

(May 2007)

74VHCT373A Octal D-Type Latch with 3-STATE Outputs

Features

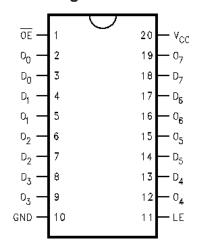
- High speed: t_{PD} = 7.7ns (Typ.) at T_A = 25°C
- High Noise Immunity: V_{IH} = 2.0V, V_{IL} = 0.8V
- Power Down Protection is provided on all inputs and outputs
- Low Power Dissipation: $I_{CC} = 4\mu A$ (Max.) @ $T_A = 25$ °C
- Pin and Function Compatible with 74HCT373

General Description

The VHCT373A is an advanced high speed CMOS octal D-type latch with 3-STATE output fabricated with silicon gate CMOS technology. It achieves the high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation. This 8-bit D-type latch is controlled by a latch enable input (LE) and an output enable input $(\overline{\text{OE}})$. The latches appear transparent to data when latch enable (LE) is HIGH. When LE is LOW, the data that meets the setup time is latched. When the $\overline{\text{OE}}$ input is HIGH, the eight outputs are in a high impedance state.

Protection circuits ensure that 0V to 7V can be applied to the input and output⁽¹⁾ pins without regard to the supply voltage. This device can be used to interface 3V to 5V systems and two supply systems such as battery back up. This circuit prevents device destruction due to mismatched supply and input voltages.

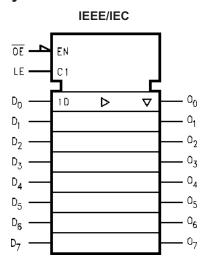
Note:


1. Outputs in OFF-State

Ordering Information

Order Number	Package Number	Package Description
74VHCT373AM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74VHCT373ASJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74VHCT373AMTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Surface mount packages are also available on Tape and Reel. Specify by appending the suffix letter "X" to the ordering number. Pb-Free package per JEDEC J-STD-020B.


Connection Diagram

Pin Description

Pin Names	Description
D ₀ –D ₇	Data Inputs
LE	Latch Enable Input
ŌĒ	Output Enable Input
O ₀ -O ₇	3-STATE Outputs

Logic Symbol

Truth Table

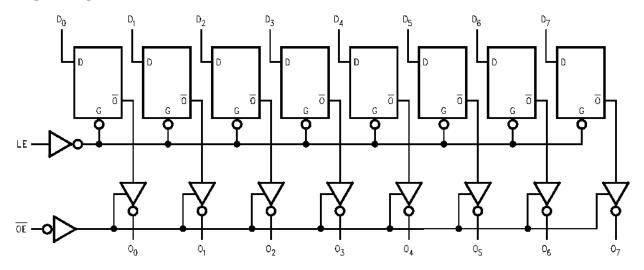
	Inputs	Outputs	
LE	ŌĒ	D _n	O _n
Х	Н	Х	Z
Н	L	L	L
Н	L	Н	Н
L	L	Х	O ₀

H = HIGH Voltage Level

L = LOW Voltage Level

Z = High Impedance

X = Immaterial


 ${\rm O_0} = {\rm Previous} \; {\rm O_0}$ before HIGH-to-LOW transition of Latch Enable

Functional Description

The VHCT373A contains eight D-type latches with 3-STATE standard outputs. When the Latch Enable (LE) input is HIGH, data on the D_n inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW, the latches store the information that was present on the D inputs a setup time preceding the

HIGH-to-LOW transition of LE. The 3-STATE standard outputs are controlled by the Output Enable (\overline{OE}) input. When \overline{OE} is LOW, the standard outputs are in the 2-state mode. When \overline{OE} is HIGH, the standard outputs are in the high impedance mode but this does not interfere with entering new data into the latches.

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	-0.5V to +7.0V
V _{IN}	DC Input Voltage	-0.5V to +7.0V
V _{OUT}	DC Output Voltage	
	Note 2	–0.5V to V _{CC} + 0.5V
	Note 3	-0.5V to +7.0V
I _{IK}	Input Diode Current	–20mA
I _{OK}	Output Diode Current ⁽⁴⁾	±20mA
I _{OUT}	DC Output Current	±25mA
I _{CC}	DC V _{CC} /GND Current	±75mA
T _{STG}	Storage Temperature	–65°C to +150°C
T _L	Lead Temperature (Soldering, 10 seconds)	260°C

Recommended Operating Conditions⁽⁵⁾

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	4.5V to +5.5V
V _{IN}	Input Voltage	0V to +5.5V
V _{OUT}	Output Voltage	
	Note 2	0V to V _{CC}
	Note 3	0V to 5.5V
T _{OPR}	Operating Temperature	-40°C to +85°C
t _r , t _f	Input Rise and Fall Time, V _{CC} = 5.0V ± 0.5V	0ns/V ~ 20ns/V

Notes

- 2. HIGH or LOW state. I_{OUT} absolute maximum rating must be observed.
- 3. When outputs are in OFF-State or when $V_{CC} = 0V$.
- 4. $V_{OUT} < GND$, $V_{OUT} > V_{CC}$ (Outputs Active).
- 5. Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

					Т	_A = 25°	С		–40°C 85°C	
Symbol	Parameter	V _{CC} (V)	Con	Conditions		Тур.	Max.	Min.	Max.	Units
V _{IH}	HIGH Level Input	4.5			2.0			2.0		V
	Voltage	5.5						2.0		
V _{IL}	LOW Level Input	4.5					0.8		0.8	V
	Voltage	5.5					0.8		0.8	
V _{OH}	HIGH Level Output	4.5	$V_{IN} = V_{IH}$	$I_{OH} = -50\mu A$	4.40	4.50		4.40		V
	Voltage		or V _{IL}	$I_{OH} = -8mA$	3.94			3.80		
V _{OL}	LOW Level Output	4.5		$I_{OL} = 50\mu A$		0.0	0.1		0.1	V
	Voltage			$I_{OL} = 8mA$			0.36		0.44	
I _{OZ}	3-STATE Output Off-State Current	5.5	$V_{IN} = V_{IH} \text{ or } V_{IL},$ $V_{OUT} = V_{CC} \text{ or GND}$				±0.25		±2.5	μA
I _{IN}	Input Leakage Current	0–5.5	V _{IN} = 5.5V or GND				±0.1		±1.0	μA
I _{CC}	Quiescent Supply Current	5.5	$V_{IN} = V_{CC}$ or GND				4.0		40.0	μA
I _{CCT}	Maximum I _{CC} /Input	5.5	V _{IN} = 3.4V, Other Input = V _{CC} or GND				1.35		1.50	mA
I _{OFF}	Output Leakage Current (Power Down State)	0.0	V _{OUT} = 5.5	5V			+0.5		+5.0	μА

Noise Characteristics

				$T_A = 25^{\circ}C$		
Symbol	Parameter	V _{CC} (V)	Conditions	Тур.	Limits	Units
V _{OLP} ⁽⁶⁾	Quiet Output Maximum Dynamic V _{OL}	5.0	C _L = 50pF	1.2	1.6	V
V _{OLV} ⁽⁶⁾	Quiet Output Minimum Dynamic V _{OL}	5.0	C _L = 50pF	-1.2	-1.6	V
V _{IHD} ⁽⁶⁾	Minimum HIGH Level Dynamic Input Voltage	5.0	C _L = 50pF		2.0	V
V _{ILD} ⁽⁶⁾	Maximum LOW Level Dynamic Input Voltage	5.0	C _L = 50pF		0.8	V

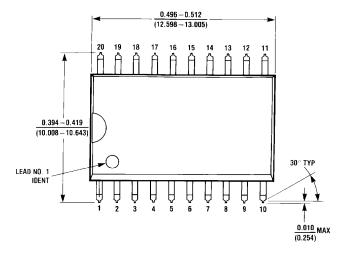
Note:

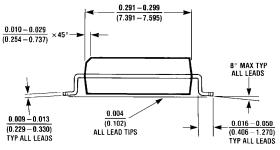
6. Parameter guaranteed by design.

AC Electrical Characteristics

					TA	(= +25	°C	T _A = -	-40°C 85°C	
Symbol	Parameter	V _{CC} (V)	Cond	Conditions		Тур.	Max.	Min.	Max.	Units
t _{PLH} , t _{PHL}	Propagation Delay	5.0 ± 0.5		C _L = 15pF		7.7	12.3	1.0	13.5	ns
	Time (LE to O _n)			C _L = 50pF		8.5	13.3	1.0	14.5	
t _{PLH} , t _{PHL}	Propagation Delay	5.0 ± 0.5		C _L = 15pF		5.1	8.5	1.0	9.5	ns
	Time (D to O _n)			$C_L = 50pF$		5.9	9.5	1.0	10.5	
t _{PZL} , t _{PZH}	3-STATE Output	5.0 ± 0.5	$R_L = 1k\Omega$	$C_L = 15pF$		6.3	10.9	1.0	12.5	ns
	Enable Time			$C_L = 50pF$		7.1	11.9	1.0	13.5	
t _{PLZ} , t _{PHZ}	3-STATE Output Disable Time	5.0 ± 0.5	$R_L = 1k\Omega$	C _L = 50pF		8.8	11.2	1.0	12.0	ns
t _{OSLH} , t _{OSHL}	Output to Output Skew	5.0 ± 0.5	(7)				1.0		1.0	ns
C _{IN}	Input Capacitance		V _{CC} = Open			4	10		10	pF
C _{OUT}	Output Capacitance		V _{CC} = 5.0V			6				pF
C _{PD}	Power Dissipation Capacitance		(8)			25				pF

Notes:


- 7. Parameter guaranteed by design. $t_{OSLH} = |t_{PLH} \max t_{PLH \min}|$; $t_{OSHL} = |t_{PHL \max} t_{PHL \min}|$
- 8. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC} (Opr.) = C_{PD} V_{CC} f_{IN} + I_{CC} / 8 (per F/F).


AC Operating Requirements

			$T_A = +25^{\circ}C$			T _A = -40°C		
Symbol	Parameter	V _{CC} (V)	Min.	Тур.	Max.	Min.	Max.	Units
t _W (H)	Minimum Pulse Width (LE)	5.0 ± 0.5	6.5			8.5		ns
t _S	Minimum Set-Up Time	5.0 ± 0.5	1.5			1.5		ns
t _H	Minimum Hold Time	5.0 ± 0.5	3.5			3.5		ns

Physical Dimensions

Dimensions are in millimeters unless otherwise noted.

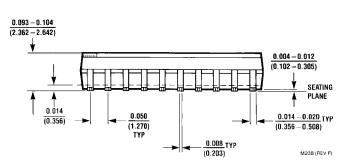


Figure 1. 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Package Number M20B

Physical Dimensions (Continued) Dimensions are in millimeters unless otherwise noted.

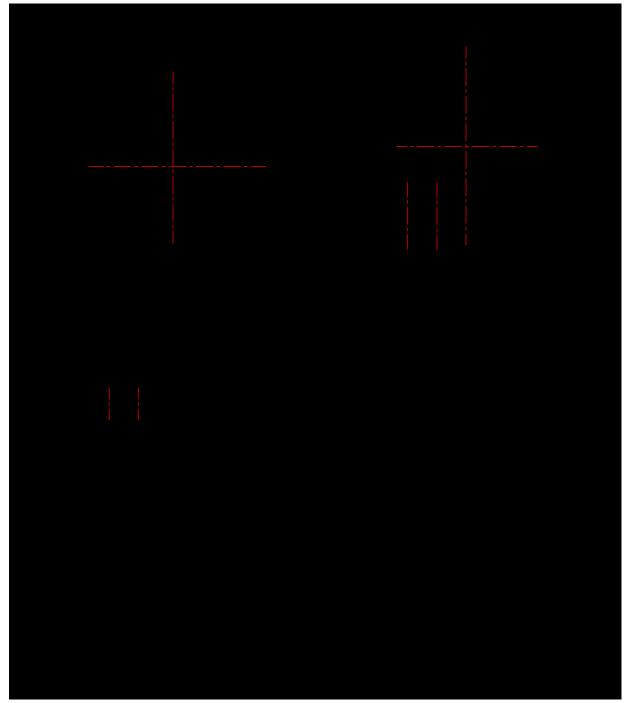


Figure 2. 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package Number M20D

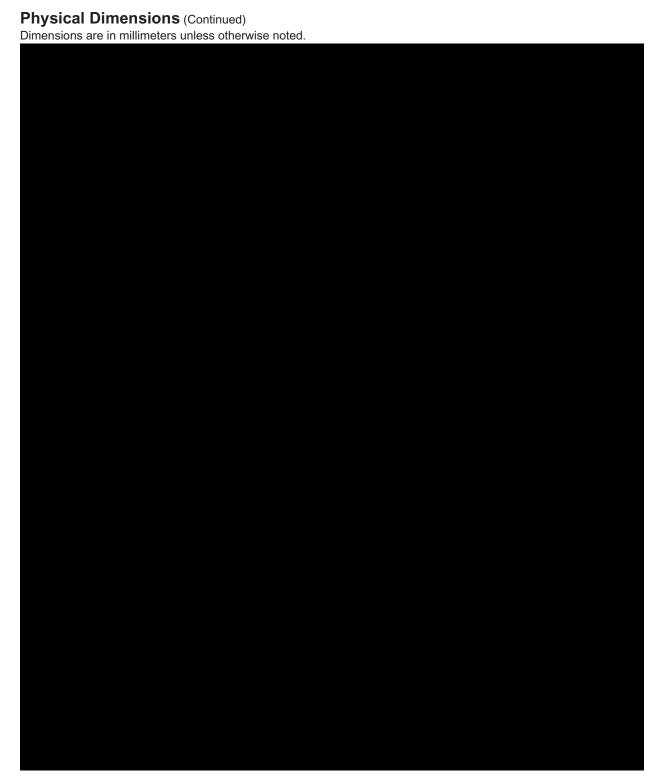
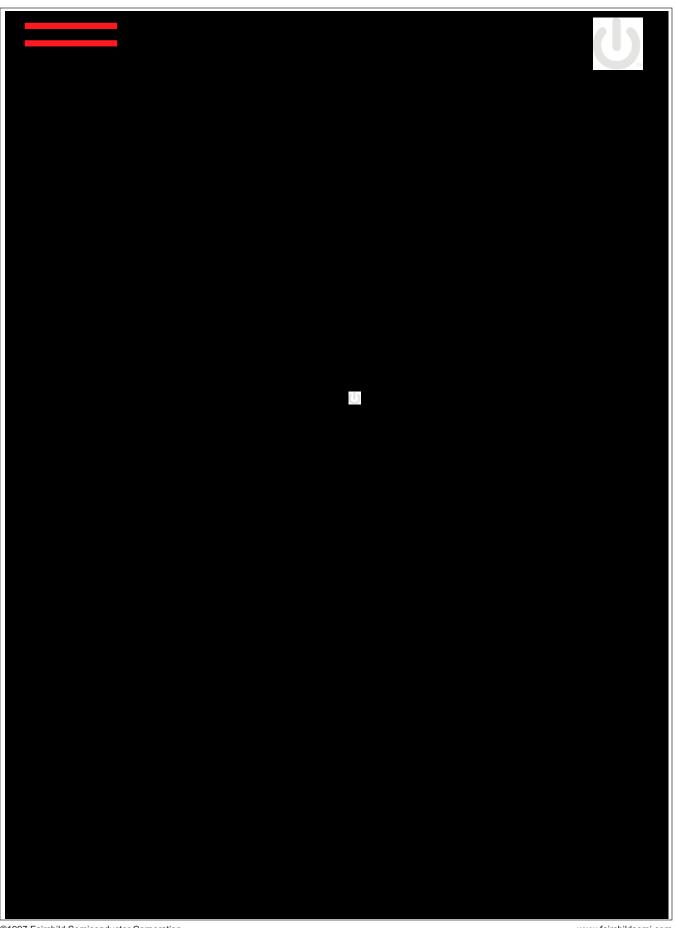



Figure 3. 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC20

