Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

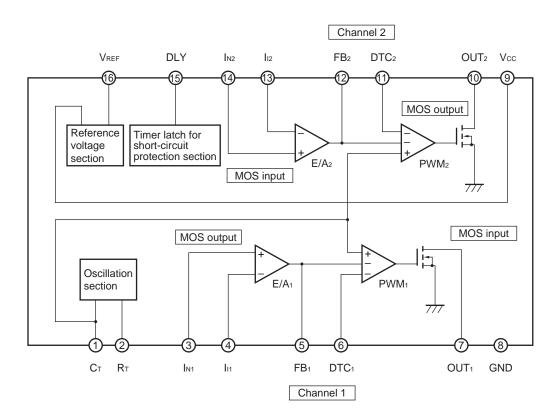
BICMOS INTEGRATED CIRCUIT μ PC1934

DC-DC CONVERTER CONTROL IC

DESCRIPTION

The μ PC1934 is an IC that controls a low-voltage input DC-DC converter. This IC is suitable for an operation with 3-V, 3.3-V input or a lithium ion secondary battery input, because the minimum operation supply voltage is 2.5 V. Because of its wide operating voltage range, it can also be used to control DC-DC converters that use an AC adapter for input.

FEATURES

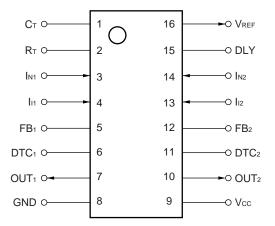

- Low supply voltage: 2.5 V (MIN.)
- Operating voltage range: 2.5 to 20 V (breakdown voltage: 30 V)
- Timer latch circuit for short-circuit protection.
- \bullet Ceramic capacitor with low capacitance (0.1 μ F) can be used for short-circuit protection.
- Open drain outputs (Each of the outputs can be used to control a step-down converter, a step-up converter and an inverted converter.)
- Can control two output channels.

ORDERING INFORMATION

Part Number	Package	
μ PC1934GR-1JG	16-pin plastic SSOP (5.72 mm (225))	
μ PC1934GR-PJG	16-pin plastic TSSOP (5.72 mm (225))	

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

BLOCK DIAGRAM


PIN CONFIGURATION (Top View)

16-pin plastic SSOP (5.72 mm (225))

• μ PC1934GR-1JG

16-pin plastic TSSOP (5.72 mm (225))

• μ PC1934GR-PJG

PIN FUNCTIONS

Pin No.	Symbol	Function	Pin No.	Symbol	Function
1	Ст	Frequency setting capacitor connection	9	Vcc	Power supply
2	R⊤	Frequency setting resistor connection	10	OUT ₂	Channel 2 open drain output
3	l _{N1}	Channel 1 error amplifier non-inverted input	11	DTC ₂	Channel 2 dead time setting
4	l ₁₁	Channel 1 error amplifier inverted input	12	FB ₂	Channel 2 error amplifier output
5	FB ₁	Channel 1 error amplifier output	13	l ₁₂	Channel 2 error amplifier inverted input
6	DTC ₁	Channel 1 dead time setting	14	l _{N2}	Channel 2 error amplifier non-inverted input
7	OUT ₁	Channel 1 open drain output	15	DLY	Delay capacitor connection of short- circuit protection
8	GND	Ground	16	VREF	Reference voltage output

CONTENTS

	1.	ELE	CTRICAL SPECIFICATIONS	5
*	2.	CON	IFIGURATION AND OPERATION OF EACH BLOCK	10
		2.1	Reference Voltage Generator	
		2.2	Oscillator	
		2.3	Under Voltage Lock-out Circuit	11
		2.4	Error Amplifiers	11
		2.5	PWM Comparators	11
		2.6	Timer Latch-Method Short Circuit Protection Circuit	11
		2.7	Output Circuit	11
*	3.	NOT	ES ON USE	12
		3.1	Setting the Output Voltage	12
		3.2	Setting the Oscillation Frequency	13
		3.3	Preventing Malfunction of the Timer Latch-Method Short Circuit Protection Circuit	13
		3.4	Connecting Unused Error Amplifiers	13
		3.5	ON/OFF Control	14
		3.6	Notes on Actual Pattern Wiring	14
*	4.	APP	LICATION EXAMPLE	15
		4.1	Application Example	15
		4.2	List of External Parts	15
	5.	PAC	KAGE DRAWINGS	16
	6.	REC	OMMENDED SOLDERING CONDITIONS	18

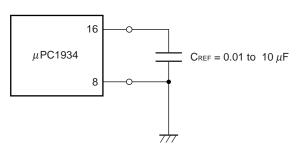
1. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (unless otherwise specified, TA = 25 °C)

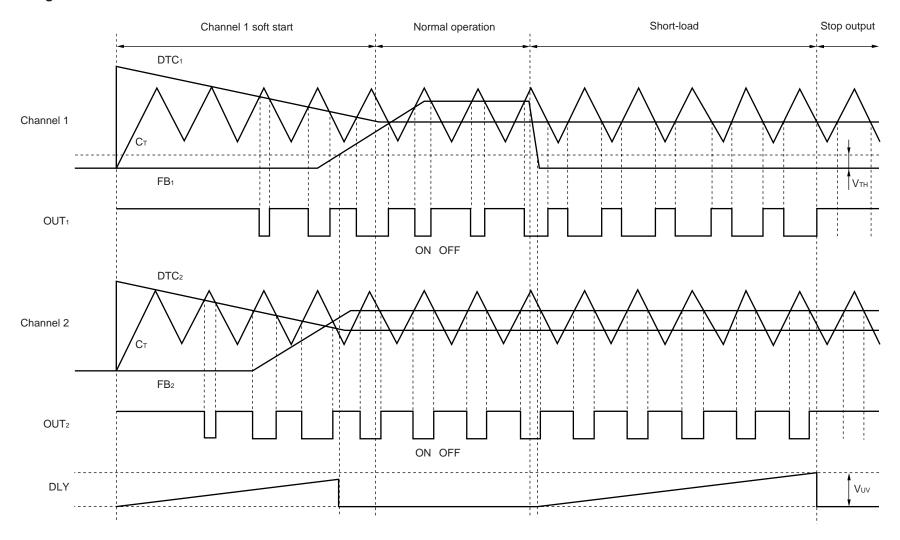
Parameter	Symbol	μ PC1934GR-1JG	μ PC1934GR-PJG	Unit
Supply voltage	Vcc	30		V
Output voltage	Vo	3	V	
Output current (open drain output)	lo	2	mA	
Total power dissipation P		417	400	mW
Operating ambient temperature	TA	-20 to +85		°C
Storage temperature	T _{stg}	-55 to + 150		°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Recommended Operating Conditions

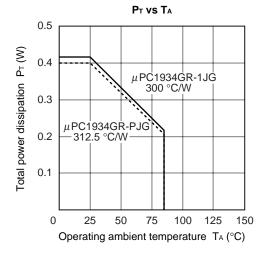

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply voltage	Vcc	2.5		20	V
Output voltage	Vo	0		20	V
Output current	lo			20	mA
Operating temperature	TA	-20		+85	°C
Oscillation frequency	fosc	20		1000	kHz

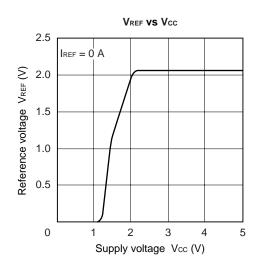
★ Caution The recommended operating range may be exceeded without causing any problems provided that the absolute maximum ratings are not exceeded. However, if the device is operated in a way that exceeds the recommended operating conditions, the margin between the actual conditions of use and the absolute maximum ratings is small, and therefore thorough evaluation is necessary. The recommended operating conditions do not imply that the device can be used with all values at their maximum values.

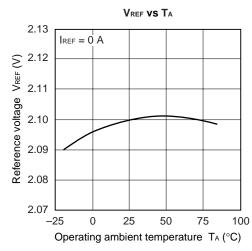

Electrical Characteristics (unless otherwise specified, $T_A = 25$ °C, $V_{CC} = 3$ V, fosc = 100 kHz)

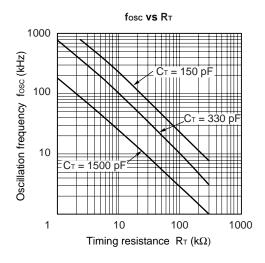
Block	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Under	Start-up voltage	Vcc (L-H)	IREF = 0.1 mA		1.57		V
voltage	Operation stop voltage	Vcc (H-L)	IREF = 0.1 mA		1.5		V
Lock-out	Hysteresis voltage	Vн	IREF = 0.1 mA	30	70		mV
section	Reset voltage (timer latch)	Vccr	IREF = 0.1 mA		1.0		V
Reference	Reference voltage	V _{REF}	IREF = 1 mA	2.0	2.1	2.2	V
Voltage	Line regulation	REGIN	2.5 V≤Vcc≤20 V		2	12.5	mV
section	Load regulation	REG∟	0.1 mA≤lref≤1 mA		2	7.5	mV
	Temperature coefficient	$\Delta V_{REF}/\Delta T$	-20 °C≤Ta≤+85 °C, Iref = 0 A		0.5		%
Oscillation	fosc setting accuracy	Δfosc	$R_T = 11 \text{ k}\Omega, C_T = 330 \text{ pF}$	-15		+15	%
section	fosc total stability	$\Delta fosc$	–20 °C≤T _A ≤+85 °C,	-30		+30	%
			2.5 V≤Vcc≤20 V				
Dead time	Input bias current	Iво			0.4	1.0	μΑ
control	Low-level threshold voltage	V _{TH (L)}	Duty = 100 %		1.2		V
section	High-level threshold voltage	V _{TH (H)}	Duty = 0 %		1.6		V
Error	Input offset voltage	Vio		-10		+10	mV
Amplifier	Input offset current	lio		-100		+100	nA
section	Input bias current	Ів		-100		+100	nA
	Common mode input voltage range	VIMC		0		0.4	V
	Open loop gain	Av	Vo = 0.3 V	70	80		dB
	Unity gain	funity	Vo = 0.3 V		1.5		MHz
	Maximum output voltage (+)	Vow ⁺	lo = -45 μA	1.6	2		V
	Maximum output voltage (-)	Vом	Ιο = 45 μΑ		0.02	0.5	V
	Output sink current	lOsink	V _{FB} = 0.5 V	0.8	1.4		mA
	Output source current	Osource	V _{FB} = 1.6 V		-70	-45	μΑ
Output	Drain cutoff current	ILEAK	Vo = 30 V			100	μΑ
section	Output ON voltage	Vol	R _L = 150 Ω		0.2	0.6	V
	Rise time	tr	R _L = 150 Ω		50		ns
	Fall time	tf	R _L = 150 Ω		60		ns
Short-circuit	Input sense voltage	Vтн		0.5	0.63	0.75	V
Protection	UV sense voltage	Vuv		0.6	0.8	0.95	V
section	Source current on short-circuiting	louv		1.0	1.6	2.5	μΑ
	Delay time	toly	$C_{DLY} = 0.1 \mu F$		50		ms
Overall	Circuit operation current	Icc	Vcc = 3 V	1.4	2.2	3.7	mA

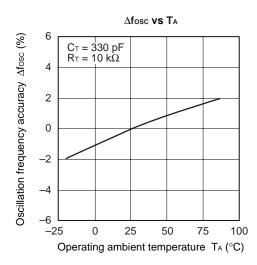
Caution Connect a capacitor of 0.01 to 10 μ F to the $\mbox{V}_{\mbox{\scriptsize REF}}$ pin.

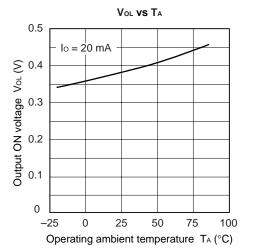


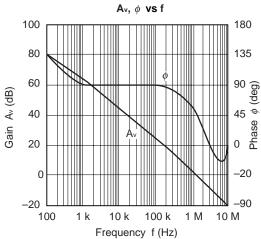

Timing Charts

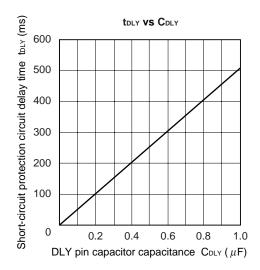


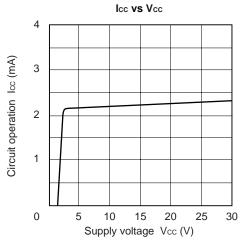

Remark These timings are an example when the channel 1 output has been a short- load. The outputs of channel 1 and 2 are also stopped when a short-circuit protection circuit starts operation by detecting a short- load of channel 2.


Typical Characteristic Curves (unless otherwise specified, Vcc = 3 V, fosc = 100 kHz, TA = 25 °C) (Nominal)









★ 2. CONFIGURATION AND OPERATION OF EACH BLOCK

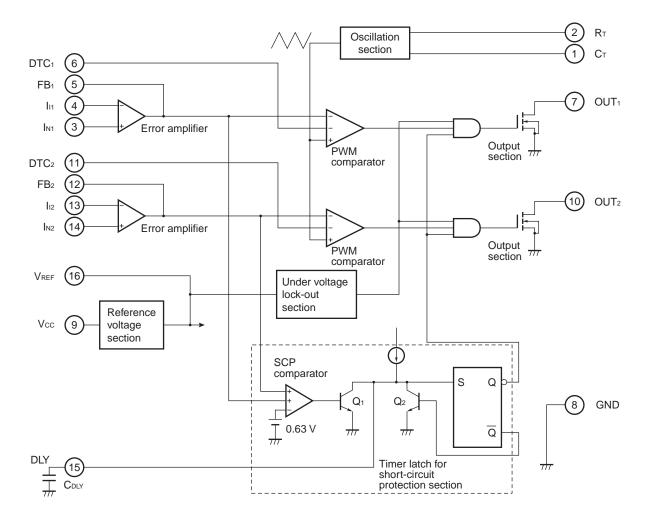


Figure 2-1 Block Diagram

2.1 Reference Voltage Generator

The reference voltage generator is comprised of a band-gap reference circuit, and outputs a temperature-compensated reference voltage (2.1 V). The reference voltage can be used as the power supply for internal circuits, or as a reference voltage, and can also be accessed externally via the VREF pin (pin 16).

2.2 Oscillator

The oscillator self-oscillates if a timing resistor is attached to the R_T pin (pin 2). Also, the oscillator outputs the symmetrical triangular waveform if a timing capacitor is attached to the C_T pin (pin 1). This oscillator waveform is input to the non-inverted input pins of the two PWM comparators to determine the oscillation frequency.

2.3 Under Voltage Lock-out Circuit

The under voltage lock-out circuit prevents malfunctioning of the internal circuits when the supply voltage is low, such as when the supply voltage is first applied, or when the power supply is interrupted. When the voltage is low, the two output transistors are cut off at the same time.

2.4 Error Amplifiers

The circuits of the error amplifiers E/A₁ and E/A₂ are exactly the same. The first stage of the error amplifier is a P-channel MOS transistor input. Be careful of the input voltage ranges (the common mode input voltage ranges are all 0 to 0.4 V (TYP.)).

2.5 PWM Comparators

The output ON duty is controlled according to the outputs of the error amplifiers and the voltage input to the Dead Time Control pin.

A triangular waveform is input to the non-inverted pin, and the error amplifier output and Dead Time Control pin voltage are input to the inverted pins of the PWM comparators. Therefore, the output transistor ON period is the period when the triangular waveform is higher than the error amplifier output and Dead Time Control pin voltage (refer to **Timing Charts**).

2.6 Timer Latch-Method Short Circuit Protection Circuit

When the converter outputs either a channel or both channels drop, the FB outputs of the error amplifiers of those outputs go low. If the FB output goes lower than the timer latch input detection voltage ($V_{TH} = 0.63 \text{ V}$)), then the output of the SCP comparator goes low, and Q_1 goes off.

When Q_1 turns OFF, the constant-current supply charges C_{DLY} via the DLY pin. The DLY pin is internally connected to a flip-flop. When the DLY pin voltage reaches the UV detection voltage ($V_{UV} = 0.8 \text{ V (TYP.)}$), the output Q of the flip-flop goes low, and the output stage of each channel is latched to OFF (refer to **Figure 2-1 Block Diagram**).

Make the power supply voltage briefly less than the reset voltage (VccR, 1.0 V TYP) to reset the latch circuit when the short-circuit protection circuit has operated.

2.7 Output Circuit

The output circuit has an N-channel open-drain output providing an output withstand voltage of 30 V (absolute maximum rating), and an output current of 21 mA (absolute maximum rating).

NEC μ PC1934

★ 3. NOTES ON USE

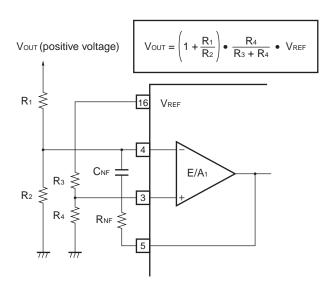

3.1 Setting the Output Voltage

Figure 3-1 illustrates the method of setting the output voltage. The output voltage is obtained using the formula shown in the figure.

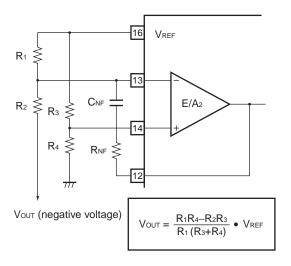

The common mode input voltage range of the error amplifier is 0 to 0.4 V (TYP.) for both the error amplifiers, E/A_1 and E/A_2 . Therefore, select a resistor value that gives this voltage range.

Figure 3-1 Setting the Output Voltage

(1) When setting a positive output voltage using error amplifier E/A₁.

(2) When setting a negative output voltage using error amplifier E/A2.

3.2 Setting the Oscillation Frequency

Choose R_T according to the oscillation frequency (fosc) vs timing resistor (C_T , R_T) characteristics (refer To **Typical Characteristics Curves fosc vs C_T, R_T). The formula below (3-1) gives an approximation of fosc. However, the result of formula 3-1 is only an approximation, and the value must be confirmed in actual operation, especially for high-frequency operation.**

fosc [Hz] $\cong 0.375/(C_T[F] \times R_T[\Omega])$ (3-1)

3.3 Preventing Malfunction of the Timer Latch-Method Short Circuit Protection Circuit

The timer latch short-circuit protection circuit operates when the error amplifier outputs (pin 5 and 12) goes below approximately 0.63 V, and cuts off the output. However, if the rise of the power supply voltage is fast, or if there is noise on the DLY pin (pin 15), the latch circuit may malfunction and cut the output off.

To prevent this, lower the wiring impedance between the DLY pin and the GND pin (pin 8), and avoid applying noise to the DLY pin.

3.4 Connecting Unused Error Amplifiers

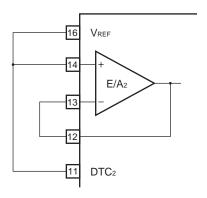

When one of the two control circuits is used, connect the circuit so that the output of the error amplifier of unused circuit is high. Figure 3-2 shows examples of how to connect unused error amplifiers.

Figure 3-2 Examples of Connecting Unused Error Amplifiers

(1) Error amplifier E/A₁

3 + E/A₁ 5 DTC₁

(2) Error amplifier E/A₂

 μ PC1934

3.5 ON/OFF Control

The ON/OFF control method of the output oscillation is to input the ON/OFF signal from ON as shown in Figure 3-3. The PWM converter can be turned ON/OFF by controlling the level of the DTC pin. However, it is necessary to keep the level of the FB output high so that the timer latch does not start when the PWM converter is OFF. In this circuit example, the FB output level is controlled by controlling the level of the Iı pin.

VREF Vo FΒ ≶ **R**₅ SCP comparator DLY (common to each channel) $\stackrel{>}{\geqslant}$ R₂ Q Q3 Error 0.3 V amplifier CDLY 0.63 V VREE To output stage \mathbb{Q}_2 Rз **PWM** comparator DTC ON O Oscillation section R_4 (common to each channel)

Figure 3-3 ON/OFF Control

(1) When ON is high: OFF status

Q1: ON \rightarrow Q2: ON \rightarrow DTC pin: High level \rightarrow Output duty of PWM comparator: 0 %

 $Q_3: ON \rightarrow I_1$ pin: Low level \rightarrow FB output: High level \rightarrow SCP comparator output: High level \rightarrow Q is ON. \rightarrow Timer latch stops.

(2) When ON₃ is low: ON status

 $Q_1: \mathsf{OFF} \to Q_2 \text{ is OFF.} \to C_1 \text{ is charged in the sequence of } [\mathsf{V}_\mathsf{REF} \to C_1 \to \mathsf{R}_4] \to \mathsf{DTC} \text{ pin voltage drops.} \to \mathsf{Soft} \text{ start}$ $Q_3: \mathsf{OFF} \to \mathsf{II} \text{ pin: High level} \to \mathsf{FB} \text{ output: Low level} \to \mathsf{SCP} \text{ comparator output: Low level} \to \mathsf{Q}: \mathsf{OFF}$ $\to \mathsf{Charging} \ \mathsf{C}_\mathsf{DLY} \text{ starts (timer latch start)}.$

Caution Keep the high-level voltage of the DTC pin at 1.6 V or higher and the low-level voltage of the l_I pin within (R6/(R5+R6))•VREF. The maximum voltage that is applied to the l_I pin must be equal to or lower than VREF.

3.6 Notes on Actual Pattern Wiring

When actually carrying out the pattern wiring, it is necessary to separate control-related grounds and power-related grounds, and make sure that they do not share impedances as far as possible. In addition, make sure the high-frequency impedance is lowered using capacitors and other components to prevent noise input to the VREF pin.

★ 4. APPLICATION EXAMPLE

4.1 Application Example

Figure 4-1 shows an example circuit for obtaining ±5 V/50 mA from a +3 V power supply.

V_{IN} = 3 V COM

C: 1 μF

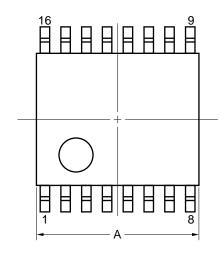
C: 10 μF

Figure 4-1 Chopper-Method Step-up/Inverting-Type Switching Regulator

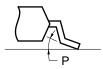
4.2 List of External Parts

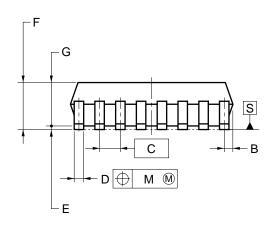
The list below shows the external parts.

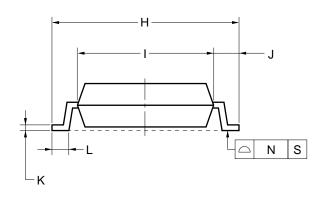
Symbol	Parameter	Function	Part number	Maker	Remark
C ₂	10 μ F	Input stable capacitor	25SC10M	SANYO	OS-CON, SC series
C ₁₄	68 μ F	Output capacitor	20SA68M	SANYO	OS-CON, SA series
D ₁₁		Schottkey diode	D1FS4	SHINDENGEN	
L ₁₁	100 μ H	Choke inductor	636FY-101M	токо	D73F series
Q11, Q12		Buffer transistor	μ PA609T	NEC	Transistor array
Q13		Switching transistor	2SB1572	NEC	
C ₂₁	68 μ F	Output capacitor	20SA68M	SANYO	OS-CON, SA series
D21		Schottkey diode	D1FS4	SHINDENGEN	
L21	100 μ H	Choke inductor	636FY-101M	токо	D73F series
Q21, Q22		Buffer transistor	μ PA609T	NEC	Transistor array
Q23		Switching transistor	2SD2403	NEC	


Table 4-1 List of External Parts

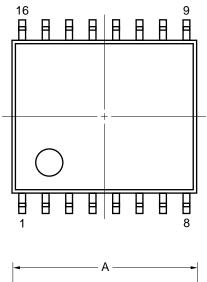
Remarks 1. The capacitors that are not specified in the above list are multilayer ceramic capacitors.


2. The resistors that are not specified in the above list are 1/4W resistors.

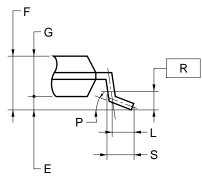

5. PACKAGE DRAWINGS

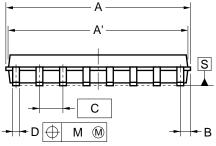

16-PIN PLASTIC SSOP (5.72 mm (225))

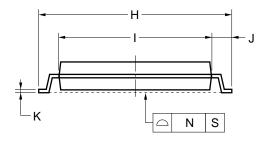
detail of lead end


NOTE

Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.


ITEM	MILLIMETERS
Α	5.2±0.3
В	0.475 MAX.
С	0.65 (T.P.)
D	0.22±0.8
Е	0.125±0.075
F	1.565±0.235
G	1.44
Н	6.2±0.3
I	4.4±0.2
J	0.9±0.2
K	$0.17^{+0.08}_{-0.07}$
L	0.5±0.2
М	0.10
N	0.10
Р	5°±5°


P16GM-65-225B-4


16-PIN PLASTIC TSSOP (5.72 mm (225))

detail of lead end

NOTE

Each lead centerline is located within 0.10 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	5.15±0.15
A'	5.0±0.1
В	0.375 MAX.
С	0.65 (T.P.)
D	$0.24^{+0.06}_{-0.04}$
E	$0.09^{+0.06}_{-0.04}$
F	1.01+0.09
G	0.92
Н	6.4±0.2
ı	4.4±0.1
J	1.0±0.2
K	$0.145^{+0.055}_{-0.045}$
L	0.5
М	0.10
N	0.10
Р	3°+5°
R	0.25
S	0.6±0.15
_	\$16GD_65_D IG_1

S16GR-65-PJG-1

6. RECOMMENDED SOLDERING CONDITIONS

Recommended solder conditions for this product are described below.

For details on recommended soldering conditions, refer to Information Document "Semiconductor Device Mounting Technology Manual" (C10535E).

For soldering methods and conditions other than those recommended, consult NEC.

Surface Mount Type

μ PC1934GR-1JG: 16-pin plastic SSOP (5.72 mm (225))

 μ PC1934GR-PJG: 16-pin plastic TSSOP (5.72 mm (225))

Soldering Method	Soldering Conditions	Symbol of Recommended Conditions
Infrared reflow	Package peak temperature: 235 °C, Time: 30 seconds MAX. (210 °C MIN.), Number of times: 3 MAX.	IR35-00-3
VPS	Package peak temperature: 215 °C, Time: 40 seconds MAX. (200 °C MIN.), Number of times: 3 MAX.	VP15-00-3
Wave soldering	Soldering bath temperature: 260 °C MAX., Time: 10 seconds MAX., Number of times: 1, Preheating temperature: 120 °C MAX. (package surface temperature)	WS60-00-1

Caution Do not use two or more soldering methods in combination.

NOTES FOR BICMOS DEVICES

1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

2 HANDLING OF UNUSED INPUT PINS

Note:

No connection for device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. Input levels of devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF BICMOS DEVICES

Note:

Power-on does not necessarily define initial status of device. Production process of BiCMOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

[MEMO]

- The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
- No part of this document may be copied or reproduced in any form or by any means without the prior written
 consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
 this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
 rights of third parties by or arising from use of a device described herein or any other liability arising from use
 of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
 intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
 the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
 property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety
 measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:
 - "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.
 - Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.