Power MOSFET

-20 V, -15 A, Single P-Channel, μ8FL

Features

- Ultra Low R_{DS(on)} to Minimize Conduction Losses
- μ8FL 3.3 x 3.3 x 0.8 mm for Space Saving and Excellent Thermal Conduction
- ESD Protection Level of 5 kV per JESD22-A114
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

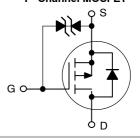
- Battery Switch
- High Side Load Switch
- Optimized for Power Management Applications for Portable Products such as Media Tablets, Ultrabook PCs and Cellphones

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Paran	Symbol	Value	Unit		
Drain-to-Source Voltage	V_{DSS}	-20	V		
Gate-to-Source Voltage	te-to-Source Voltage				V
Continuous Drain		T _A = 25°C	I _D	-15	Α
Current R _{θJA} (Note 1)		T _A = 85°C		-11	
Power Dissipation $R_{\theta JA}$ (Note 1)		T _A = 25°C	P _D	2.3	W
Continuous Drain		T _A = 25°C	I _D	-22	Α
Current R _{θJA} ≤ 10 s (Note 1)	Steady	T _A = 85°C		-16	
Power Dissipation $R_{\theta JA} \le 10 \text{ s (Note 1)}$	State	T _A = 25°C	P _D	4.9	W
Continuous Drain		T _A = 25°C	I _D	-9	Α
Current R _{θJA} (Note 2)		T _A = 85°C		-7	
Power Dissipation R _{θJA} (Note 2)		T _A = 25°C	P _D	0.84	W
Pulsed Drain Current	T _A = 25°0	C, t _p = 10 μs	I _{DM}	-46	Α
Operating Junction and S	T _J , T _{stg}	-55 to +150	°C		
ESD (HBM, JESD22-A1	D (HBM, JESD22-A114)				V
Source Current (Body Di	ode)		I _S	-3	Α
Lead Temperature for So (1/8" from case for 10 s)	ldering Pur	poses	T _L	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

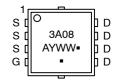
- 1. Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.
- 2. Surface-mounted on FR4 board using the minimum recommended pad size.



ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX	
-20 V	6.7 mΩ @ -4.5 V	–15 A	
-20 V	9.0 mΩ @ -2.5 V	-137	


P-Channel MOSFET

WDFN8 (μ8FL) CASE 511AB

MARKING DIAGRAM

3A08 = Specific Device Code A = Assembly Location

Y = Year
WW = Work Week
Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NTTFS3A08PZTAG	WDFN8 (Pb-Free)	1500 / Tape & Reel
NTTFS3A08PZTWG	WDFN8 (Pb-Free)	5000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Ambient - Steady State (Note 3)	$R_{\theta JA}$	55	°C/W
Junction-to-Ambient - Steady State (Note 4)	$R_{\theta JA}$	148	
Junction-to-Ambient - (t ≤ 10 s) (Note 3)	$R_{\theta JA}$	26	

- Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.
 Surface-mounted on FR4 board using the minimum recommended pad size (40 mm², 1 oz. Cu).

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = 250 μA		-20			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J				6		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = -16 V	T _J = 25°C			-1	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} :	= ±5 V			±5	μΑ
ON CHARACTERISTICS (Note 5)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = -$	-250 μΑ	-0.4		-1.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				3.3		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = -4.5 V	I _D = -12 A		4.9	6.7	mΩ
		V _{GS} = -2.5 V	I _D = -10 A		6.9	9.0	
Forward Transconductance	9 _{FS}	$V_{DS} = -1.5 \text{ V}, I_D = -8 \text{ A}$			62		S
CHARGES AND CAPACITANCES							
Input Capacitance	C _{iss}				5000		pF
Output Capacitance	C _{oss}	$V_{GS} = 0 \text{ V, f} = 1.0 \text{ MHz, } V_{DS} = -10 \text{ V}$			600]
Reverse Transfer Capacitance	C _{rss}				540		
Total Gate Charge	Q _{G(TOT)}				56		nC
Threshold Gate Charge	Q _{G(TH)}	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.7.1		2.0		
Gate-to-Source Charge	Q_{GS}	$V_{GS} = -4.5 \text{ V}, V_{DS} = -10 \text{ V}, I_{D} = -8 \text{ A}$			6.5		
Gate-to-Drain Charge	Q_{GD}				15.4		
SWITCHING CHARACTERISTICS (Note 6)						
Turn-On Delay Time	t _{d(on)}				13		ns
Rise Time	t _r	$V_{GS} = -4.5 \text{ V}, V_{DS}$ $I_{D} = -8 \text{ A}, R_{G} =$	= -10 V,		60		
Turn-Off Delay Time	t _{d(off)}	$I_D = -8 \text{ A}, R_G =$	6.0 Ω		250		
Fall Time	t _f				170		
DRAIN-SOURCE DIODE CHARACTERIS	rics						
Forward Diode Voltage	V_{SD}	$V_{GS} = 0 \text{ V},$ $I_S = -3 \text{ A}$	T _J = 25°C		-0.65	-1.0	V
Reverse Recovery Time	t _{RR}		•		207		ns
Charge Time	t _a	$V_{GS} = 0 \text{ V, } d_{IS}/d_t = 100 \text{ A/}\mu\text{s,}$ $I_S = -6 \text{ A}$			45		1
Discharge Time	t _b				162		1
Reverse Recovery Charge	Q _{RR}				234		nC

- 5. Pulse Test: pulse width = 300 μ s, duty cycle \leq 2%.
- 6. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

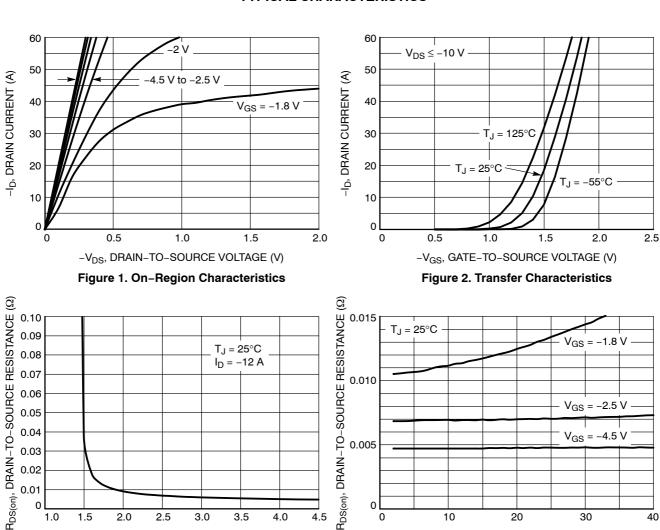


Figure 3. On-Resistance vs. Gate-to-Source Voltage

-V_{GS}, GATE VOLTAGE (V)

3.0

3.5

4.0

2.5

0.02 0.01

1.0

1.6

0.7

1.5

2.0

Gate Voltage 100,000 $V_{GS} = -4.5 \text{ V}$ $I_D = -12.0 A$ $T_J = 125^{\circ}C$ -I_{DSS}, LEAKAGE (nA) 10,000 $T_J = 85^{\circ}C$ 1000 100 -50 -25 0 25 50 100 125 150 2 4 8 10 12 18 20 -V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V) T_J, JUNCTION TEMPERATURE (°C)

0

0

10

Figure 5. On-Resistance Variation with **Temperature**

Figure 6. Drain-to-Source Leakage Current vs. Voltage

20

-ID, DRAIN CURRENT (A)

Figure 4. On-Resistance vs. Drain Current and

30

40

TYPICAL CHARACTERISTICS

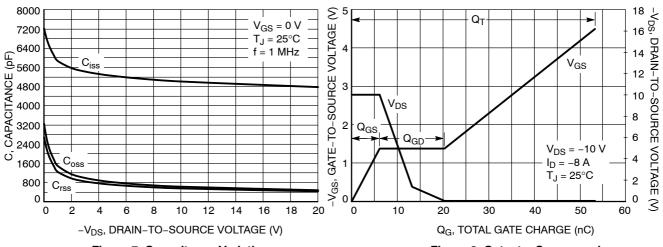


Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

1.0

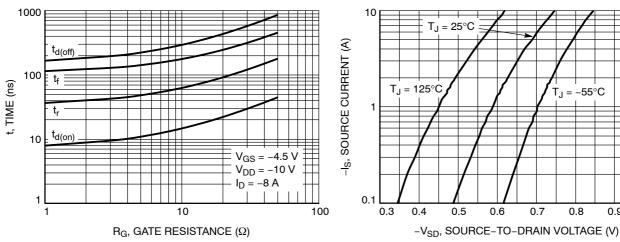


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

400 350 300 250 200 150 100 50 0 1.E-04 1.E-02 1.E+00 1.E+02 SINGLE PULSE TIME (s)

Figure 10. Diode Forward Voltage vs. Current

0.95 0.85 $I_D = -250 \, \mu A$ 0.75 € 0.65 0.55 0.45 0.35 0.25 0.15 -25 0 25 50 75 100 -50 125 150 T_J, TEMPERATURE (°C)

Figure 11. Threshold Voltage

Figure 12. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS

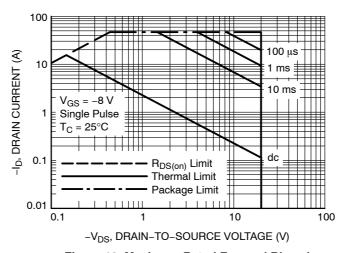
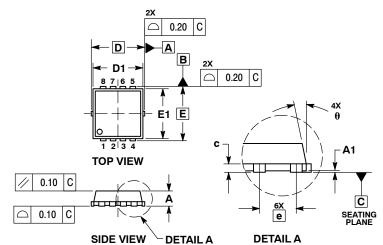
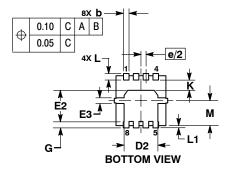


Figure 13. Maximum Rated Forward Biased Safe Operating Area


Figure 14. FET Thermal Response

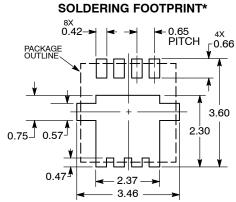
WDFN8 3.3x3.3, 0.65P CASE 511AB ISSUE D


DATE 23 APR 2012

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSION D1 AND E1 DO NOT INCLUDE MOLD FLASH
 PROTRUSIONS OR GATE BURRS.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.70	0.75	0.80	0.028	0.030	0.031	
A1	0.00		0.05	0.000		0.002	
b	0.23	0.30	0.40	0.009	0.012	0.016	
С	0.15	0.20	0.25	0.006	0.008	0.010	
D		3.30 BSC		0.130 BSC			
D1	2.95	3.05	3.15	0.116	0.120	0.124	
D2	1.98	2.11	2.24	0.078	0.083	0.088	
E	3.30 BSC			0.130 BSC			
E1	2.95	3.05	3.15	0.116	0.120	0.124	
E2	1.47	1.60	1.73	0.058	0.063	0.068	
E3	0.23	0.30	0.40	0.009	0.012	0.016	
е		0.65 BSC	;	0.026 BSC			
G	0.30	0.41	0.51	0.012	0.016	0.020	
K	0.65	0.80	0.95	0.026	0.032	0.037	
L	0.30	0.43	0.56	0.012	0.017	0.022	
L1	0.06	0.13	0.20	0.002	0.005	0.008	
M	1.40	1.50	1.60	0.055	0.059	0.063	
θ	0 °		12 °	0 °		12 °	



GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code Α = Assembly Location

= Year WW = Work Week = Pb-Free Package

DIMENSION: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON30561E	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	WDFN8 3.3X3.3, 0.65P		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

^{*}This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales