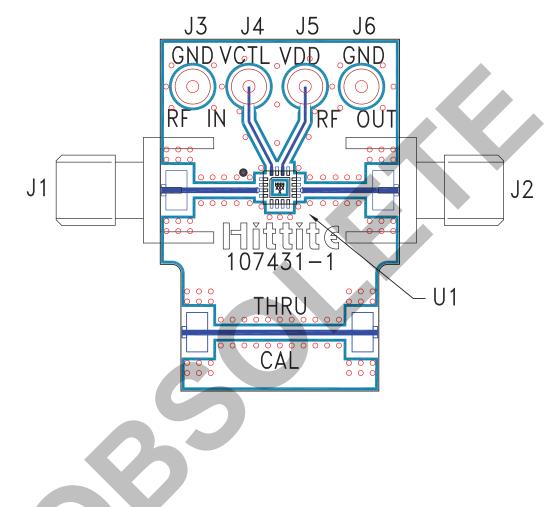
[2] Max peak reflow temperature of 260 °C

[3] 4-Digit lot number XXXX

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 5 - 8, 12, 13	N/C	No connection necessary. These pins may be connected to RF/DC ground.	
2, 4, 9, 11, 15	GND	These pins must be connected to RF/DC ground.	⊖ GND
3	RF IN	This pin is AC coupled and matched to 50 Ohms.	RFIN O-
10	RF OUT	This pin is AC coupled and matched to 50 Ohms.	
14	Vdd	Power supply voltage.	Vdd O
16	Vctl	Control voltage. Vctl= Vdd for LNA mode. Vctl= 0V for bypass mode.	

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


v03.1206

HMC491LP3 / 491LP3E

GaAs MMIC LOW NOISE AMPLIFIER w/ BYPASS MODE, 3.4 - 3.8 GHz

Evaluation PCB

List of Materials for Evaluation PCB 107174 [1]

Item	Description				
J1 - J2	PCB Mount SMA RF Connector				
J3 - J6	DC Pin				
U1	HMC491LP3 / HMC491LP3E Amplifier				
PCB ^[2]	107431 Evaluation PCB				

Reference this number when ordering complete evaluation PCB
 Circuit Board Material: Rogers 4350

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.