

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an ad experson

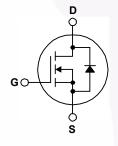
SEMICONDUCTOR

November 2013

FQPF2N70 — N-Channel QFET[®] MOSFET

FQPF2N70

N-Channel QFET[®] MOSFET 700 V, 2.0 A, 6.3 Ω


Description

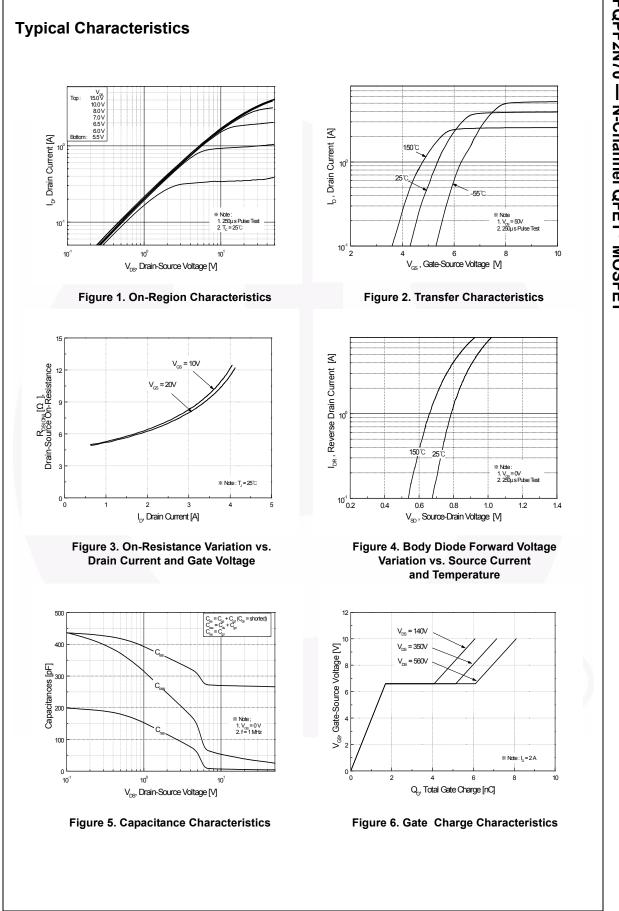
This N-Channel enhancement mode power MOSFET is produced using Fairchild Semiconductor's proprietary planar stripe and DMOS technology. This advanced MOSFET technology has been especially tailored to reduce on-state resistance, and to provide superior switching performance and high avalanche energy strength. These devices are suitable for switched mode power supplies, active power factor correction (PFC), and electronic lamp ballasts.

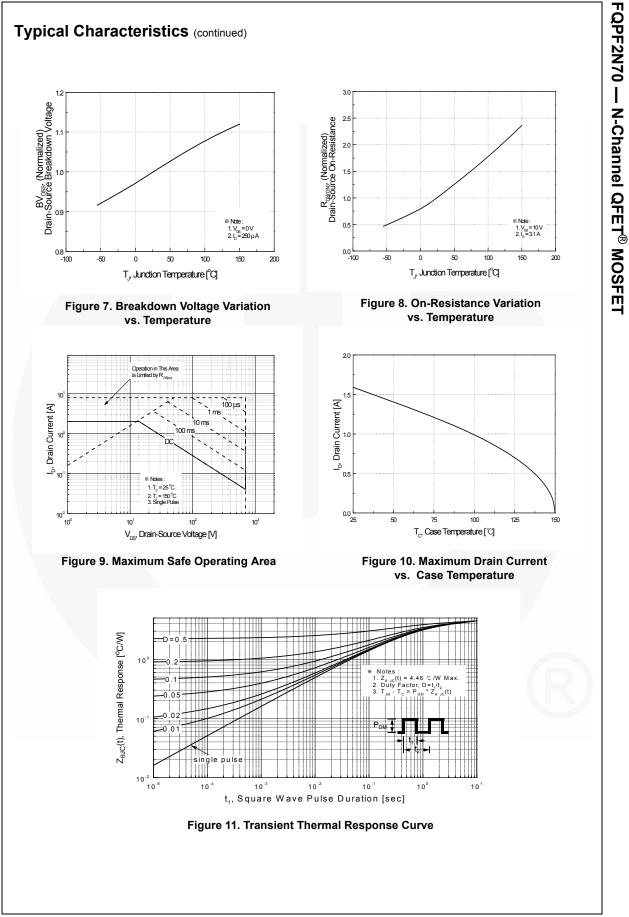
Features

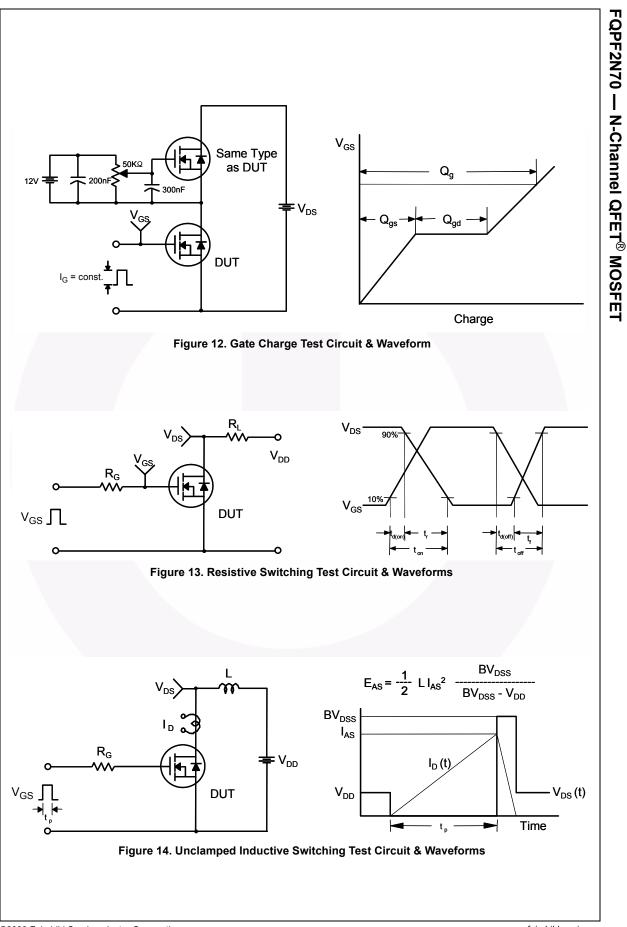
- 2.0 A, 700 V, $R_{DS(on)}$ = 6.3 Ω (Max.) @ V_{GS} = 10 V, I_D = 1.0 A
- Low Gate Charge (Typ. 9 nC)
- Low Crss (Typ. 5 pF)
- 100% Avalanche Tested

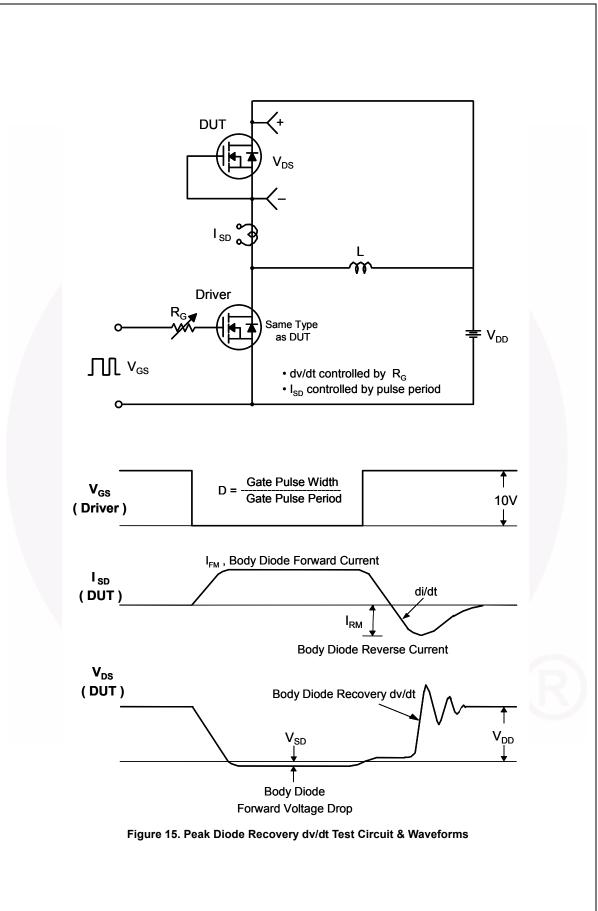
Absolute Maximum Ratings T_c = 25°C unless otherwise noted.

Symbol	Parameter Drain-Source Voltage		FQPF2N70	0 Unit V	
V _{DSS}			700		
I _D	Drain Current	- Continuous (T _C = 25°C)		2.0*	Α
		- Continuous (T _C = 100°C)		1.3*	Α
I _{DM}	Drain Current	- Pulsed	(Note 1)	8.0*	А
V _{GSS}	Gate-Source Voltage		± 30	V	
E _{AS}	Single Pulsed Avalanche Energ	ах	(Note 2)	140	mJ
I _{AR}	Avalanche Current (Not		(Note 1)	2.0	Α
E _{AR}	Repetitive Avalanche Energy (Note		(Note 1)	2.8	mJ
dv/dt	Peak Diode Recovery dv/dt (Note 3)		(Note 3)	4.5	V/ns
P _D	Power Dissipation	(T _C = 25°C)		28	W
		- Derate Above 25°C		0.22	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +150	°C
ΤL	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 seconds		onds	300	°C

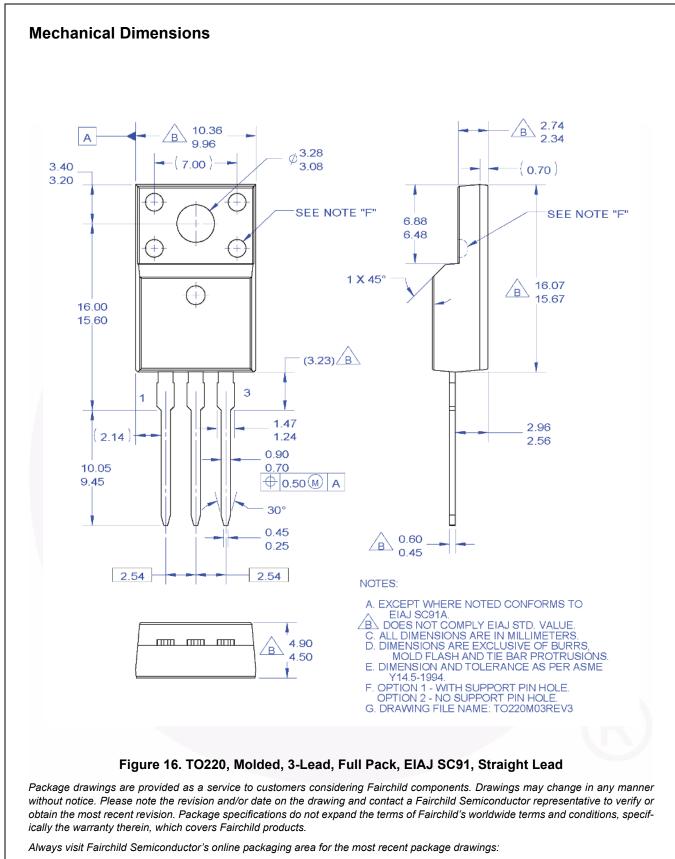

*Drain current limited by maximum junction temperature.


Thermal Characteristics


Symbol	Parameter	FQPF2N70	Unit	
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case, Max.	4.46	4.46 °C/W	
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient, Max.	62.5		


1

FQPF2N70 aracteristics Parameter stics ource Breakdown Volta own Voltage Temperatu own Voltage Temperatu ate Voltage Drain Current ate Voltage Drain Current ody Leakage Current bdy Leakage Current stics meshold Voltage rain-Source istance d Transconductance apacitance Capacitance	age ure ent Forward	Tube °C unless otherwise no Test Conditi V _{GS} = 0 V, I _D = 250 μ I _D = 250 μ A, Referen V _{DS} = 700 V, V _{GS} = 0 V _{DS} = 560 V, T _C = 12 V _{GS} = 30 V, V _{DS} = 0 V _{GS} = -30 V, V _{DS} = 0 V _{DS} = V _{GS} , I _D = 250 V _{GS} = 10 V, I _D = 1.0 μ V _{DS} = 50 V, I _D = 1.0 μ	ions iA iced to 25° C V V V μ A A	Min. 700 3.0 	N/A Typ. 0.4 5.0	50 Max. 10 100 -100 5.0 6.3	Units Units V/°C μA ηA nA NA
Parameter stics ource Breakdown Volta own Voltage Temperate own Voltage Drain Curre ate Voltage Drain Curre ody Leakage Current, I ody Leakage Current, I stics meshold Voltage rain-Source istance d Transconductance acteristics apacitance	age ure ent Forward	Test Condition $V_{GS} = 0 \text{ V}, \text{ I}_D = 250 \text{ µ}$ $I_D = 250 \text{ µA}, \text{ Reference}$ $V_{DS} = 700 \text{ V}, \text{ V}_{GS} = 0$ $V_{DS} = 560 \text{ V}, \text{ T}_C = 12$ $V_{GS} = 30 \text{ V}, \text{ V}_{DS} = 0$ $V_{GS} = -30 \text{ V}, \text{ V}_{DS} = 0$ $V_{DS} = V_{GS}, \text{ I}_D = 250$ $V_{GS} = 10 \text{ V}, \text{ I}_D = 1.0 \text{ P}$	ions iA iced to 25° C V V V μ A A	700 3.0 	 0.4 5.0	 10 100 -100 5.0	V V/°C μA μA nA
Parameter stics ource Breakdown Volta own Voltage Temperate own Voltage Drain Curre ate Voltage Drain Curre ody Leakage Current, I ody Leakage Current, I stics meshold Voltage rain-Source istance d Transconductance acteristics apacitance	age ure ent Forward	Test Condition $V_{GS} = 0 \text{ V}, \text{ I}_D = 250 \text{ µ}$ $I_D = 250 \text{ µA}, \text{ Reference}$ $V_{DS} = 700 \text{ V}, \text{ V}_{GS} = 0$ $V_{DS} = 560 \text{ V}, \text{ T}_C = 12$ $V_{GS} = 30 \text{ V}, \text{ V}_{DS} = 0$ $V_{GS} = -30 \text{ V}, \text{ V}_{DS} = 0$ $V_{DS} = V_{GS}, \text{ I}_D = 250$ $V_{GS} = 10 \text{ V}, \text{ I}_D = 1.0 \text{ P}$	ions iA iced to 25° C V V V μ A A	700 3.0 	 0.4 5.0	 10 100 -100 5.0	V V/°C μA μA nA
ource Breakdown Volta own Voltage Temperatu ate Voltage Drain Curre ody Leakage Current, I ody Leakage Current, I stics meshold Voltage rain-Source istance d Transconductance acteristics apacitance	ure ent Forward	$\begin{split} I_{D} &= 250 \ \mu\text{A}, \ \text{Reference} \\ V_{DS} &= 700 \ \text{V}, \ \text{V}_{GS} = 0 \\ V_{DS} &= 560 \ \text{V}, \ \text{T}_{C} = 12 \\ V_{GS} &= 30 \ \text{V}, \ \text{V}_{DS} = 0 \\ V_{GS} &= -30 \ \text{V}, \ \text{V}_{DS} = 0 \\ V_{DS} &= V_{GS}, \ \text{I}_{D} = 250 \\ V_{GS} &= 10 \ \text{V}, \ \text{I}_{D} = 1.0 \ \text{A} \end{split}$	ced to 25°C 0 V 25°C V V μΑ Α	 3.0	0.4 5.0	 10 100 -100 5.0	V/°C μA μA nA NA
ource Breakdown Volta own Voltage Temperatu ate Voltage Drain Curre ody Leakage Current, I ody Leakage Current, I stics meshold Voltage rain-Source istance d Transconductance acteristics apacitance	ure ent Forward	$\begin{split} I_{D} &= 250 \ \mu\text{A}, \ \text{Reference} \\ V_{DS} &= 700 \ \text{V}, \ \text{V}_{GS} = 0 \\ V_{DS} &= 560 \ \text{V}, \ \text{T}_{C} = 12 \\ V_{GS} &= 30 \ \text{V}, \ \text{V}_{DS} = 0 \\ V_{GS} &= -30 \ \text{V}, \ \text{V}_{DS} = 0 \\ V_{DS} &= V_{GS}, \ \text{I}_{D} = 250 \\ V_{GS} &= 10 \ \text{V}, \ \text{I}_{D} = 1.0 \ \text{A} \end{split}$	ced to 25°C 0 V 25°C V V μΑ Α	 3.0	0.4 5.0	 10 100 -100 5.0	V/°C μA μA nA NA
own Voltage Temperati ent ate Voltage Drain Curre ody Leakage Current, I ody Leakage Current, I stics stics nreshold Voltage rain-Source istance d Transconductance acteristics apacitance	ure ent Forward	$\begin{split} I_{D} &= 250 \ \mu\text{A}, \ \text{Reference} \\ V_{DS} &= 700 \ \text{V}, \ \text{V}_{GS} = 0 \\ V_{DS} &= 560 \ \text{V}, \ \text{T}_{C} = 12 \\ V_{GS} &= 30 \ \text{V}, \ \text{V}_{DS} = 0 \\ V_{GS} &= -30 \ \text{V}, \ \text{V}_{DS} = 0 \\ V_{DS} &= V_{GS}, \ \text{I}_{D} = 250 \\ V_{GS} &= 10 \ \text{V}, \ \text{I}_{D} = 1.0 \ \text{A} \end{split}$	ced to 25°C 0 V 25°C V V μΑ Α	 3.0	0.4 5.0	 10 100 -100 5.0	V/°C μA μA nA NA
ent ate Voltage Drain Curre ody Leakage Current, I ody Leakage Current, I stics meshold Voltage rain-Source istance d Transconductance acteristics apacitance	ent Forward	$V_{DS} = 700 \text{ V}, V_{GS} = 0$ $V_{DS} = 560 \text{ V}, T_{C} = 12$ $V_{GS} = 30 \text{ V}, V_{DS} = 0$ $V_{GS} = -30 \text{ V}, V_{DS} = 0$ $V_{DS} = V_{GS}, I_{D} = 250$ $V_{GS} = 10 \text{ V}, I_{D} = 1.0 \text{ A}$	0 V 25°C V V μΑ Α	 3.0 	 5.0	10 100 -100 5.0	μA μA nA nA
bdy Leakage Current, I bdy Leakage Current, I stics meshold Voltage rain-Source istance d Transconductance acteristics apacitance	Forward	$V_{DS} = 560 \text{ V}, \text{T}_{C} = 12$ $V_{GS} = 30 \text{ V}, \text{V}_{DS} = 0$ $V_{GS} = -30 \text{ V}, \text{V}_{DS} = 0$ $V_{DS} = V_{GS}, $	25°C V V μΑ Α	 3.0 	 5.0	100 100 -100 5.0	μA nA nA
bdy Leakage Current, I bdy Leakage Current, I stics meshold Voltage rain-Source istance d Transconductance acteristics apacitance	Forward	$V_{GS} = 30 V, V_{DS} = 0$ $V_{GS} = -30 V, V_{DS} = 0$ $V_{DS} = V_{GS}, I_D = 250$ $V_{GS} = 10 V, I_D = 1.0 A$	ν ν μΑ Α	 3.0 	 5.0	100 -100 5.0	nA nA V
stics meshold Voltage rain-Source istance d Transconductance acteristics apacitance		$V_{GS} = -30 \text{ V}, V_{DS} = 0$ $V_{DS} = V_{GS}, I_D = 250$ $V_{GS} = 10 \text{ V}, I_D = 1.0 \text{ A}$	μΑ 4	3.0	 5.0	-100 5.0	nA V
stics meshold Voltage rain-Source istance d Transconductance acteristics apacitance	Reverse	$V_{DS} = V_{GS}, I_D = 250$ $V_{GS} = 10 V, I_D = 1.0 A$	μΑ 4	3.0	 5.0	5.0	V
areshold Voltage rain-Source istance d Transconductance acteristics apacitance		V _{GS} = 10 V, I _D = 1.0 Å	4		5.0		
rain-Source istance d Transconductance acteristics apacitance		V _{GS} = 10 V, I _D = 1.0 Å	4		5.0		
istance Transconductance acteristics apacitance						6.3	Ω
acteristics apacitance		V _{DS} = 50 V, I _D = 1.0 A	A			1	
apacitance					2.45		S
•					270	350	pF
Capacitance		V _{DS} = 25 V, V _{GS} = 0 V, f = 1.0 MHz			38	50	pF
e Transfer Capacitance	_	t = 1.0 MHZ			5	7	pF
	-				Ŭ	· ·	pi
aracteristics							
n Delay Time						30	ns
n Rise Time		$V_{DD} = 350 \text{ V}, \text{ I}_{D} = 2.0 \text{ A},$ $R_{G} = 25 \Omega$ (Note 4) $V_{DS} = 560 \text{ V}, \text{ I}_{D} = 2.0 \text{ A},$				80	ns
f Delay Time						50	ns
f Fall Time						70	ns
ate Charge					8.1	11	nC
ource Charge					1.7		nC
rain Charge		1			4.4		nC
	-						
			ngs		1		
m Continuous Drain-S	Source Dio	de Forward Current				2.0	A
m Pulsed Drain-Sourc	e Diode Fo					8.0	A
	Voltage				-	1.4	V
e Recovery Time		00 0	,		260		ns
Recovery Charge		dI _F / dt = 100 A/µs		-	1.09		μC
	ite Charge ource Charge ain Charge Diode Characteri m Continuous Drain-S m Pulsed Drain-Source ource Diode Forward ¹	te Charge ource Charge ain Charge Diode Characteristics an m Continuous Drain-Source Dio m Pulsed Drain-Source Diode F- ource Diode Forward Voltage e Recovery Time	te Charge $V_{DS} = 560 \text{ V}, \text{ I}_D = 2.0 \text{ V}_{GS} = 10 \text{ V}$ surce Charge $V_{GS} = 10 \text{ V}$ ain Charge Diode Characteristics and Maximum Rati m Continuous Drain-Source Diode Forward Currentm Pulsed Drain-Source Diode Forward Currentburce Diode Forward Voltage $V_{GS} = 0 \text{ V}, \text{ I}_S = 2.0 \text{ A}$ Recovery Time $V_{GS} = 0 \text{ V}, \text{ I}_S = 2.0 \text{ A}$	Interview V _{DS} = 560 V, I _D = 2.0 A, burce Charge V _{GS} = 10 V ain Charge (Note 4) Diode Characteristics and Maximum Ratings m Continuous Drain-Source Diode Forward Current m Pulsed Drain-Source Diode Forward Current purce Diode Forward Voltage V _{GS} = 0 V, I _S = 2.0 A Recovery Time	Truin finite V_{DS} = 560 V, I_D = 2.0 A, burce Charge V_{GS} = 10 V ain Charge (Note 4) Diode Characteristics and Maximum Ratings m Continuous Drain-Source Diode Forward Current m Pulsed Drain-Source Diode Forward Current purce Diode Forward Voltage V_{GS} = 0 V, I_S = 2.0 A e Recovery Time V_{GS} = 0 V, I_S = 2.0 A,	Truin finite $V_{DS} = 560 \text{ V}, \text{ I}_D = 2.0 \text{ A},$ 8.1burce Charge $V_{GS} = 10 \text{ V}$ 1.7ain Charge(Note 4)4.4Diode Characteristics and Maximum Ratingsm Continuous Drain-Source Diode Forward Currentm Pulsed Drain-Source Diode Forward Currentm Pulsed Drain-Source Diode Forward Currentource Diode Forward Currente Recovery Time $V_{GS} = 0 \text{ V}, \text{ I}_S = 2.0 \text{ A},$ 260	Truin finite $V_{DS} = 560 \text{ V}, I_D = 2.0 \text{ A},$ 8.1 11 nurce Charge $V_{GS} = 10 \text{ V}$ 1.7 ain Charge $V_{GS} = 10 \text{ V}$ 4.4 Diode Characteristics and Maximum Ratings m Continuous Drain-Source Diode Forward Current 2.0 m Pulsed Drain-Source Diode Forward Current 8.0 purce Diode Forward Voltage $V_{GS} = 0 \text{ V}, I_S = 2.0 \text{ A},$ 1.4 Recovery Time $V_{GS} = 0 \text{ V}, I_S = 2.0 \text{ A},$ 260



6

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TF220-003

FQPF2N70 — N-Channel QFET[®] MOSFET

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

intended to be an exhaustive list of	an such trauemarks.		
AccuPower™ Ax-CAP®* BitSiC™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ CUrrent Transfer Logic™ DEUXPEED® Dual Cool™ EcoSPARK® EfficentMax™ ESBC™ Fairchild® Fairchild Semiconductor® FACT® FAST® FastvCore™ FETBench™ FPS™	F-PFS™ FRFET® Global Power Resource SM Green FPS™ Green FPS™ Grown FPS™ e-Series™ Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ Marking Small Speakers Sound L and Better™ MegaBuck™ MicROCOUPLER™ MicroPak™ MicroPak™ MicroPak2 MicroPak2 MicroP	Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM® STALTIM	Sync-Lock [™] EGENERAL TinyBoost® TinyBuck® TinyCalc [™] TinyLogic® TINYOPTO [™] TinyPower [™] TinyPWM [™] TinyWire [™] TranSiC [™] TriFault Detect [™] TRUECURRENT®* µSerDes [™] UHC® Ultra FRFET [™] VisualMax [™] VotagePlus [™] XS [™]

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC