GTL2007 12-bit GTL to LVTTL translator with power good control Rev. 02 — 16 February 2007 Product data sheet

1. General description

The GTL2007 is a customized translator between dual Xeon processors, Platform Health Management, South Bridge and Power Supply LVTTL and GTL signals.

The GTL2007 is derived from the GTL2006 with an enable function added that disables the error output to the monitoring agent for platforms that monitor the individual error conditions from each processor. This enable function can be used so that false error conditions are not passed to the monitoring agent when the system is unexpectedly powered down. This unexpected power-down could be from a power supply overload, a CPU thermal trip, or some other event of which the monitoring agent is unaware.

A typical implementation would be to connect each enable line to the system power good signal or the individual enables to the VRD power good for each processor.

Typically Xeon processors specify a V_{TT} of 1.1 V to 1.2 V, as well as a nominal V_{ref} of 0.73 V to 0.76 V. To allow for future voltage level changes that may extend V_{ref} to 0.63 of V_{TT} (minimum of 0.693 V with V_{TT} of 1.1 V) the GTL2007 allows a minimum V_{ref} of 0.66 V. Characterization results show that there is little DC or AC performance variation between these V_{ref} levels.

2. Features

- Operates as a GTL to LVTTL sampling receiver or LVTTL to GTL driver
- Operates at GTL-/GTL/GTL+ signal levels
- EN1 and EN2 disable error output
- 3.0 V to 3.6 V operation
- LVTTL I/O not 5 V tolerant
- Series termination on the LVTTL outputs of 30 Ω
- ESD protection exceeds 2000 V HBM per JESD22-A114, 200 V MM per JESD22-A115, and 1000 V CDM per JESD22-C101
- Latch-up testing is done to JEDEC Standard JESD78 which exceeds 500 mA
- Package offered: TSSOP28

12-bit GTL to LVTTL translator with power good control

3. Quick reference data

Quick reference data ² C.					
Parameter	Conditions	Min	Тур	Max	Unit
input/output capacitance	A port; $V_0 = 3.0$ V or 0 V	-	2.5	3.5	pF
	B port; $V_0 = V_{TT}$ or 0 V	-	1.5 2.5	2.5	pF
3 V; V _{TT} = 1.1 V					
LOW-to-HIGH	nA to nB; see Figure 4	1	4	8	ns
propagation delay	nBI to nAO; see Figure 5	2	5.5	10	ns
HIGH-to-LOW propagation delay	nA to nB; see Figure 4	2	5.5	10	ns
	nBI to nAO; see Figure 5	2	5.5	10	ns
6 V; V _{TT} = 1.2 V					
LOW-to-HIGH	nA to nB; see Figure 4	1	4	8	ns
propagation delay	nBI to nAO; see Figure 5	2	5.5	10	ns
HIGH-to-LOW	nA to nB; see Figure 4	2	5.5	10	ns
propagation delay	nBI to nAO; see Figure 5	2	5.5	10	ns
	Parameter input/output capacitance $V; V_{TT} = 1.1 V$ LOW-to-HIGH propagation delay HIGH-to-LOW propagation delay $V; V_{TT} = 1.2 V$ LOW-to-HIGH propagation delay HIGH-to-LOW	ParameterConditionsinput/output capacitanceA port; $V_0 = 3.0 \text{ V or } 0 \text{ V}$ B port; $V_0 = V_{TT}$ or 0 V B port; $V_0 = V_{TT}$ or 0 V V; $V_{TT} = 1.1 \text{ V}$ nA to nB; see Figure 4LOW-to-HIGH propagation delaynA to nB; see Figure 5HIGH-to-LOW propagation delaynA to nB; see Figure 5V; $V_{TT} = 1.2 \text{ V}$ nA to nB; see Figure 4LOW-to-HIGH propagation delaynA to nB; see Figure 5V; $V_{TT} = 1.2 \text{ V}$ nA to nB; see Figure 5HIGH-to-LOW propagation delaynA to nB; see Figure 4nBI to nAO; see Figure 5nA to nB; see Figure 4nBI to nAO; see Figure 5nA to nB; see Figure 5	ParameterConditionsMininput/output capacitanceA port; $V_0 = 3.0 V \text{ or } 0 V$ -B port; $V_0 = V_{TT}$ or $0 V$ -B port; $V_0 = V_{TT}$ or $0 V$ -V; $V_{TT} = 1.1 V$ nA to nB; see Figure 41LOW-to-HIGH propagation delaynA to nB; see Figure 52HIGH-to-LOW propagation delaynA to nB; see Figure 52V; $V_{TT} = 1.2 V$ nA to nB; see Figure 41LOW-to-HIGH propagation delaynA to nB; see Figure 52V; $V_{TT} = 1.2 V$ nA to nB; see Figure 41IDW-to-HIGH propagation delaynA to nB; see Figure 52HIGH-to-LOW propagation delaynA to nB; see Figure 41nBI to nAO; see Figure 522HIGH-to-LOW propagation delaynA to nB; see Figure 42	ParameterConditionsMinTypinput/output capacitanceA port; $V_0 = 3.0 V \text{ or } 0 V$ -2.5B port; $V_0 = V_{TT}$ or $0 V$ -1.5V; $V_{TT} = 1.1 V$ NA to nB; see Figure 414LOW-to-HIGH propagation delaynA to nB; see Figure 525.5HIGH-to-LOW propagation delaynA to nB; see Figure 425.5V; $V_{TT} = 1.2 V$ NA to nB; see Figure 414LOW-to-HIGH propagation delaynA to nB; see Figure 525.5V; $V_{TT} = 1.2 V$ NA to nB; see Figure 414LOW-to-HIGH 	ParameterConditionsMinTypMaxinput/output capacitanceA port; $V_0 = 3.0 V \text{ or } 0 V$ -2.53.5B port; $V_0 = V_{TT}$ or $0 V$ -1.52.5V; $V_{TT} = 1.1 V$ NA to nB; see Figure 4148LOW-to-HIGH propagation delaynA to nB; see Figure 525.510HIGH-to-LOW propagation delaynA to nB; see Figure 425.510V; $V_{TT} = 1.2 V$ nA to nB; see Figure 4148LOW-to-HIGH propagation delaynA to nB; see Figure 525.510NA to nB; see Figure 525.51010V; $V_{TT} = 1.2 V$ nA to nB; see Figure 525.510LOW-to-HIGH propagation delaynA to nB; see Figure 525.510HIGH-to-LOW propagation delaynA to nB; see Figure 4148nB to nAO; see Figure 525.510HIGH-to-LOW propagation delaynA to nB; see Figure 425.510

4. Ordering information

Table 2. Ordering information

 $T_{amb} = -40 \circ C$ to $+85 \circ C$.

Type number	Topside	Package		
	mark	Name	Description	Version
GTL2007PW	GTL2007	TSSOP28	plastic thin shrink small outline package; 28 leads; body width 4.4 mm	SOT361-1

12-bit GTL to LVTTL translator with power good control

5. Functional diagram

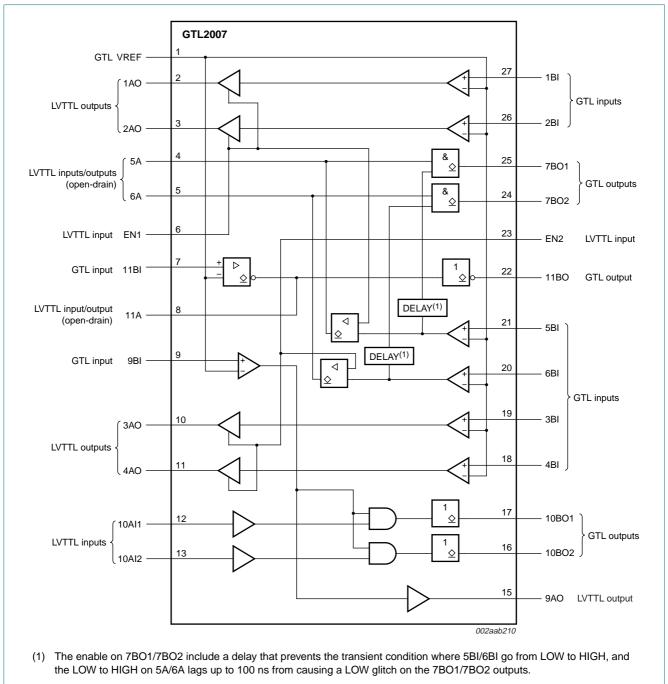
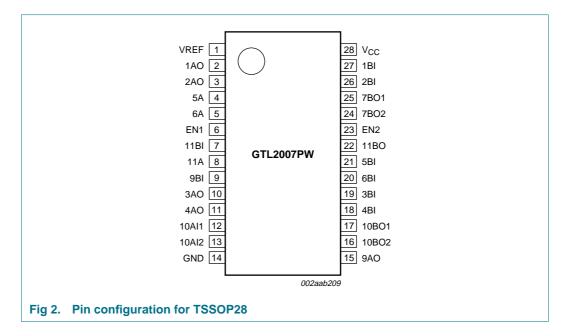



Fig 1. Logic diagram of GTL2007

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 3.	Pin descriptio	on and a second s
Symbol	Pin	Description
VREF	1	GTL reference voltage
1AO	2	data output (LVTTL)
2AO	3	data output (LVTTL)
5A	4	data input/output (LVTTL), open-drain
6A	5	data input/output (LVTTL), open-drain
EN1	6	enable input (LVTTL)
11BI	7	data input (GTL)
11A	8	data input/output (LVTTL), open-drain
9BI	9	data input (GTL)
3AO	10	data output (LVTTL)
4AO	11	data output (LVTTL)
10AI1	12	data input (LVTTL)
10AI2	13	data input (LVTTL)
GND	14	ground (0 V)
9AO	15	data output (LVTTL)
10BO2	16	data output (GTL)
10BO1	17	data output (GTL)
4BI	18	data input (GTL)
3BI	19	data input (GTL)

12-bit GTL to LVTTL translator with power good control

Table 3.	Pin descriptioncontinued		
Symbol	Pin	Description	
6BI	20	data input (GTL)	
5BI	21	data input (GTL)	
11BO	22	data output (GTL)	
EN2	23	enable input (LVTTL)	
7BO2	24	data output (GTL)	
7BO1	25	data output (GTL)	
2BI	26	data input (GTL)	
1BI	27	data input (GTL)	
V _{CC}	28	positive supply voltage	

7. Functional description

Refer to Figure 1 "Logic diagram of GTL2007".

7.1 Function tables

Table 4. GTL input signals

H = HIGH voltage level; L = LOW voltage level.

Input	Output ^[1]
1BI/2BI/3BI/4BI/9BI	1AO/2AO/3AO/4AO/9AO
L	L
н	Н

[1] 1AO, 2AO, 3AO, 4AO and 5A/6A condition changed by ENn power good signal as described in <u>Table 5</u> and <u>Table 6</u>.

Table 5.EN1 power good signal

H = HIGH voltage level; L = LOW voltage level.

EN1	1AO and 2AO	5A
L	Н	5BI disconnected
Н	follows BI	5BI connected

Table 6.EN2 power good signal

H = HIGH voltage level; L = LOW voltage level.

EN2	3AO and 4AO	6A
L	Н	6BI disconnected
Н	follows BI	6BI connected

Table 7. SMI signals

H = HIGH voltage level; L = LOW voltage level.

Input	Input	Output
10AI1/10AI2	9BI	10BO1/10BO2
L	L	L
L	Н	L
Н	L	L
Н	Н	Н

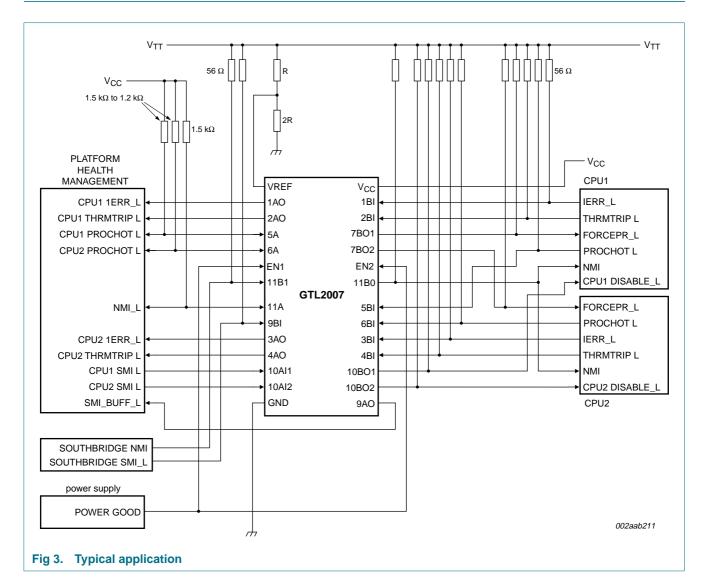
Table 8.PROCHOT signals

H = HIGH voltage level; L = LOW voltage level.

Input	Input/output	Output
5BI/6BI	5A/6A (open-drain)	7B01/7B02
L	L	H[1]
Н	L ^[2]	L
Н	Н	Н

[1] The enable on 7BO1/7BO2 includes a delay that prevents the transient condition where 5BI/6BI go from LOW to HIGH, and the LOW to HIGH on 5A/6A lags up to 100 ns from causing a LOW glitch on the 7BO1/7BO2 outputs.

[2] Open-drain input/output terminal is driven to logic LOW state by other driver.


Table 9. NMI signals

H = HIGH voltage level; L = LOW voltage level.

Input	Input/output	Output
11BI	11A (open-drain)	11BO
L	Н	L
L	L <u>[1]</u>	Н
Н	L	Н

[1] Open-drain input/output terminal is driven to logic LOW state by other driver.

12-bit GTL to LVTTL translator with power good control

8. Application design-in information

9. Limiting values

Table 10. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).^[1] Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+4.6	V
I _{IK}	input clamping current	V _I < 0 V	-	-50	mA
VI	input voltage	A port (LVTTL)	[2] –0.5	+4.6	V
		B port (GTL)	[2] -0.5	+4.6	V
I _{OK}	output clamping current	V _O < 0 V	-	-50	mA
Vo	output voltage	output in OFF or HIGH state; A port	[2] -0.5	+4.6	V
		output in OFF or HIGH state; B port	[2] -0.5	+4.6	V
I _{OL}	LOW-level output current ^[3]	A port	-	32	mA
		B port	-	30	mA
I _{OH}	HIGH-level output current ^[4]	A port	-	-32	mA
T _{stg}	storage temperature		-60	+150	°C
T _{j(max)}	maximum junction temperature		[5] _	+125	°C

[1] Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under <u>Section 10 "Recommended operating conditions"</u> is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

[2] The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.

[3] Current into any output in the LOW state.

[4] Current into any output in the HIGH state.

[5] The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150 °C.

10. Recommended operating conditions

Table 11. Operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC}	supply voltage		3.0	3.3	3.6	V
V _{TT}	termination voltage	GTL	-	1.2	-	V
V _{ref}	reference voltage	GTL	0.64	0.8	1.1	V
VI	input voltage	A port	0	3.3	3.6	V
		B port	0	V _{TT}	3.6	V
VIH	HIGH-level input voltage	A port and ENn	2	-	-	V
		B port	V _{ref} + 0.050	-	-	V
V _{IL}	LOW-level input voltage	A port and ENn	-	-	0.8	V
		B port	-	-	$V_{ref} - 0.050$	V
I _{OH}	HIGH-level output current	A port	-	-	-16	mA
I _{OL}	LOW-level output current	A port	-	-	16	mA
		B port	-	-	15	mA
T _{amb}	ambient temperature	operating in free-air	-40	-	+85	°C

12-bit GTL to LVTTL translator with power good control

11. Static characteristics

Table 12. Static characteristics

Recommended operating conditions; voltages are referenced to GND (ground = 0 V). $T_{amb} = -40 \degree C$ to +85 °C.

Symbol	Parameter	Conditions	Min	Typ <mark>[1]</mark>	Max	Unit
V _{OH}	HIGH-level output voltage	A port; V _{CC} = 3.0 V to 3.6 V; $I_{OH} = -100 \ \mu A$	[2] V _{CC} – 0.2	3.0	-	V
		A port; V_{CC} = 3.0 V; I_{OH} = -16 mA	2 2.1	2.3	-	V
V _{OL}	LOW-level output	A port; V_{CC} = 3.0 V; I_{OL} = 4 mA	[2] _	0.15	0.4	V
	voltage	A port; V_{CC} = 3.0 V; I_{OL} = 8 mA	[2] _	0.3	0.55	V
		A port; V_{CC} = 3.0 V; I_{OL} = 16 mA	[2] _	0.6	0.8	V
		B port; V_{CC} = 3.0 V; I_{OL} = 15 mA	[2] _	0.13	0.4	V
I _I	input current	A port; V_{CC} = 3.6 V; V_{I} = V_{CC}	-	-	±1	μA
		A port; $V_{CC} = 3.6 \text{ V}; \text{ V}_{I} = 0 \text{ V}$	-	-	±1	μA
		B port; V_{CC} = 3.6 V; V_I = V_{TT} or GND	-	-	±1	μA
I _{CC}	supply current	A or B port; $V_{CC} = 3.6 \text{ V}$; $V_I = V_{CC}$ or GND; $I_O = 0 \text{ mA}$	-	8	12	mA
∆I _{CC^[3]}	additional supply current	per input; A port or control inputs; $V_{CC} = 3.6 \text{ V}; \text{ V}_{I} = V_{CC} - 0.6 \text{ V}$	-	-	500	μA
C _{io}	input/output	A port; $V_0 = 3.0$ V or 0 V	-	2.5	3.5	pF
	capacitance	B port; $V_0 = V_{TT}$ or 0 V	-	1.5	2.5	pF

[1] All typical values are measured at V_{CC} = 3.3 V and T_{amb} = 25 °C.

[2] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[3] This is the increase in supply current for each input that is at the specified LVTTL voltage level rather than V_{CC} or GND.

12. Dynamic characteristics

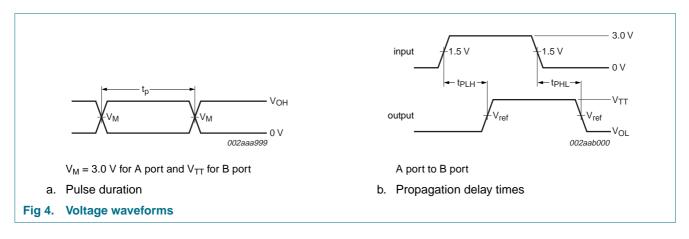
Table 13.	Dynamic characteristics
-----------	--------------------------------

 $V_{CC} = 3.3 V \pm 0.3 V.$

Symbol	Parameter	Conditions		Min	Typ <mark>[1]</mark>	Мах	Unit
V _{ref} = 0.73	3 V; V _{TT} = 1.1 V						
t _{PLH}	LOW-to-HIGH propagation delay	nA to nB; see Figure 4		1	4	8	ns
		nBI to nAO; see Figure 5		2	5.5	10	ns
		9BI to 10BOn		2	6	11	ns
		11BI to 11BO		2	8	13	ns
		5BI to 7BO1 or 6BI to 7BO2; see <u>Figure 7</u>		4	7	12	ns
		EN1 to nAO or EN2 to nAO; see <u>Figure 8</u>		2	6.5	10	ns
t _{PHL}	HIGH-to-LOW propagation delay	nA to nB; see Figure 4		2	5.5	10	ns
		nBI to nAO; see Figure 5		2	5.5	10	ns
		9BI to 10BOn		2	6	11	ns
		11BI to 11BO	[2]	2	14	21	ns
		5BI to 7BO1 or 6BI to 7BO2; see Figure 7		100	205	350	ns
		EN1 to nAO or EN2 to nAO; see <u>Figure 8</u>		2	6.5	10	ns
t _{PLZ}	LOW to OFF-state propagation delay	nBI to nA (I/O); see Figure 6		2	13	18	ns
		EN1 to 5A (I/O) or EN2 to 6A (I/O); see <u>Figure 9</u>		1	3	7	ns
t _{PZL}	OFF-state to LOW propagation delay	nBI to nA (I/O); see Figure 6		2	12	16	ns
		EN1 to 5A (I/O) or EN2 to 6A (I/O); see <u>Figure 9</u>		2	7	10	ns

12-bit GTL to LVTTL translator with power good control

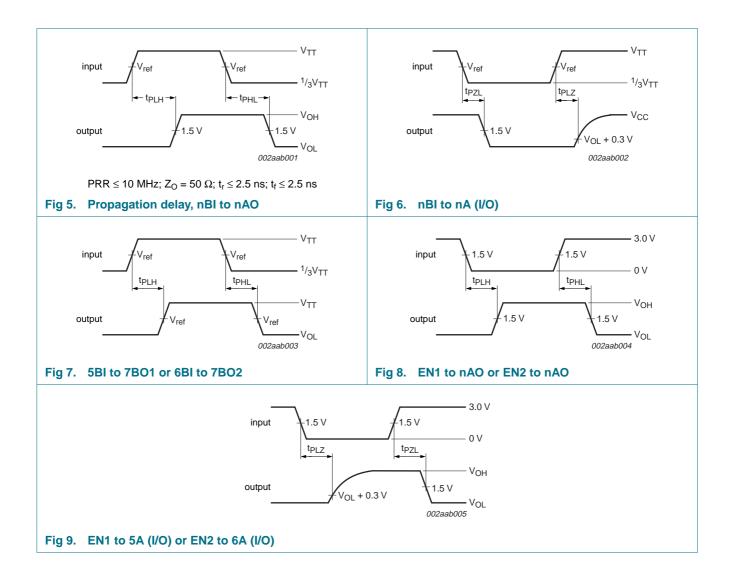
Symbol	Parameter	Conditions	Min	Typ <mark>[1]</mark>	Мах	Unit
V _{ref} = 0.7	6 V; V _{TT} = 1.2 V					
t _{PLH}	LOW-to-HIGH propagation delay	nA to nB; see Figure 4	1	4	8	ns
		nBI to nAO; see Figure 5	2	5.5	10	ns
		9BI to 10BOn	2	6	11	ns
		11BI to 11BO	2	8	13	ns
		5BI to 7BO1 or 6BI to 7BO2; see <u>Figure 7</u>	4	7	12	ns
		EN1 to nAO or EN2 to nAO; see <u>Figure 8</u>	2	6.5	10	ns
t₽HL	HIGH-to-LOW propagation delay	nA to nB; see Figure 4	2	5.5	10	ns
		nBI to nAO; see Figure 5	2	5.5	10	ns
		9BI to 10BOn	2	6	11	ns
		11BI to 11BO	2 2	14	21	ns
		5BI to 7BO1 or 6BI to 7BO2; see <u>Figure 7</u>	100	205	350	ns
		EN1 to nAO or EN2 to nAO; see <u>Figure 8</u>	2	6.5	10	ns
t _{PLZ}	LOW to OFF-state propagation delay	nBI to nA (I/O); see Figure 6	2	13	18	ns
		EN1 to 5A (I/O) or EN2 to 6A (I/O); see <u>Figure 9</u>	1	3	7	ns
t _{PZL}	OFF-state to LOW propagation delay	nBI to nA (I/O); see Figure 6	2	12	16	ns
		EN1 to 5A (I/O) or EN2 to 6A (I/O); see <u>Figure 9</u>	2	7	10	ns


Table 13. Dynamic characteristics ... continued $V_{CC} = 3.3 V \pm 0.3 V$

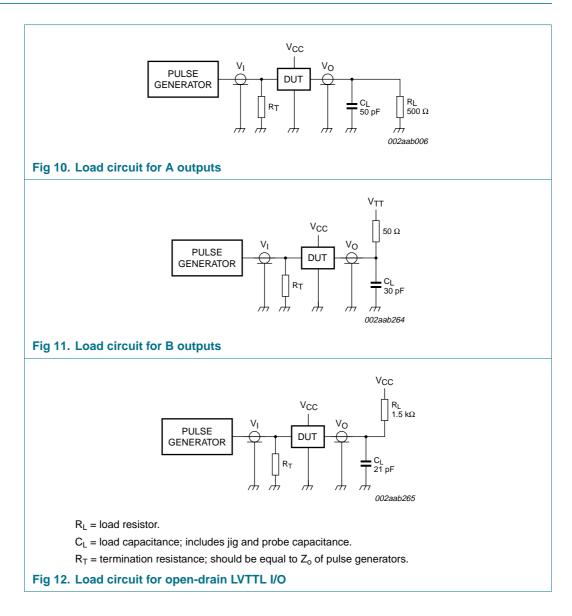
[1] All typical values are at V_{CC} = 3.3 V and T_{amb} = 25 °C.

[2] Includes ~7.6 ns RC rise time of test load pull-up on 11A, 1.5 kΩ pull-up and 21 pF load on 11A has about 23 ns RC rise time.

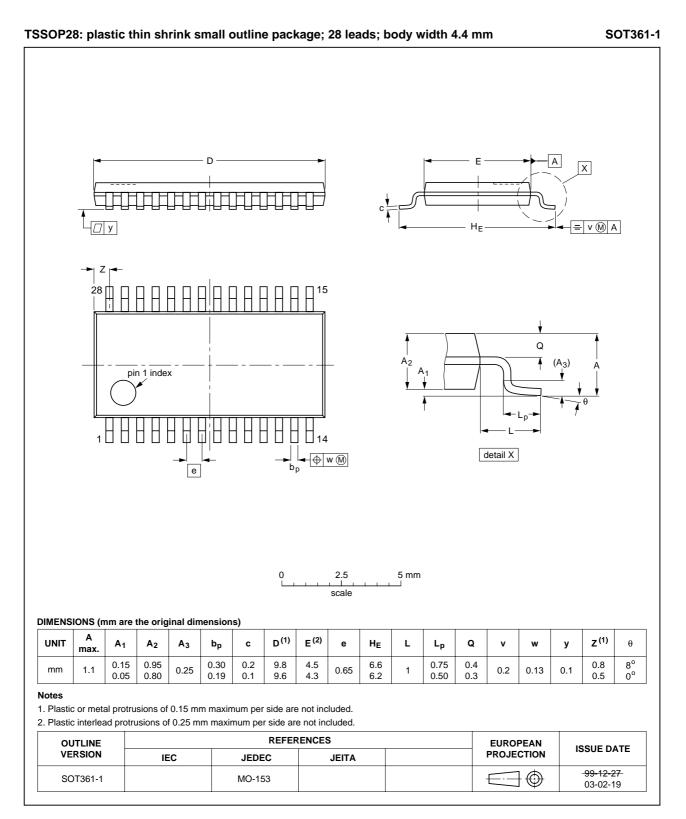
12.1 Waveforms


 V_M = 1.5 V at $V_{CC} \geq 3.0$ V for A ports; V_M = V_{ref} for B ports.

NXP Semiconductors


GTL2007

12-bit GTL to LVTTL translator with power good control


12-bit GTL to LVTTL translator with power good control

13. Test information

12-bit GTL to LVTTL translator with power good control

14. Package outline

Fig 13. Package outline SOT361-1 (TSSOP28)

15. Soldering

This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note *AN10365 "Surface mount reflow soldering description"*.

15.1 Introduction to soldering

Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.

15.2 Wave and reflow soldering

Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following:

- Through-hole components
- Leaded or leadless SMDs, which are glued to the surface of the printed circuit board

Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered, due to an increased probability of bridging.

The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable.

Key characteristics in both wave and reflow soldering are:

- Board specifications, including the board finish, solder masks and vias
- · Package footprints, including solder thieves and orientation
- · The moisture sensitivity level of the packages
- Package placement
- Inspection and repair
- Lead-free soldering versus PbSn soldering

15.3 Wave soldering

Key characteristics in wave soldering are:

- Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave
- · Solder bath specifications, including temperature and impurities

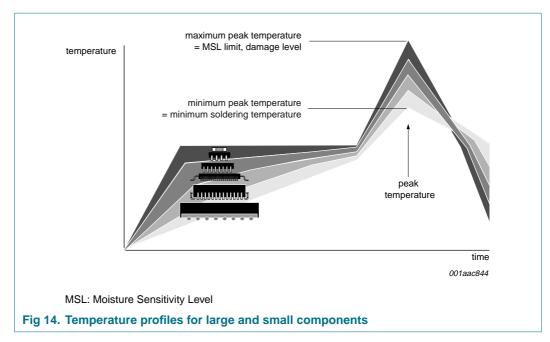
15.4 Reflow soldering

Key characteristics in reflow soldering are:

- Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see <u>Figure 14</u>) than a PbSn process, thus reducing the process window
- Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board
- Reflow temperature profile; this profile includes preheat, reflow (in which the board is heated to the peak temperature) and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic). In addition, the peak temperature must be low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with Table 14 and 15

Table 14. SnPb eutectic process (from J-STD-020C)

Package thickness (mm)	Package reflow temperature (°C)		
	Volume (mm ³)		
	< 350	≥ 350	
< 2.5	235	220	
≥ 2.5	220	220	


Table 15. Lead-free process (from J-STD-020C)

Package thickness (mm)	Package reflow temperature (°C)				
	Volume (mm ³)				
	< 350	350 to 2000	> 2000		
< 1.6	260	260	260		
1.6 to 2.5	260	250	245		
> 2.5	250	245	245		

Moisture sensitivity precautions, as indicated on the packing, must be respected at all times.

Studies have shown that small packages reach higher temperatures during reflow soldering, see Figure 14.

12-bit GTL to LVTTL translator with power good control

For further information on temperature profiles, refer to Application Note AN10365 "Surface mount reflow soldering description".

16. Abbreviations

Table 16. Abbr	reviations
Acronym	Description
CDM	Charged Device Model
CMOS	Complementary Metal Oxide Silicon
CPU	Central Processing Unit
DUT	Device Under Test
ESD	Electrostatic Discharge
GTL	Gunning Transceiver Logic
HBM	Human Body Model
LVTTL	Low Voltage Transistor-Transistor Logic
MM	Machine Model
PRR	Pulse Rate Repetition
TTL	Transistor-Transistor Logic
VRD	Voltage Regulator Down

17. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes		
GTL2007_2	20070216	Product data sheet	-	GTL2007_1		
Modifications:	 The format on NXP Semicor 	of this data sheet has been reconductors.	lesigned to comply with t	he new identity guidelines of		
	 Legal texts h 	ave been adapted to the new	company name where a	ppropriate.		
	 Data sheet descriptive title changed from "13-bit GTL to LVTTL translator with power good control" to "12-bit GTL to LVTTL translator with power good control" 					
	<u>Section 1 "General description"</u> :					
	 4th paragraph re-written 					
	 deleted (old) 5th paragraph 					
	 <u>Section 2 "Features"</u>: added (new) 2nd bullet item 					
	 Figure 1 "Logic diagram of GTL2007": updated symbols to IEC convention 					
	 Figure 3 "Typical application" modified: 					
	 in blocks CPU1 and CPU2, changed "SMI L" to "DISABLE_L" 					
	 in block PLATFORM HEALTH MANAGEMENT: changed "CPU2 IERR_L" to "CPU2 1ERR_L" 					
	• Table 10 "Limiting values": parameter definitions updated; added Table note 3 and Table note 4					
	 <u>Table 13 "Dynamic characteristics</u>": data reorganized (no specification changed) 					
	 <u>Table 16 "Abbreviations"</u>: added "DUT" 					
GTL2007_1 (9397 750 13264)	20050602	Product data sheet	-	-		

18. Legal information

18.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

18.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

18.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of a NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

18.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

19. Contact information

For additional information, please visit: http://www.nxp.com

For sales office addresses, send an email to: salesaddresses@nxp.com

12-bit GTL to LVTTL translator with power good control

20. Contents

1	General description 1
2	Features 1
3	Quick reference data 2
4	Ordering information 2
5	Functional diagram 3
6	Pinning information 4
6.1	Pinning
6.2	Pin description 4
7	Functional description 5
7.1	Function tables 5
8	Application design-in information 7
9	Limiting values
10	Recommended operating conditions 8
11	Static characteristics
12	Dynamic characteristics 10
12.1	Waveforms 11
13	Test information
14	Package outline 14
15	Soldering 15
15.1	Introduction to soldering
15.2	Wave and reflow soldering 15
15.3	Wave soldering 15
15.4	Reflow soldering 16
16	Abbreviations 17
17	Revision history 18
18	Legal information 19
18.1	Data sheet status 19
18.2	Definitions 19
18.3	Disclaimers
18.4	Trademarks 19
19	Contact information 19
20	Contents 20

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2007.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 16 February 2007 Document identifier: GTL2007_2

