

HM-65162C/883

2K x 8 Asynchronous CMOS Static RAM

The HM-65162/883 is a CMOS 2048 x 8 Static Random Access Memory manufactured using the Harris Advanced SAJI V process. The device utilizes asynchronous circuit design for fast cycle time and ease of use. The pinout is the JEDEC 24 pin DIP, and 32 pad 8 bit wide standard which allows easy memory board layouts flexible to accommodate a variety of industry standard PROMs, RAMs, ROMs and EPROMs. The HM-65162/883 is ideally suited for use in microprocessor based systems with its 8 bit word length organization. The convenient output enable also simplifies the bus interface by allowing the data outputs to be controlled independent of the chip enable. Gated inputs lower operating current and also eliminate the need for pullup or pull-down resistors.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All re-creations are done with the approval of the Original Component Manufacturer (OCM).

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OCM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

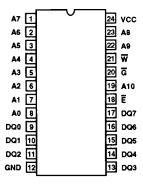
HM-65162/883

2K x 8 Asynchronous **CMOS Static RAM**

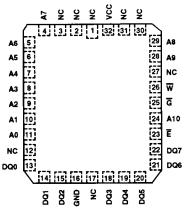
January 1992

Features

- This Circuit is Processed in Accordance to Mil-Std-883 and is Fully Conformant Under the Provisions of Paragraph 1.2.1.

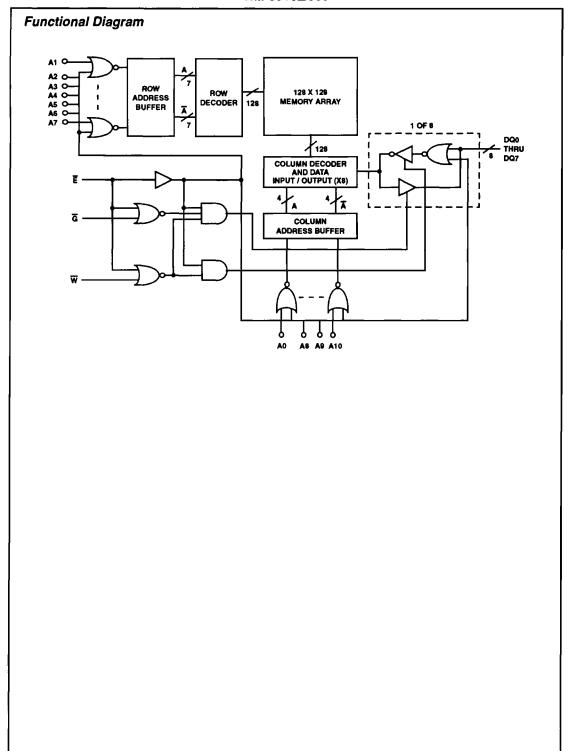

- Data Retention at 2.0 Volts 20μA Max
- TTL Compatible Inputs and Outputs
- JEDEC Approved Pinout (2716, 6116 Type)
- · No Clocks or Strobes Required
- Wide Temperature Range -55°C to +125°C
- Equal Cycle and Access Time
- Single 5 Volt Supply
- Gated Inputs
 - No Pull-Up or Pull-Down Resistors Required

Description


The HM-65162/883 is a CMOS 2048 x 8 Static Random Access Memory manufactured using the Harris Advanced SAJI V process. The device utilizes asynchronous circuit design for fast cycle time and ease of use. The pinout is the JEDEC 24 pin DIP, and 32 pad 8 bit wide standard which allows easy memory board layouts flexible to accommodate a variety of industry standard PROMs, RAMs, ROMs and EPROMs. The HM-65162/883 is ideally suited for use in microprocessor based systems with its 8 bit word length organization. The convenient output enable also simplifies the bus interface by allowing the data outputs to be controlled independent of the chip enable. Gated inputs lower operating current and also eliminate the need for pullup or pull-down resistors.

Pinouts

HM1-65162/883 (CERAMIC DIP) TOP VIEW



HM4-65162/883 CERAMIC LCC) TOP VIEW

PIN NAMES

PIN	DESCRIPTION				
NC	No Connect				
A0 - A10	Address Input				
Ē	Chip Enable/Power Down				
VSS/GND	Ground				
DQ0 - DQ7	Data In/Data Out				
VCC	Power (+5V)				
₩	Write Enable				
Ğ	Output Enable				

Specifications HM-65162/883

Reliability Information	
Maximum Package Power Dissipation at +125°C Ceramic DIP Package	w
	Thermal Resistance

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

TABLE 1. 65162/883 D.C. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Guaranteed and 100% Tested

		(NOTE 1)	GROUP A		LIM		
PARAMETER	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
High Level Output Voltage	VOH1	VCC = 4.5V, IO = -1.0mA	1, 2, 3	-55°C ≤ T _A ≤ +125°C	2.4	-	V
Low Level Output Voltage	VOL	VCC = 4.5V, IO = 4.0mA	1, 2, 3	-55°C ≤ T _A ≤ +125°C	-	0.4	>
High Impedance Output Leakage Current	IIOZ	VCC = 5.5V, \overline{G} = 2.2V, or \overline{E} = 2.2V, VI/O = GND or VCC	1, 2, 3	.2,3 -55°C ≤ T_A ≤ +125°C		1.0	μА
Input Leakage Current	II	VCC = 5.5V, VI = GND or VCC	1, 2, 3	-55°C ≤ T _A ≤ +125°C	-1.0	1.0	μА
Standby Supply Current	ICCSB1	HM-65162B/883, IO = 0mA, VCC = 5.5V, E = VCC -0.3V	1, 2, 3	-55°C ≤ T _A ≤ +125°C	-	50	μΑ
		HM-65162/883, IO = 0mA, VCC = 5.5V, E = VCC - 0.3V	1, 2, 3	-55°C ≤ T _A ≤ +125°C	•	100	μА
		HM-65162C/883, IO = 0mA, VCC = 5.5V, E = VCC - 0.3V	1, 2, 3	-55°C ≤ T _A ≤ +125°C	-	900	μА
Standby Supply Current	ICCSB	VCC = 5.5V, IO = 0mA, E = 2.2V	1, 2, 3	-55°C ≤ T _A ≤ +125°C	-	8	mA
Operating Supply Current	ICCOP	VCC = 5.5V, \overline{G} = 5.5V, (Note 2), f = 1MHz, \overline{E} = 0.8V	1, 2, 3	-55°C ≤ T _A ≤ +125°C	-	70	mA
Enable Supply Current	ICCEN	VCC = 5.5V, IO = 0mA, E = 0.8V	1, 2, 3	-55°C ≤ T _A ≤ +125°C		70	mA
Data Retention Supply Current	ICCDR	HM-65162B/883, IO = 0mA, VCC = 2.0V, E = VCC - 0.3V	1, 2, 3	-55°C ≤ T _A ≤ +125°C	-	20	μА
		HM-65162/883, IO = 0mA, VCC = 2.0V, E = VCC - 0.3V	1, 2, 3	-55°C ≤ T _A ≤ +125°C	-	40	μА
		HM-65162C/883, IO = 0mA, VCC = 2.0V, E = VCC - 0.3V	1, 2, 3	-55°C ≤ T _A ≤ +125°C	-	300	μА
Functional Test	FT	VCC = 4.5V (Note 3)	7, 8A, 8B	-55°C ≤ T _A ≤ +125°C	-	-	-

NOTES:

- 1. All voltages referenced to device GND.
- Input pulse levels: 0.8V to VCC 2.0V; Input rise and fall times: 5ns (max); Input and output timing reference level: 1.5V; Output load: 1
 TTL gate equivalent, CL = 50pF (min) for CL greater than 50pF, access time by 0.15ns per pF.
- 3. TAVQV = TELQV + TAVEL.

Specifications HM-65162/883

TABLE 2. HM-65162/883 A.C. ELECTRICAL PERFORMANCE CHARACTERISTICS

Device Guaranteed and 100% Tested.

							LIM	IITS			
		(NOTES 4 a)	GROUP A SUB- TEMPERA-		HM-65162B HM-65162 /883 /883			HM-65162C /883			
PARAMETER	SYMBOL	(NOTES 1, 2) CONDITIONS	GROUPS	TURE	MIN	MAX	MIN	MAX	MIN	MAX	UNITS
Read/Write/ Cycle Time	(1) TAVAX	VCC = 4.5V and 5.5V	9, 10, 11	-55°C ≤ T _A ≤ +125°C	70	-	90	ı	90		ns
Address Access Time	(2) TAVQV	VCC = 4.5V and 5.5V	9, 10, 11	-55°C ≤ T _A ≤ +125°C	-	70	•	90	-	90	ns
Chip Enable Access Time	(3) TELQV	VCC = 4.5V and 5.5V	9, 10, 11	-55°C ≤ T _A ≤ +125°C	-	70	•	90	-	90	ns
Output Enable Access Time	(5) TGLQV	VCC = 4.5V and 5.5V	9, 10, 11	-55°C ≤ T _A ≤ +125°C	-	50	,	65	•	65	ns
Chip Selection to End of Write	(11) TELWH	VCC = 4.5V and 5.5V	9, 10, 11	-55°C ≤ T _A ≤ +125°C	45	-	55	-	55	•	ns
Address Setup Time	(12) TAVWL	VCC = 4.5V and 5.5V	9, 10, 11	-55°C ≤ T _A ≤ +125°C	10	•	10	-	10	_	ns
Write Enable Pulse Write	(13) TWLWH	VCC = 4.5V and 5.5V	9, 10, 11	-55°C ≤ T _A ≤ +125°C	40	,	55	,	55	-	ns
Write Enable Read Setup Time	(14) TWHAX	VCC = 4.5V and 5.5V	9, 10, 11	-55°C ≤ T _A ≤ +125°C	10		10	•	10	-	ns
Data Setup Time	(17) TDVWH	VCC = 4.5V and 5.5V	9, 10, 11	-55°C ≤ T _A ≤ +125°C	30	-	30	•	30	-	ns
Data Hold Time	(18) TWHDX	VCC = 4.5V and 5.5V	9, 10, 11	-55°C ≤ T _A ≤ +125°C	10		15	•	15	•	ns
Write Enable Pulse Setup Time	(20) TWLEH	VCC = 4.5V and 5.5V	9, 10, 11	-55°C ≤ T _A ≤ +125°C	40	-	55	-	55	-	ns
Chip Enable Data Setup Time	(21) TDVEH	VCC = 4.5V and 5.5V	9, 10, 11	-55°C ≤ T _A ≤ +125°C	30	-	30	-	30	-	ns
Address Valid to End of Write	(22) TAVWH	VCC = 4.5V and 5.5V	9, 10, 11	-55°C ≤ T _A ≤ +125°C	50		65	-	65	-	ns

NOTES:

^{1.} All voltages referenced to device GND.

^{2.} Input pulse levels: 0.8V to VCC-2.0V; Input rise and fall times: 5ns (max); Input and output timing reference level: 1.5V; Output load: 1 TTL gate equivalent, CL = 50pF (min) - for CL greater than 50pF, access time is derated by 0.15ns per pF.

^{3.} TAVQV = TELQV + TAVEL.

Specifications HM-65162/883

TABLE 3. HM-65162/883 ELECTRICAL PERFORMANCE CHARACTERISTICS, A.C. AND D.C.

				TEMPERA-		HM-65162B/ 883		HM-65162/ 883		HM-65162C/ 883	
PARAMETERS	SYMBOL	CONDITIONS	NOTES	TURE	MIN	MAX	MIN	MAX	MIN	MAX	UNITS
Input	CIN	VCC = Open,	1, 2	+25°C	-	10	•	10		10	pF
Capacitance		F = 1MHz, All Measurements Referenced To Device Ground	1, 3	+25°C	-	8	-	8	-	8	p₹
1/0	CI/O	VCC = Open,	1, 2	+25°C	-	12		12	-	12	pF
Capacitance		F = 1MHz, All Measurements Referenced To Device Ground	1, 3	+25°C	-	10	_	10	•	10	pF
Chip Enable to Output ON	(4) TELQX	VCC = 4.5V and 5.5V	1	-55°C ≤ T _A ≤ +125°C	5		0	-	5		ns
Output Enable to Output ON	(6) TGLQX	VCC = 4.5V and 5.5V	1	-55°C ≤ T _A ≤ +125°C	5	_	5	•	5	-	ns
Chip Enable High to Output In High Z	(7) TEHQZ	VCC = 4.5V and 5.5V	1	-55°C ≤ T _A ≤ +125°C	•	35	•	50	-	50	ns
Output Disable to Output in High Z	(8) TGHQZ	VCC = 4.5V and 5.5V	1	-55°C ≤ T _A ≤ +125°C	•	35	•	40	•	40	ns
Output Hold from Address Change	(9) TAVQX	VCC = 4.5V and 5.5V	1	-55°C ≤ T _A ≤ +125°C	5	•	5	,	5	•	ns
Write Enable to Output in High Z	(16) TWLQZ	VCC = 4.5V and 5.5V	1	-55°C ≤ T _A ≤ +125°C	•	40	•	50	•	50	ns
Write Enable High to Output ON	(19) TWHQX	VCC = 4.5V and 5.5V	1	-55°C ≤ T _A ≤ +125°C	0	,	0	•	0	-	ns
Output High Voltage	VOH2	VCC = 4.5V, IO = -100μA	1	-55°C ≤ T _A ≤ +125°C	VCC - 0.4V	-	VCC - 0.4V	-	VCC - 0.4V	-	V

NOTES:

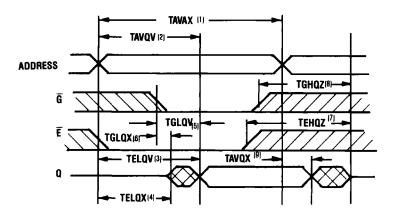
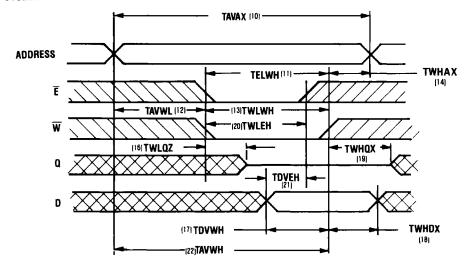

- The parameters listed in Table 3 are controlled via design or process parameters and are not directly tested. These parameters are characterized upon initial design release and upon design changes which would affect these characteristics.
- 2. Applies to DIP device types only.
- 3. Applies to LCC device types only.

TABLE 4. APPLICABLE SUBGROUPS

CONFORMANCE GROUPS	METHOD	SUBGROUPS				
Initial Test	100%/5004					
Interim Test	100%/5004	1, 7, 9				
PDA	100%/5004	1				
Final Test	100%/5004	2, 3, 7, 8A, 8B, 10, 11				
Group A	Samples/5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11				
Groups C & D	Samples/5005	1, 7, 9				

Timing Waveforms

READ CYCLE

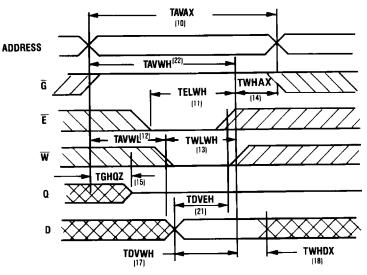


NOTE: W is High for a Read Cycle

Addresses must remain stable for the duration of the read cycle. To read, \overline{G} and \overline{E} must be \leq VIL and $\overline{W} \geq$ VIH. The output buffers can be controlled independently by \overline{G} while \overline{E} is low. To execute consecutive read cycles, \overline{E} may be tied

low continuously until all desired locations are accessed. When \overline{E} is low, addresses must be driven by stable logic levels and must not be in the high impedance state.

WRITE CYCLE I


NOTE: G is Low throughout Write Cycle

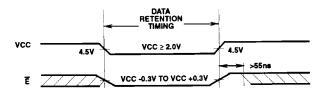
To write, addresses must be stable, \overline{E} low and \overline{W} falling low for a period no shorter than TWLWH. Data in is referenced with the rising edge of \overline{W} , (TDVWH and TWHDX). While addresses are changing, \overline{W} must be high. When \overline{W} falls low, the I/O pins are still in the output state for a period of TWLQZ

and input data of the opposite phase to the outputs must not be applied, (Bus contention). If \overline{E} transitions low simultaneously with the \overline{W} line transitioning low or after the \overline{W} transition, the output will remain in a high impedance state. \overline{G} is held continuously low.

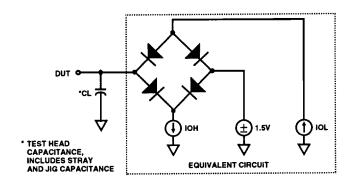
Timing Waveforms (Continued)

WRITE CYCLE N

In this write cycle \overline{G} has control of the output after a period, TGHQZ. \overline{G} switching the output to a high impedance state allows data in to be applied without bus contention after

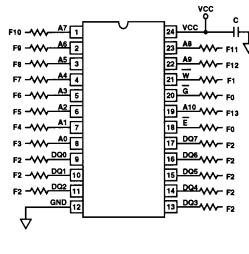

TGHQZ. When \overline{W} transitions high, the data in can change after TWHDX to complete the write cycle.

Low Voltage Data Retention


Harris CMOS RAMs are designed with battery backup in mind. Data retention voltage and supply current are guaranteed over temperature. The following rules insure data retention:

- 1. Chip Enable (\overline{E}) must be held high during data retention; within VCC 0.3V to VCC + 0.3V.
- On RAMs which have selects or output enables (e.g., S, G), one
 of the selects or output enables should be held in the deselected
 state to keep the RAM outputs high impedance, minimizing
 power dissipation.
- Inputs which are to be held high (e.g., E) must be kept between VCC + 0.3V and 70% of VCC during the power up and down transitions.
- The RAM can begin operation > 55ns after VCC reaches the minimum operating voltage (4.5 volts).

DATA RETENTION TIMING



Test Circuit

Burn-In Circuits

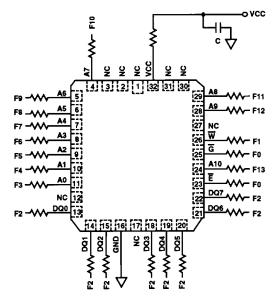
HM-65162/883 CERAMIC DIP

NOTES:

All resistors 47kW ±5%

 $F0 = 100kHz \pm 10\%$

F1 = F0 + 2, F2 = F1 + 2, F3 = F2 + 2 ... F13 = F12 + 2


 $VCC = 5.5V \pm 0.5V$

 $VIH = 4.5V \pm 10\%$

VIL = -0.2V to +0.4V

 $C = 0.01 \mu F$ Min.

HM-65162/883 CERAMIC LCC

NOTES:

All resistors 47kW ±5%

F0 = 100kHz ±10%

F1 = F0 + 2, F2 = F1 + 2, F3 = F2 + 2 ... F13 = F12 + 2

VCC = 5.5V ±0.5V

 $VIH = 4.5V \pm 10\%$

VIL = -0.2V to +0.4V

 $C = 0.01 \mu F Min.$

Metallization Topology

DIE DIMENSIONS:

186.2 x 200.1 x 19 ± 1mils

METALLIZATION:

Type: Si - Al

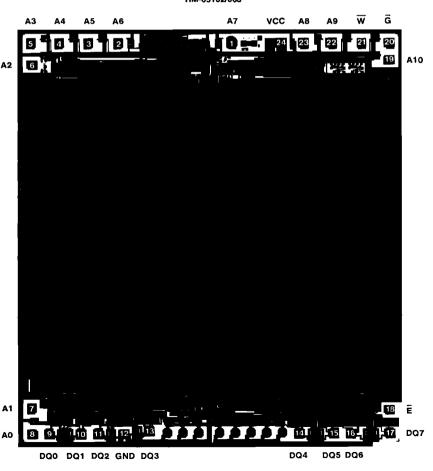
Thickness: 11kÅ ± 2kÅ

GLASSIVATION:

Type: SiO₂

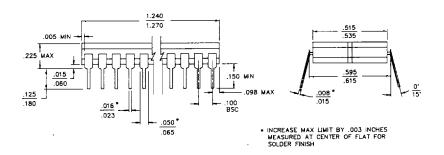
Thickness: 8kÅ ± 1kÅ

DIE ATTACH:


Material: Gold Silicon Eutectic Alloy Temperature: Ceramic DIP - 460°C (Max) Ceramic LCC - 420°C (Max)

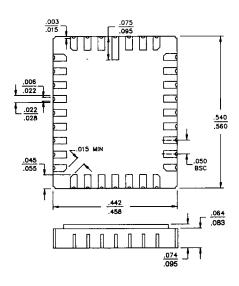
WORST CASE CURRENT DENSITY:

1.7 x 10⁵ A/cm²


Metallization Mask Layout

Packaging

24 PIN CERAMIC DIP



LEAD FINISH: Type A

MATERIALS: Compliant to MIL-M38510

COMPLIANT OUTLINE: MIL-STD-1835, GDIP1-T24

32 PAD CERAMIC LCC

LEAD FINISH: Type A

MATERIALS: Compliant to MIL-M38510

COMPLIANT OUTLINE: MIL-STD-1835, CQCC1-N32