TS74230L - 30W CW GaN Broadband RF Switch SPDT

1.0 Features

- Low insertion loss: 0.40dB @ 800MHz
- High isolation: 43dB @ 800MHz
- High linear power handling capability
- Versatile 2.6-5.5V Vdd power supply
- Vcp supply of -18V
- 43dBm Hot Switching Capable

2.0 Applications

- Private Mobile radio handsets
- Public safety handsets
- Cellular infrastructure
- Small cells
- LTE relays and microcells

3.0 Description

The TS74230L is a symmetrical reflective Single Pole Dual Throw (SPDT) switch designed for broadband, high peak power switching applications. Its broadband behavior from 1MHz to 3GHz makes the TS74230L an excellent switch for all the applications requiring low insertion loss, high isolation and high linearity within a small package size. This part has the internal charge pump disabled to eliminate the charge pump spurs. A -17 to -18V supply is needed on the VCP pin.

The TS74230L is packaged into a compact Quad Flat No lead (QFN) 4x4mm 32 leads plastic package.

4.0 Ordering Information

Base Part Number	Package Type	Form	Qty	Reel Diameter	Reel Width	Orderable Part Number	
TS74230L	32 Pin 4×4×0.8mm QFN	Tape and Reel	3000	13" (330mm)	18mm	TS74230LMTRPBF	
Evaluation Board						TS74230L-EVB	

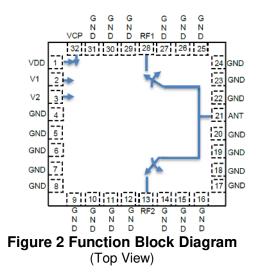

Table 1 Ordering Information

Figure 1 Device Image (32 Pin 4×4×0.8mm QFN Package)

RoHS/REACH/Halogen Free Compliance

5.0 Pin Description

Table 2 Pin Definition

Pin Number	Pin Name	Description	
1	VDD	DC power supply	
2	V1	Switch control input 1	
3	V2	Switch control input 2	
4,5,6,7,8,9,10,11,12,14,15,16,17, 18,19,20,22,23,24,25,26,27,29,30,31	NC	No internal connection, Can be grounded	
13	RF2	RF port 2	
21	ANT	Antenna port	
28	RF1	RF port 1	
32	VCP	Negative Voltage Supply, -17 to -18V	

Note: The backside ground (thermal) pad of the package must be grounded directly to the ground plane of PCB with multiple vias to ensure proper operation and thermal management.

6.0 Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Electrical F	latings		
Power Supply Voltage Vdd	VDD	2.6 to 5.5	V
Charge Pump Voltage Vcp	Vcp	-15 to -19	V
Storage Temperature Range	T _{st}	-55 to +125	°C
Operating Temperature Range	T _{op}	-40 to +85	°C
Maximum Junction Temperature	TJ	+140	°C
RF Input Power CW, 20-3000MHz, T _C =+85°C	RFx	45	dBm
RF Input Power (VSWR 10:1), 1 minute	RFx	44	dBm
Thermal R	atings		
Thermal Resistance (junction-to-case) – Bottom side	R _{ejc}	10	°C/W
Thermal Resistance (junction-to-top)	R _{θJT}	≤ 37	°C/W
Soldering Temperature	TSOLD	260	°C
ESD Rat	ings		
Human Body Model (HBM)	Level 1B	500 to <1000	V
Charged Device Model (CDM)	Level C3	≥1000	V
Moisture F	Rating		
Moisture Sensitivity Level	MSL	1	-

Attention:

Maximum ratings are absolute ratings. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Exceeding one or a combination of the absolute maximum ratings may cause permanent and irreversible damage to the device and/or to surrounding circuit.

7.0 Electrical Specifications

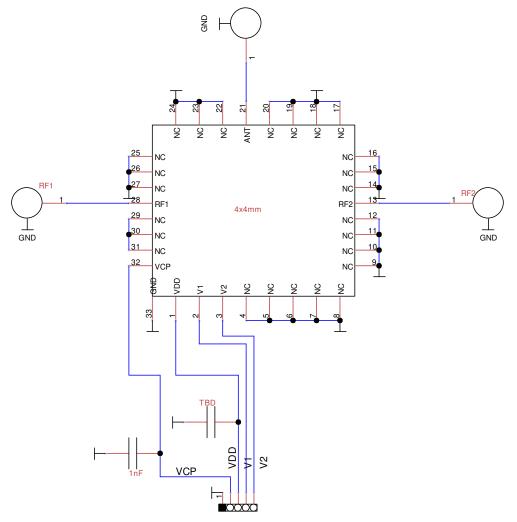
Table 4 Electrical Specifications $@T_A=+25^{\circ}C$ Unless Otherwise Specified; VDD=+2.7V; VCP= -18V; 50 Ω Source/Load.

Parameter	Condition	Minimum	Typical	Maximum	Unit
Operating Frequency		1		3000	MHz
	400MHz		0.35		dB
Insertion Loss, RFx	800MHz		0.40	0.5	
	1.95GHz		0.45	0.6	
	2.6GHz		0.50	0.7	
	400MHz		50		dB
Isolation, ANT-RFx	800MHz	40	43		
	1.95GHz	32	34		
	2.6GHz	28	30		
	400MHz		30		dB
Return Loss, ANT-	800MHz		28		
RFx	1.95GHz		25		
	2.6GHz		25		
H2	800MHz, Pin=40dBm		-83		dBc
H3	800MHz, Pin=40dBm		-81		dBc
IIP3	800MHz		74		dBm
P0.1dB ^[1]	0.1dB compression point, 20MHz - 3GHz		46		dBm
P0.1dB ^[1]	0.1dB compression point, 1 - 10MHz		43.5		dBm
Switching Time	50% ctrl to 10/90% of the RF value is settled. C1=1nF (refer to Figure 3)		2.0		μS
Control Voltage	Power supply VDD	2.6	3.3	5.5	V
	Charge Pump Supply Voltage VCP	-19	-18	-15	V
	All control pins high, V _{ih}	1.0	3.3	5.25	V
	All control pins low, Vi	-0.3		0.5	V
Control Current	All control pins low, Iii		0		μA
	All control pins high, I _{ih}			7.5	μA
Current Consumption, IDD	Active mode		160	200	μA

Note: [1] P0.1dB is a figure of merit.

[2] No external DC blocking capacitors required on RF pins unless DC voltage is applied on a RF pin.

8.0 Switch Truth Table


Table 5 Switch Truth Table

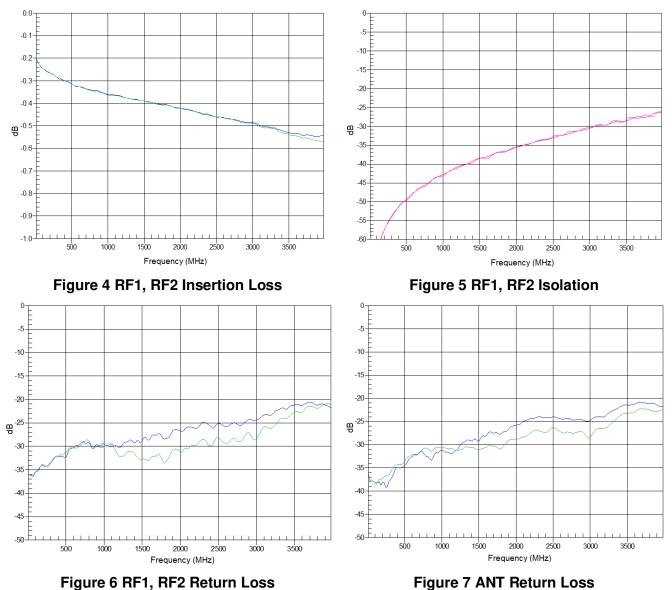
V1	V2	Active RF Path		
0	1	All OFF		
0	0	ANT-RF1		
1	0	ANT-RF2		

Bias Sequence:

[1] VDD should be applied first before VCP. Minimum time between VDD and VCP should be 50usec.
 [2] Vc can be applied/toggled after VCP voltage has settled.

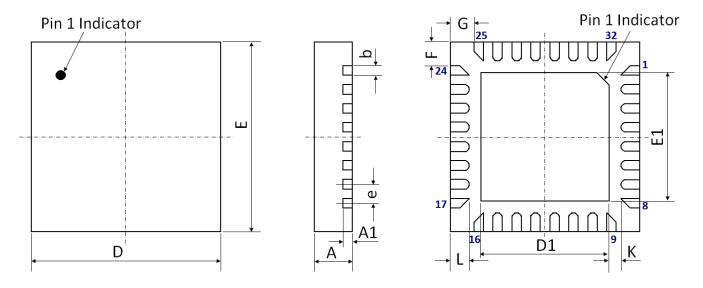
9.0 Evaluation Board Schematic

Figure 3 Evaluation Board Schematic


Attention:

[1] 33 refers to the center pad of the device which is ground.

[2] -17/-18V needed on VCP pin.



10.0 Typical Characteristics

Figure 7 ANT Return Loss

11.0 Device Package Information

Figure 8 Device Package Drawing

(All dimensions are in mm)

Table 6 Device Package Dimensions

Dimension (mm)	Value (mm)	Tolerance (mm)	Dimension (mm)	Value (mm)	Tolerance (mm)
A	0.80	±0.05	Ш	4.00 BSC	±0.05
A1	0.203	±0.02	E1	2.70	±0.05
b	0.20	+0.05/-0.07	F	0.50	±0.05
D	4.00 BSC	±0.05	G	0.50	±0.05
D1	2.70	±0.05	L	0.40	±0.05
е	0.40 BSC	±0.05	K	0.25	±0.05

Note: Lead finish: Pure Sn without underlayer; Thickness: 7.5µm ~ 20µm (Typical 10µm ~ 12µm)

Attention:

Please refer to application notes *TN-001* and *TN-002* at http://www.tagoretech.com for PCB and soldering related guidelines.

12.0 PCB Land Design

Guidelines:

[1] 4 layer PCB is recommended.

- [2] Via diameter is recommended to be 0.2mm to prevent solder wicking inside the vias.
- [3] Thermal vias shall only be placed on the center pad.
- [4] The maximum via number for the center pad is $6(X) \times 6(Y) = 36$.

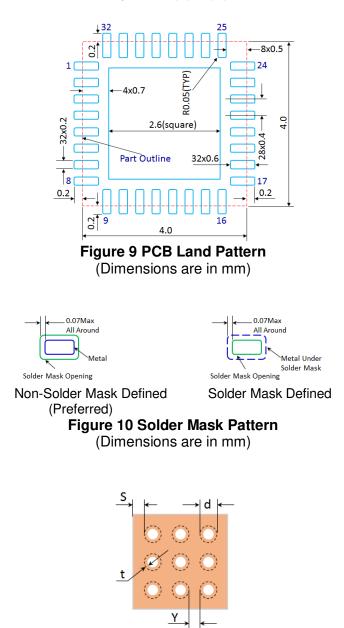


Figure 11 Thermal Via Pattern (Recommended Values: S≥0.15mm; Y≥0.20mm; d=0.2mm; Plating Thickness t=25µm or 50µm)

13.0 PCB Stencil Design

Guidelines:

- [1] Laser-cut, stainless steel stencil is recommended with electro-polished trapezoidal walls to improve the paste release.
- [2] Stencil thickness is recommended to be 125µm.

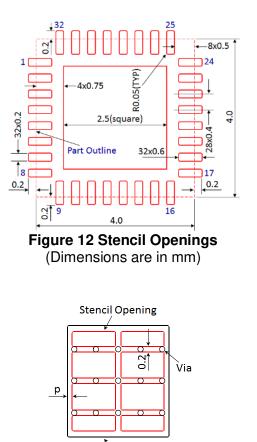


Figure 13 Stencil Openings Shall not Cover Via Areas If Possible (Dimensions are in mm)

PCB Land Opening

14.0 Tape and Reel Information

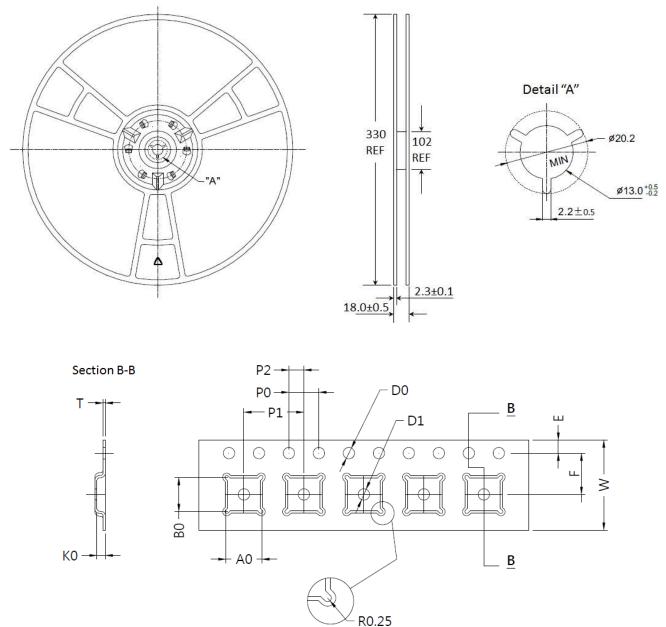


Figure 14 Tape and Reel Drawing

Table 7 Tape and Reel Dimensions							
Dimension (mm)	Value (mm)	Tolerance (mm)	Dimension (mm)	Value (mm)	Tolerance (mm)		
A0	4.35	±0.10	K0	1.10	±0.10		
B0	4.35	±0.10	P0	4.00	±0.10		
D0	1.50	+0.10/-0.00	P1	8.00	±0.10		
D1	1.50	+0.10/-0.00	P2	2.00	±0.05		
E	1.75	±0.10	Т	0.30	±0.05		
F	5.50	±0.05	W	12.00	±0.30		

Table 7 Tape and Reel Dimensions

Edition Revision 1.3- 2020-12-01

Published by

Tagore Technology Inc. 5 East College Drive, Suite 200 Arlington Heights, IL 60004, USA

©2018 All Rights Reserved

Legal Disclaimer

The information provided in this document shall in no event be regarded as a guarantee of conditions or characteristics. Tagore Technology assumes no responsibility for the consequences of the use of this information, nor for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of Tagore Technology. The specifications mentioned in this document are subject to change without notice.

Information

For further information on technology, delivery terms and conditions and prices, please contact Tagore Technology: support@tagoretech.com.