

μ PD720211

ASSP (Two-port USB3.0 Hub Controller)

R19DS0080EJ0400 Rev.4.00 Sep 16, 2015

1. OVERVIEW

The μ PD720211 is a USB 3.0 hub controller that complies with the Universal Serial Bus (USB) Specification Revision 3.0 and operates at up to 5 Gbps. The device incorporates Renesas' market proven design expertise in USB 3.0 interface technologies and market proven USB 2.0 hub core. The device is fully compatible with all prior versions of USB spec and 100% compatible with Renesas' industry standard USB 3.0 host controller. It comes in a small 56-pin QFN package and integrates several commonly required external components, making it ideally suited for applications with limited PCB space. In addition, the μ PD720211 incorporates Renesas' low-power technologies and supports all mainstream battery charging specifications.

1.1 Features

- Compliant with Universal Serial Bus 3.0 Specification Revision 1.0, which is released by USB Implementers Forum, Inc
 - Supports the following speed data rates: Low-speed (1.5 Mbps) / Full-speed (12 Mbps) / High-speed (480 Mbps) / Superspeed (5 Gbps)
 - Supports USB 3.0 link power management (U0/U1/U2/U3)
 - Supports USB 2.0 link power management (LPM: L0/L1/L2/L3)
- Supports two downstream ports
- Supports all VBUS control options
 - Individual or global over-current detection
 - Individual or ganged power control
- Supports USB 3.0/2.0 Compound (non-removable) devices by I/O pin configuration
- Supports clock output (24/12 MHz) for Compound (non-removal) device on downstream ports
- Supports Energy Star and EuP specifications for low-power PC peripheral system
- Single 3.3 V Power Supply
 - On chip Switching Regulator for 1.05 V from 3.3 V input
- System clock: 24 MHz Crystal or Oscillator
- Supports USB Battery Charging Specification Revision 1.2 and other portable devices
 - DCP mode of BC 1.2
 - CDP mode of BC 1.2
 - ACA-Dock function of BC 1.2
 - China Mobile Phone Chargers
 - EU Mobile Phone Chargers
 - Apple iOS products
 - Other major portable devices
- Supports SPI ROM for optional firmware and parameter data
 - UUID supported with ROM Writing Tools
- Small Footprint
 - Small and low pin count package with simple pin assignment for PCB layout
 - Integration of many peripheral components
 - Direct routing of all USB signal traces to connector pins using one layer of the PCB
- Self/Bus-Powered modes can be set by pin strapping
- Integrated termination resistors for USB
- Provides SUSPEND status output

μPD720211 1. OVERVIEW

1.2 Applications

Standalone Hub, Monitor-Hub, Docking Station, Integrated Hub, etc.

1.3 Ordering Information

Part Number	Package	Operating Temperature	Remark
μPD720211K8-611-BAL-A	56-pin QFN (8 × 8)	0 to +70°C	Lead-free product
μPD720211K8-711-BAL-A	56-pin QFN (8 × 8)	−40 to +70°C	Lead-free product

μPD720211 1. OVERVIEW

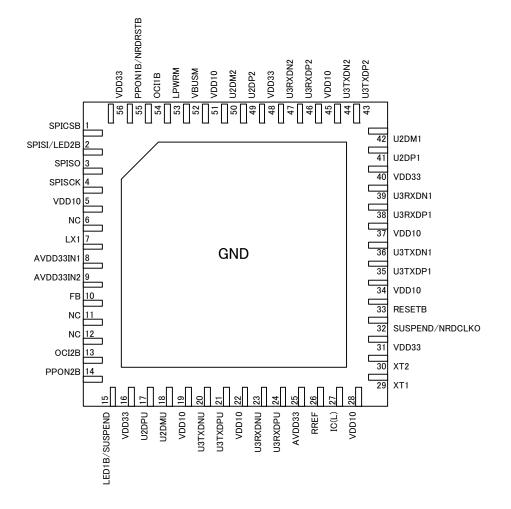
1.4 Block Diagram

D/C/L SW-Regulator (VDD33 → VDD10) → VDD10 → VBUS Switch HS/FS/LS PHY USB HS/FS/LS HS/FS/LS Connector HS/FS/LS SS-PHY US Port DS Port Hub Core Control Control VBUS -**VBUS** Monitor **VBUS** HS/FS/LS PHY USB Control Connector SS-PHY OSC 24MHz CLKOUT 12/24MHz SS SS ➤ VBUS Switch SS US Port DS Port Hub Core Control Control HS/FS/LS PHY USB SPI SPI Connector SS-PHY ROM I/F

Figure 1-1. μ PD720211 Block Diagram

 μ PD720211 1. OVERVIEW

Table 1-1. Terminology


Block Name	Description
SS PHY	SuperSpeed Tx/Rx
HS/FS/LS PHY	High-/Full-/Low-speed transceiver
VBUS Monitor	Monitors the VBUS voltage level of the upstream port.
SS US Port Control	Upstream port control logic for SuperSpeed
HS/FS/LS US Port Control	Upstream port control logic for High-/Full-/Low-speed
SS Hub Core	Central control logic for SS-Hub.
HS/FS/LS Hub Core	Central control logic for HS/FS/LS-Hub.
SS DS Port Control	Downstream port control logic for SuperSpeed
HS/FS/LS DS Port Control	Downstream port control logic for HS/FS/LS
VBUS Control	Controls all the external port power switches
SPI Interface	Connected to external serial ROM which can hold the optional firmware and hub settings
SW-Regulator	Switching regulator control logic to output 1.05 V power from 3.3 V input.
D/C/L	D: Schottky Barrier Diode, C: Capacitor 22 μ F, L: Inductor 4.7 μ H

 μ PD720211 1. OVERVIEW

1.5 Pin Configuration

• **56-pin QFN (8 × 8)**μPD720211K8-611-BAL-A
μPD720211K8-711-BAL-A

Figure 1-2. Pin Configuration of μPD720211 (Top View)

2. PIN FUNCTION

This section describes each pin function.

Strapping information in the tables shows how the pin can be used to configure the functional settings of this controller when the pin is pulled up/down, as detected at the end of chip reset.

2.1 Power Supply

Pin Name	Pin No.	I/O Type	Function
VDD10	5, 19, 22, 28, 34, 37, 45, 51	Power	1.05 V power supply for Core Logic
VDD33	16, 31, 40, 48, 56	Power	3.3 V power supply for IO buffer
AVDD33	25	Power	3.3 V power supply for Analog circuit
AVDD33IN1	8	Power	SW Regulator 3.3 V Input
AVDD33IN2	9	Power	SW Regulator 3.3 V Input
LX1	7	-	SW Regulator 1.05 V Output
FB	10	-	SW Regulator Output Monitor

2.2 Analog Interface

Pin Name	Pin No.	I/O Type	Function
RREF	26	-	Reference Voltage Input for USB 2.0 RREF must be connected to a 1.6 k Ω resistor with a tolerance of +/- 1%. It is strongly recommended to use a single resistor of 1.6 k Ω , versus the combined resistance with multiple resistors to achieve the value and tolerance.

2.3 System Clock

Pin Name	Pin No.	I/O Type	Function
XT1	29	IN	External Oscillator Input Connect to 24 MHz crystal. Alternatively, this pin can accept a 3.3 V Oscillator input.
XT2	30	OUT	External Oscillator Output Connect to 24 MHz crystal. When using single-ended clock input to XT1, this pin should be left open.

2.4 System Interface Pins

Pin Name	Pin No.	I/O Type	Active Level			Functio	n
SUSPEND/NRDCLKO	32			SUSPEND Output or CLKOUT depending on pin strap se of SPICSB and OCI1B. SUSPEND is Suspend state output. 1: in suspend state. 0: not in suspend state. When ACA-Dock function is selected, this pin is used for Dock function. This signal is the control of VBUS. (Low active, Open-dra output) See User's Manual for additional details about ACA-Dock function. [Note] SUSPEND/NRDCLKO output level is Hi-Z till this pin function is configured as SUSPEND output or clock output for non removable device.			
				SPICSB	OCI1B	LED1B/ SUSPEN	
				Low	Low	X	NRDCLKO
				-	High	Х	SUSPEND ACA-Docking function
				Low	Χ	Low	for VBUS control
				High	х	х	Depends on Serial ROM setting (Set NRDCLKO or SUSPEND.Cannot set ACA-Docking function)
VBUSM	52	IN	High	h Upstream Port VBUS Monitor Divide VBUS to 3.3 V and connect to VBUSM			
LPWRM	53	IN	N/A	Local power monitor input 0: Local power is lost. 1: Local power is supplied. This value is set to Self Powered field of Device Status dynamically.			
LED1B/SUSPEND	15	I/O	Low	When the external ROM is used (SPICSB is high) and SUSPEND function is enabled in the ROM Writing Tool, LED1B/SUSPEND is used as SUSPEND function. If the SUSPEND function is not enabled, this pin is not functional (Hi-Z). When ACA-Dock function is selected, this pin is used for ACA Dock function. This signal is the control of RID. (High active, Push-pull outpu See User's Manual for additional details about ACA-Dock function. [Function] Suspend state is shown by the following pin level. 1: in suspend state. 0: not in suspend state. LED1B/ SPICSB SPISI/ Pin Function SUSPEND LED2B High Low Low Reserved Low Low X ACA-Docking function			ne ROM Writing Tool, SPEND function. If the this pin is not functional ed, this pin is used for ACA- ligh active, Push-pull output) etails about ACA-Dock owing pin level. Pin Function Reserved ACA-Docking function for RID control
				High	High	X	SUSPEND or Hi-Z
RESETB	33	IN	Low	Chip Reset I	nput.		

2.5 USB Port Control Pins

Pin Name	Pin No.	I/O Type	Active Level	Function	
OCI1B	54	IN	Low	[Function] Over Current Input. 0: Over-current condition is detected. 1: Non over-current condition is detected. [Pin strapping option] OCI1B Pin Function High Removable device setting and Over current input. Low Non-Removable setting. This pin is used to select non-removable setting.	
OCI2B	13	IN	Low	[Function] Over Current Input 0: Over-current condition is detected. 1: Non over-current condition is detected. [Pin strapping option] OCI2B Pin Function High Removable device setting and Over Current Input. Low Non-Removable setting. This pin is used to select non-removable setting.	
PPON1B/NRDRSTB	55	I/O	Low	[Function] Port Power Control or NRDRSTB (Non-Removable Device Reset) depending on pin strap setting of this pin. PPON1B/NRDRSTB Pin Function High PPON1B Low NRDRSTB PPON1B is a Port Power Control signal 0: Power supply for VBUS is on. 1: Power supply for VBUS is off. NRDRSTB is a reset signal for Non-Removable device. [Pin strapping option] This pin is used for pin strapping options	
PPON2B	14	I/O	Low	This pin is used for pin strapping options. [Function] PPON2B is a Port Power Control signal. 0: Power supply for VBUS is on. 1: Power supply for VBUS is off. [Pin strapping option] This pin is used for pin strapping option: Gang/Individual Power Control of all ports. PPON2B Gang/Individual Mode High Individual Low Gang	

2.6 USB Data Pins

Pin Name	Pin No.	I/O Type	Function
U3TXDN1, U3TXDN2	36, 44	OUT	USB 3.0 Downstream Transmit data D- signal for SuperSpeed
U3TXDNU	20	OUT	USB 3.0 Upstream Transmit data D- signal for SuperSpeed
U3TXDP1, U3TXDP2	35, 43	OUT	USB 3.0 Downstream Transmit data D+ signal for SuperSpeed
U3TXDPU	21	OUT	USB 3.0 Upstream Transmit data D+ signal for SuperSpeed
U3RXDN1, U3RXDN2	39, 47	IN	USB 3.0 Downstream Receive data D- signal for SuperSpeed
U3RXDNU	23	IN	USB 3.0 Upstream Receive data D- signal for SuperSpeed
U3RXDP1, U3RXDP2	38, 46	IN	USB 3.0 Downstream Receive data D+ signal for SuperSpeed
U3RXDPU	24	IN	USB 3.0 Upstream Receive data D+ signal for SuperSpeed
U2DM1, U2DM2	42, 50	I/O	USB 2.0 Downstream D- signal for High-/Full-/Low-speed
U2DMU	18	I/O	USB 2.0 Upstream D- signal for High-/Full-/Low-speed
U2DP1, U2DP2	41, 49	I/O	USB 2.0 Downstream D+ signal for High-/Full-/Low-speed
U2DPU	17	I/O	USB 2.0 Upstream D+ signal for High-/Full-/Low-speed

2.7 SPI Interface

Pin Name	Pin No.	I/O Type	Active Level	Function
SPISCK	4	I/O	N/A	[Function] External serial ROM Clock Output [Pin strapping option] This pin is used for pin strapping option to select U1/U2 function. SPICSB SPISCK U1/U2 Function High X Depends on Serial ROM Setting Low High Enable U1/U2 function Low Disable U1/U2 function
SPICSB	1	I/O	Low	[Function] External serial ROM Chip Select. SPICSB Pin Function High Use External ROM Low Not use External ROM [Pin strapping option] This pin is used for pin strapping option to select whether external ROM is used. And, this pin setting also have an impact for U1/U2 function, LED1B/SUSPEND, SUSPEND/NRDCLKO and SPISI/LED2B. Moreover, it is necessary to set Pin strapping as below depending on ROM address bit length. SPISO SPISI/LED2B LED1B/SUSPEND Function Others 16bit (1) Low High High 24bit (2) (1) Only EEPROM is supported. (2) Only Flash ROM is supported "Others": this means SPISO and SPISI/LED2B should set to different pin setting with 24bit function.
SPISO	3	I/O	N/A	[Function] External serial ROM Data Input (to be connected to Serial Data Output pin of the external ROM). [Pin strapping option] This pin is used for pin strapping option to select Battery Charging (BC) mode when not using Serial ROM. SPISO SPISI/LED2B BC Mode High High SDP High Low CDP + FVO2 (port2) Note1 Low High CDP + Auto(port2) CDP + Auto(port2) Note1 Low Low CDP + Auto(all ports) Note2 [Function] External serial ROM Data Output (to be connected to Serial
SPISI/LED2B	2	I/O	N/A	Data input pin of the external ROM) depending on pin strap setting of SPICSB. SPICSB LED1B/SUSPEND SPISI/LED2B Function High High Low SPISI High High High SPISI Low X Low Reserved [Pin strapping option] This pin is used for pin strapping options.

Notes 1. Only port2 supports battery charging.

2. All removable ports among available ones support battery charging.

2.8 Test Pin

Pin Name	Pin No.	I/O Type	Active Level	Function
IC(L)	27	IN	High	IC(L) pin to be connected to GND
NC	6, 11, 12	N/A	N/A	NC pin to be open.

3. ELECTRICAL SPECIFICATIONS

3.1 Buffer List

Pin Name	Buffer Type	Strap Pin
XT1	3.3 V oscillator interface	
XT2	3.3 V oscillator interface	
	SUSPEND : 3.3 V I _{OLH} = 4 mA output buffer	
SUSPEND/NRDCLKO	NRDCLKO : 3.3 V I _{OLH} = 4 mA output buffer	
	ACA Docking function : 3.3 V I_{OL} = 4 mA open drain buffer	
VBUSM	3.3 V input Schmitt buffer (5 V tolerant)	
LPWRM	3.3 V input Schmitt buffer (5 V tolerant)	
	LED1B: 3.3 V I _{OL} = 12 mA open drain buffer (Note2)	
LED1B/SUSPEND	SUSPEND : 3.3 V I _{OL} = 12 mA output buffer	Yes (Note1)
	ACA Docking function : 3.3 V I _{OL} = 12 mA output buffer	
RESETB	3.3 V input Schmitt buffer	
OCI1B	3.3 V input Schmitt buffer (5 V tolerant)	Yes (Note1)
OCI2B	3.3 V input Schmitt buffer	Yes (Note1)
PPON1B/NRDRSTB	PPON1B: 3.3 V I _{OL} = 4 mA open drain buffer	Yes (Note1)
TT ONTE/NITOTIE	NRDRSTB: 3.3 V I _{OLH} = 4 mA output buffer	
PPON2B	3.3 V I _{OL} = 4 mA open drain buffer	Yes (Note1)
U3TXDP(2:1, U),U3TXDN(2:1, U)	LISP SuperSpeed Sorder (Sorializer Departalizer)	
U3RXDP(2:1, U),U3RXDN(2:1, U)	USB SuperSpeed Serdes (Serializer-Deserializer)	
U2DP(2:1, U),U2DM(2:1, U)	USB Classic interface	
SPISCK	3.3 V I _{OL} = 12 mA output buffer	Yes (Note1)
SPICSB	3.3 V I _{OLH} = 4 mA output buffer	Yes (Note1)
SPISO	3.3 V input buffer	Yes (Note1)
CDICI/I EDOD	SPISI : 3.3 V I _{OL} = 12 mA output buffer	Voc (Note1)
SPISI/LED2B	LED2B: 3.3 V I _{OL} = 12 mA open drain buffer (Note2)	Yes (Note1)
IC(L)	3.3 V input buffer	

Notes 1. The pins used for pin strap setting are input buffer during asserting RESETB and for 3us after de-asserting RESETB.

2. LED function is not supported.

3.2 Terminology

Table 3-1. Terms Used in Absolute Maximum Ratings

Parameter	Symbol	Meaning
Power supply voltage	V _{DD33} , V _{DD10} , AV _{DD33} , AV _{DD33IN1} , AV _{DD33IN2}	Indicates the voltage range within which damage or reduced reliability will not result when power is applied to a VDD pin.
Input voltage	Vı	Indicates voltage range within which damage or reduced reliability will not result when power is applied to an input pin.
Output voltage	Vo	Indicates voltage range within which damage or reduced reliability will not result when power is applied to an output pin.
Output current	I _O	Indicates absolute tolerance values for DC current to prevent damage or reduced reliability when current flows out of or into output pin.
Storage temperature	T _{stg}	Indicates the element temperature range within which damage or reduced reliability will not result while no voltage or current is applied to the device.

Table 3-2. Terms Used in Recommended Operating Range

Parameter	Symbol	Meaning
Power supply voltage	V _{DD33} , V _{DD10} , AV _{DD33} , AV _{DD33IN1} , AV _{DD33IN2}	Indicates the voltage range for normal logic operations occur when GND = 0 V.
High-level input voltage	V _{IH}	Indicates the voltage, which is applied to the input pins of the device, is the voltage indicates that the high level states for normal operation of the input buffer. * If a voltage that is equal to or greater than the "Min." value is applied, the input voltage is guaranteed as high level voltage.
Low-level input voltage	V _{IL}	Indicates the voltage, which is applied to the input pins of the device, is the voltage indicates that the low level states for normal operation of the input buffer. * If a voltage that is equal to or lesser than the "Max." value is applied, the input voltage is guaranteed as low level voltage.
Input rise time	T _{ri}	Indicates the limit value for the time period when an input voltage applied to the input pins of the device rises from 10% to 90%.
Input fall time	T _{fi}	Indicates the limit value for the time period when an input voltage applied to the input pins of the device falls from 90% to 10%.
Operating temperature	T _A	Indicates the ambient temperature range for normal logic operations.

Table 3-3. Term Used in DC Characteristics

Parameter	Symbol	Meaning
Off-state output leakage current	l _{OZ}	Indicates the current that flows from the power supply pins when the rated power supply voltage is applied whena 3-state output has high impedance.
Input leakage current	l _l	Indicates the current that flows when the input voltage is supplied to the input pin.

3.3 Absolute Maximum Ratings

Table 3-4. Absolute Maximum Ratings

Parameter	Symbol	Condition	Rating	Units
Power supply voltage	V _{DD33} , AV _{DD33}		-0.5 to +4.6	V
	V _{DD10}		−0.5 to +1.4	٧
	AV _{DD33IN1} , AV _{DD33IN2}		-0.5 to +4.6	V
Input voltage, 3.3 V buffer	VI	$V_{I} < V_{DD33} + 0.5 V$	−0.5 to +4.6	٧
Output voltage, 3.3 V buffer	Vo	V _O <v<sub>DD33 + 0.5 V</v<sub>	−0.5 to +4.6	٧
USB3.0 differential signals	V _I /V _O	$V_{I}/V_{O} < V_{DD10} + 0.5 V$	−0.5 to +1.4	٧
Input voltage, 5 V tolerant buffer	Vı	V _I < V _{DD33} + 2.5 V	-0.5 to +6.6	V
Output current	lo	4 mA Type	8	mA
	Io	12 mA Type	24	mA
Storage temperature	T _{stg}		-65 to +125	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameters. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded. The ratings and conditions indicated for DC characteristics and AC characteristics represent the quality assurance range during normal operation.

3.4 Recommended Operating Ranges

Table 3-5. Recommended Operating Ranges

Parameter	Symbol	Condition	Min.	Тур.	Max.	Units
Operating voltage With external power source	V _{DD33} , AV _{DD33}		3.0	3.3	3.6	V
·	V _{DD10}		0.9975	1.05	1.1025	V
Operating voltage With on-chip Regulators	AV _{DD33IN1} , AV _{DD33IN2}		3.0	3.3	3.6	V
High-level input voltage	V _{IH}		2.0		V _{DD33} +0.3	V
Low-level input voltage	V _{IL}		-0.3		0.8	V
Input rise time	T _{ri}	Normal Buffer	0		200	ns
		Schmitt Buffer	0		10	ms
Input fall time	T _{fi}	Normal Buffer	0		200	ns
		Schmitt Buffer	0		10	ms
Operating ambient temperature (μPD720211K8-611-BAL-A)	T _A		0		+70	°C
Operating ambient temperature (μPD720211K8-711-BAL-A)	T _A		-40		+70	°C

3.5 DC Characteristics

Table 3-6. DC Characteristics (VDD33 = 3.3 V \pm 10%, VDD10 = 1.05 V \pm 5%)

Parameter	Symbol	Condition	Min.	Max.	Units
Off-state output current	l _{OZ}	$V_I = V_{DD33}$ or GND		±10	μA
Input leakage current	I _I	$V_I = V_{DD33}$ or GND		±10	μА
Low-level output voltage	V _{OL}	$I_{OL} = 0 \text{ mA}$		0.1	V
High-level output voltage	V _{OH}	I _{OH} = 0 mA	V _{DD33} -0.1		V

Table 3-7. USB Interface Block

Parameter	Symbol	Conditions	Min.	Max.	Unit
Output pin impedance	Z _{HSDRV}		40.5	49.5	Ω
Input Levels for Low-/Full-speed:					
High-level input voltage (drive)	V _{IH}		2.0		V
High-level input voltage (floating)	V _{IHZ}		2.7	3.6	V
Low-level input voltage	V _{IL}			0.8	V
Differential input sensitivity	V _{DI}	(D+) - (D-)	0.2		V
Differential common mode range	V _{CM}	Includes V _{DI} range	0.8	2.5	V
Output Levels for Low-/Full-speed:					
High-level output voltage	V _{OH}	RL of 14.25 kΩ to GND	2.8	3.6	V
Low-level output voltage	V _{OL}	RL of 1.425 kΩ to 3.6 V	0.0	0.3	V
SE1	V _{OSE1}		0.8		V
Output signal crossover point voltage	V _{CRS}		1.3	2.0	V
Input Levels for High-speed:					
High-speed squelch detection threshold (differential signal)	V _{HSSQ}		100	150	mV
High-speed disconnect detection threshold (differential signal)	V _{HSDSC}		525	625	mV
High-speed data signaling common mode voltage range	V _{HSCM}		-50	+500	mV
High-speed differential input signaling level	See Figure	3-4			•
Output Levels for High-speed:	•				
High-speed idle state	V _{HSOI}		-10	+10	mV
High-speed data signaling high	V _{HSOH}		360	440	mV
High-speed data signaling low	V _{HSOL}		-10	+10	mV
Chirp J level (differential signal)	V _{CHIRPJ}		700	1100	mV
Chirp K level (differential signal)	V _{CHIRPK}		-900	-500	mV

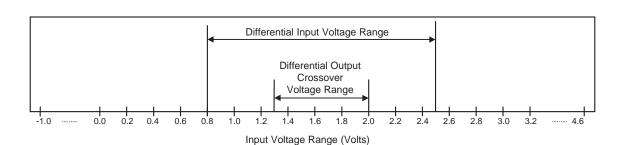


Figure 3-1. Differential Input Sensitivity Range for Low-/Full-speed

Figure 3-2. Full-speed Buffer Voh/loh Characteristics for High-speed Capable Transceiver

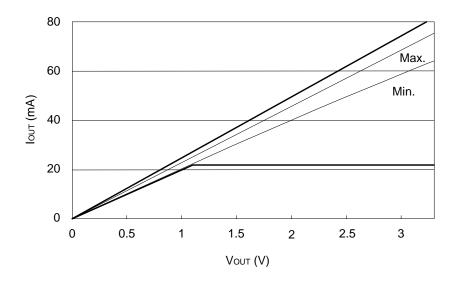
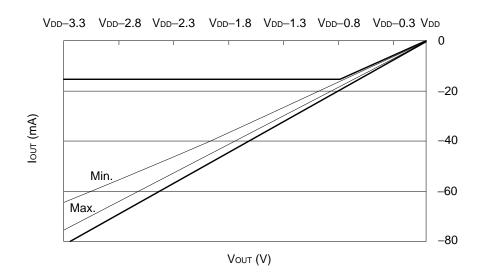



Figure 3-3. Full-speed Buffer Vol/loL Characteristics for High-speed Capable Transceiver

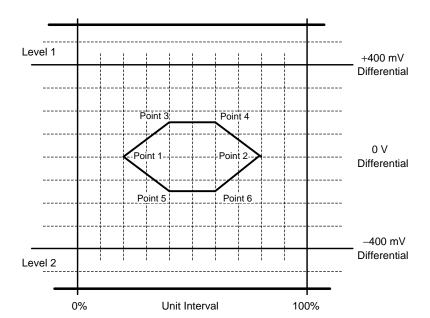


Figure 3-4. Receiver Sensitivity for Transceiver at DP/DM

Figure 3-5. Receiver Measurement Fixtures

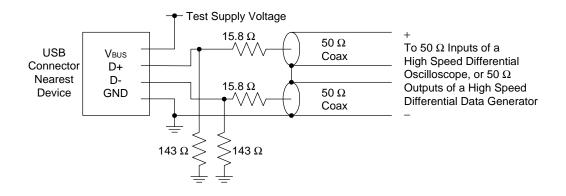


Table 3-8. Cut Off Current of On-chip Regulators

Parameter	Symbol	Condition	Min.	Max.	Units
Cut-off current of on-chip regulator (1.05 V)	I _{cutoff1}	-	1.5		Α

3.6 Pin Capacitance

Table 3-9. Pin Capacitance

Parameter	Symbol	Condition	Min.	Max.	Units
System Interface Pins capacitance	C _{sys}			5	pF
USB Port Control Pins capacitance	C _{Por}			5	pF
SPI interface pin capacitance	C _{SPI}			5	pF

3.7 Sequence for Turning On or Off Power

When the external power source for 1.05 V and 3.3 V power is used, it is recommended that the time difference between the start of power-supply rise (3.3 V or 1.05 V) and the point where both power supplies are stabilized should be within 100 ms, regardless of the order of power sequence. A voltage of $0.1 V_{DD}$ has to be raised to $0.9 V_{DD}$ within the specified time.

When the on-chip LDO and the switching regulator are used, this timing is controlled by the internal circuit as defined here.

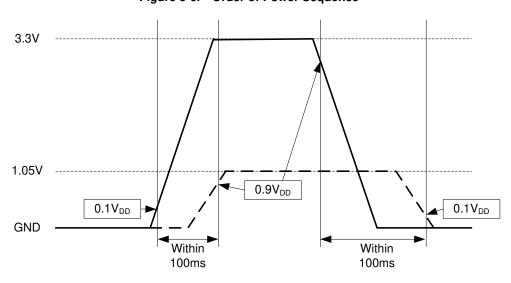


Figure 3-6. Order of Power Sequence

AC Characteristics 3.8

3.8.1 **System Clock**

Table 3-10. System Clock (XT1/XT2) Ratings (VDD33 = 3.3 V \pm 10%, VDD10 = 1.05 V \pm 5%)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Units
Clock frequency	F _{CLK}	Crystal	-100	24	+100	MHz
			ppm		ppm	
Clock duty cycle	T _{DUTY}		40	50	60	%

Remark Required accuracy of crystal or oscillator block includes initial frequency accuracy, the spread of Crystal capacitor loading, supply voltage, temperature and aging, etc.

3.8.2 **Reset and Clock Timing**

Table 3-11. Power on Reset (RESETB) Timings

Parameter	Symbol	Condition	Min.	Max.	Units
Power on reset time	TPONRST	See Figure 3-7	10		ms

Remarks 1. There is no required order for powering-on VDD33, AVDD33, and VDD10.

- 2. All power sources should be stable within 100 ms from the earliest turned on power source.
- 3. RESETB shall be de-asserted after all power sources and the system clock become stable.

Figure 3-7. Power on Reset Timing

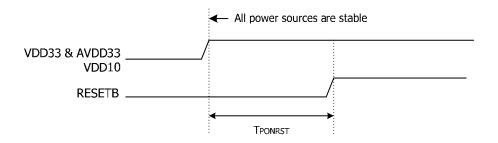


Table 3-12. NRDRST Output and CLKOUT Signal Timing

Parameter	Symbol	Condition	Min.	Max.	Units
Clock out timing after Reset out ends	T _{RSTtoCLK}	See Figure 3-8		300	μS
Reset timing for Non-Removable Device after Clock out starts	T _{CLKtoRSTE}	See Figure 3-8		30	ms

Figure 3-8. NRDRST Output and CLKOUT Signal Timing

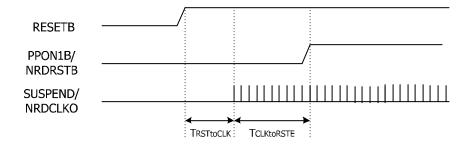


Table 3-13, Figure 3-9 shows the stopping timing of clock output of SUSPNED/NRDCLKO pin. There are three cases for the timing. To stop the clock output, a setting of ROM Writing Tool is needed. Refer to μ PD720211 User's Manual (R19UH0100E) in more detail.

Case 1: Non-removable device of Port 1 is a USB 2.0 device.

After a USB 2.0 non-removable device of Port1 transitions to suspend state and the wait time of "T_{U2CLKOFF}" is satisfied, the clock output stops.

Case 2: Non-removable device of Port 1 is a USB 3.0 device except USB 3.0 hub.

After a USB 3.0 non-removable device of Port1 transitions to suspend state and the wait time of "Tusci Koff" is satisfied, the clock output stops.

Case 3: Non-removable device of Port 1 is a USB 3.0 hub.

After a USB 3.0 non-removable hub of Port1 transitions to suspend state and the wait time of "T_{U2CLKOFF}" and "T_{U3CLKOFF}" is satisfied, the clock output stops.

Parameter	Symbol	Condition	Min.	Max.	Units
Wait time of stopping Clock Output after Non- Removable USB 2.0 Device transitions to Suspend state (Note1)	T _{U2CLKOFF}	See Figure 3-9		50	ms
Wait time of stopping Clock Output after Non- Removable USB 3.0 Device transitions to Suspend state (Note2)	T _{U3CLKOFF}	See Figure 3-9		50	ms

Table 3-13. NRDCLKO Clock Output Stop Timing

- **Notes 1.** If USB 2.0 Port 1 detects any resume signal during this wait time, μ PD720211 doesn't stop the clock output for non-removable device.
 - 2. If USB 3.0 Port 1 detects U3exit during this wait time, μ PD720211 doesn't stop the clock output for non-removable device.

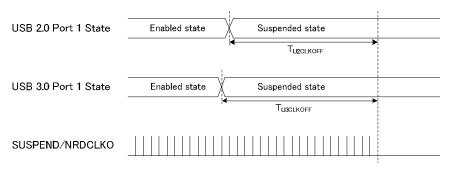


Figure 3-9. NRDCLKO Clock Output Stop Timing

Table 3-14, Figure 3-10, Figure 3-11 and Figure 3-12 shows the starting timing of clock output of SUSPNED/NRDCLKO pin after stopping the clock output. There are three cases for the timing.

Case 1: Non-removable device of Port 1 is a USB 2.0 device.

If " $T_{\text{CLKONbyU2R}}$ " or " $T_{\text{CLKONbyU2T}}$ " or " $T_{\text{CLKONbyU2Sta}}$ " is satisfied, the clock output is initiated.

Case 2: Non-removable device of Port 1 is a USB 3.0 device except USB 3.0 hub.

If " $T_{\text{CLKONbyU3R}}$ " or " $T_{\text{CLKONbyU3T}}$ " is satisfied, the clock output is initiated.

Case 3: Non-removable device of Port 1 is a USB 3.0 hub.

If " $T_{\text{CLKONbyU2R}}$ " or " $T_{\text{CLKONbyU2Sta}}$ " or " $T_{\text{CLKONbyU3R}}$ " or " $T_{\text{CLKONbyU3R}}$ " is satisfied, the clock output is initiated.

	Table 3-14.	NRDCLKO	Clock Ou	itput Start	Timing
--	-------------	---------	----------	-------------	---------------

Parameter	Symbol	Condition	Min.	Max.	Units
Start timing of Clock Output after sending resume signal or detecting resume signal on USB 2.0 Port 1	T _{CLKONbyU2R}	See Figure 3-10		1	ms
Start timing of Clock Output after transitioning to not suspended state on USB 2.0 Port 1	T _{CLKONbyU2T}	See Figure 3-10		1	ms
Start timing of Clock Output after transitioning to not suspended state on USB 2.0 Upstream	T _{CLKONbyU2Sta}	See Figure 3-11		1	ms
Start timing of Clock Output after sending U3exit or detecting U3exit on USB 3.0 Port 1	T _{CLKONbyU3R}	See Figure 3-12		1	ms
Start timing of Clock Output after transitioning to not suspended state on USB 3.0 Port 1	Тськольуизт	See Figure 3-12		1	ms

Figure 3-10. NRDCLKO Clock Output Start Timing by Resuming USB 2.0 Port 1

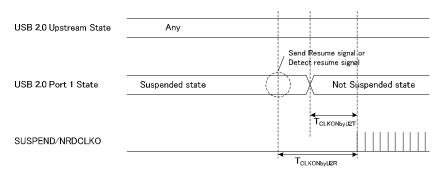
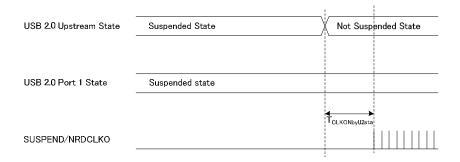



Figure 3-11. NRDCLKO Clock Output Initiate Timing by USB 2.0 Upstream State Transition

USB 3.0 Upstream State

Any

Send U3exit or / Detect U3exit

USB 3.0 Port 1 State

Suspended state

Not Suspended state

TCLKONbyU3R

Figure 3-12. NRDCLKO Clock Output Initiate Timing by Resuming USB 3.0 Port 1

3.8.3 USB3.0 SuperSpeed Interface – Differential Transmitter (TX) Specifications

(Refer to Universal Serial Bus 3.0 Specification Revision 1.0 for more information)

Table 3-15. Transmitter Normative Electrical Parameters

Parameter	Symbol	Min.	Max.	Units
Unit Interval	UI	199.94	200.06	ps
Differential p-p Tx voltage swing	V _{TX-DIFF-PP}	0.8	1.2	V
Tx de-emphasis	V _{TX-DE-RATIO}	3.0	4.0	dB
DC differential impedance	R _{TX-DIFF-DC}	72	120	Ω
The amount of voltage change allowed during Receiver Detection	VTX-RCV-DETECT		0.6	V
AC Coupling Capacitor	C _{AC-COUPLING}	75	200	nF
Maximum slew rate	tcdr-slew-max		10	ms/s

Table 3-16. Transmitter Informative Electrical Parameters

Parameter	Symbol	Min.	Max.	Units
Deterministic min pulse	tmin-pulse-dj	0.96		UI
Tx min pulse	tmin-pulse-tj	0.90		UI
Transmitter Eye	t _{TX-EYE}	0.625		UI
Tx deterministic jitter	t _{TX-DJ-DD}		0.205	UI
Tx input capacitance for return loss	C _{TX-PARASITIC}		1.25	pf
Transmitter DC common mode impedance	R _{TX-DC}	18	30	Ω
Transmitter short-circuit current limit	I _{TX-SHORT}		60	mA
Transmitter DC common-mode voltage	V _{TX-DC-CM}	0	2.2	V
Tx AC common mode voltage	V _{TX-CM-AC-PP-ACTIVE}		100	mVp-p
Absolute DC Common Mode Voltage between U1 and U0	V _{TX-CM-DC-ACTIVE} -		200	mV
Electrical Idle Differential Peak- Peak Output voltage	V _{TX-IDLE-DIFF-AC-pp}	0	10	mV
DC Electrical Idle Differential Output Voltage	V _{TX-IDLE-DIFF-DC}	0	10	mV

3.8.4 USB3.0 SuperSpeed Interface – Differential Receiver (RX) Specifications

(Refer to Universal Serial Bus 3.0 Specification Revision 1.0 for more information)

Table 3-17. Receiver Normative Electrical Parameters

Parameter	Symbol	Min.	Max.	Units
Unit Interval	UI	199.94	200.06	ps
Receiver DC common mode impedance	R _{RX-DC}	18	30	Ω
DC differential impedance	R _{RX-DIFF-DC}	72	120	Ω
DC Input CM Input Impedance for V>0 during Reset of Power down	Zrx-high-imp-dc-pos	25k		Ω
LFPS Detect Threshold	V _{RX-LFPS-DET-DIFF-p-p}	100	300	mV

Table 3-18. Receiver Informative Electrical Parameters

Parameter	Symbol	Min.	Max.	Units
Differential Rx peak-to-peak voltage	V _{RX-DIFF-PP-POST-EQ}	30		mV
Max Rx inherent timing error	T _{RX-Tj}		0.45	UI
Max Rx inherent deterministic timing error	T _{RX-DJ-DD}		0.285	UI
Rx input capacitance for return loss	CRX-PARASITIC		1.1	pF
Rx AC common mode voltage	V _{RX-CM-AC-P}		150	mVPeak
Rx AC common mode voltage during the U1 to U0 transition	V _{RX-CM-DC-ACTIVE-IDLE-} DELTA-P		200	mVPeak

3.8.5 USB2.0 Interface

Table 3-19. USB Interface (1 of 4)

	1	T			İ
Parameter	Symbol	Conditions	Min.	Max.	Unit
Low-speed Electrical Characteristics					
Rise time (10% to 90%)	tlr	C _L = 200 pF to 600 pF	75	300	ns
Fall time (90% to 10%)	tlf	C _L = 200 pF to 600 pF	75	300	ns
Differential rise and fall time matching	t LRFM	(tlr/tlf) Note	80	125	%
Low-speed data rate	t ldraths	Average bit rate	1.49925	1.50075	Mbps
Downstream facing port source jitter total (including frequency tolerance) (Figure 3-19):			0.5	.05	
To next transition For paired transitions	tDDJ1		–25 –14	+25 +14	ns ns
Downstream facing port differential receiver jitter total (including frequency tolerance) (Figure 3-19): To next transition	twn1		-152	+152	ns
For paired transitions	tujr2		-200	+200	ns
Source SE0 interval of EOP (Figure 3-18)	t LEOPT		1.25	1.5	μS
Receiver SE0 interval of EOP (Figure 3-18)	t LEOPR		670		ns
Width of SE0 interval during differential transition	t LST			210	ns
Hub differential data delay (Figure 3-15)	t LHDD			300	ns
Hub differential driver jitter (including cable) (Figure 3-15):					
Downstream facing port To next transition For paired transitions	tldhji tldhj2		-45 -15	+45 +15	ns ns
Upstream facing port To next transition For paired transitions	tluhu1 tluhu2		-45 -45	+45 +45	ns ns
Data bit width distortion after SOP (Figure 3-15)	tlsop		-60	+60	ns
Hub EOP delay relative to thDD (Figure 3-16)	t leopd		0	200	ns
Hub EOP output width skew (Figure 3-16)	tlhesk		-300	+300	ns
Full-speed Electrical Characteristics					
Rise time (10% to 90%)	trr	C_L = 50 pF, Rs = 36 Ω	4	20	ns
Fall time (90% to 10%)	trr	C_L = 50 pF, Rs = 36 Ω	4	20	ns
Differential rise and fall time matching	t FRFM	(tfr/tff)	90	111.11	%
Full-speed data rate	t fdraths	Average bit rate	11.9940	12.0060	Mbps
Frame interval	t FRAME		0.9995	1.0005	ms

Note Excluding the first transition from the Idle state.

Table 3-20. USB Interface (2 of 4)

Parameter	Symbol	Conditions	Min.	Max.	Unit
Full-speed Electrical Characteristics (Conti	nued)				
Consecutive frame interval jitter	t RFI	No clock adjustment		42	ns
Source jitter total (including frequency tolerance) (Figure 3-17): To next transition For paired transitions	to.11	Note	-3.5 -4.0	+3.5 +4.0	ns ns
Source jitter for differential transition to SE0 transition (Figure 3-18)	tfDEOP		-2	+5	ns
Receiver jitter (Figure 3-19): To Next Transition For Paired Transitions	tura tura		-18.5 -9	+18.5 +9	ns ns
Source SE0 interval of EOP (Figure 3-18)	t feopt		160	175	ns
Receiver SE0 interval of EOP (Figure 3-18)	treopr		82		ns
Width of SE0 interval during differential transition	test			14	ns
Hub differential data delay (Figure 3-15) (with cable) (without cable)	tHDD1 tHDD2			70 44	ns ns
Hub differential driver jitter (including cable) (Figure 3-15): To next transition For paired transitions	tнол1 tнол2		-3 -1	+3 +1	ns ns
Data bit width distortion after SOP (Figure 3-15)	trsop		-5	+5	ns
Hub EOP delay relative to thdd (Figure 3-16)	t FEOPD		0	15	ns
Hub EOP output width skew (Figure 3-16)	trhesk		-15	+15	ns
High-speed Electrical Characteristics					
Rise time (10% to 90%)	thsr		500		ps
Fall time (90% to 10%)	thsf		500		ps
Driver waveform	See Figure	3-13.			
High-speed data rate	t hsdrat		479.760	480.240	Mbps
Microframe interval	thsfram		124.9375	125.0625	μS
Consecutive microframe interval difference	thsrfi			4 High- speed	Bit times
Data source jitter	See Figure	3-13.			
Receiver jitter tolerance	See Figure	3-4.			
Hub data delay (without cable)	thshdd			36 High- speed+4 ns	Bit times
Hub data jitter	See Figure	3-4, Figure 3-13.	•	•	
Hub delay variation range	thshdv			5 High- speed	Bit times

Note Excluding the first transition from the Idle state.

<R>

Table 3-21. USB Interface (3 of 4)

Parameter	Symbol	Conditions	Min.	Max.	Unit
Hub Event Timings					
Time to detect a downstream facing port connect event (Figure 3-21): Awake hub Suspended hub	†DCNN		2.5 2.5	2000 12000	he Tre
Time to detect a disconnect event at a hub's downstream facing port (Figure 3-20)	todis		2.0	2.5	μS
Duration of driving resume to a downstream port (only from a controlling hub)	torsmon		20		ms
Time from detecting downstream resume to rebroadcast	tursm			1.0	ms
Duration of driving reset to a downstream facing port (エラー! 参照元が見つかりません。 3-22)	tdrst	Only for a SetPortFeature (PORT_RESET) request	10	20	ms
Time to detect a long K from upstream	turlk		2.5	100	μS
Time to detect a long SE0 from upstream	turlse0		2.5	10000	μS
Duration of repeating SE0 upstream (for Low-/Full-speed repeater)	turpse0			23	FS Bit times
Inter-packet delay (for High-speed) of packets traveling in same direction	thsipdsd		88		Bit times
Inter-packet delay (for High-speed) of packets traveling in opposite direction	thsipdod		8		Bit times
Inter-packet delay for device/root hub response with detachable cable for High-speed	thsrspipd1			192	Bit times
Time of which a Chirp J or Chirp K must be continuously detected (filtered) by hub or device during Reset handshake	t FILT		2.5		μS
Time after end of device Chirp K by which hub must start driving first Chirp K in the hub's chirp sequence	twтрсн			100	μS
Time for which each individual Chirp J or Chirp K in the chirp sequence is driven downstream by hub during reset	tоснвіт		40	60	μS
Time before end of reset by which a hub must end its downstream chirp sequence	tDCHSE0		100	500	μS
Period of idle bus before device can initiate resume	twrsм		5		ms
Duration of driving resume upstream	torsmup		1	15	ms

<R>

Table 3-22. USB Interface (4 of 4)

Parameter	Symbol	Conditions	Min.	Max.	Unit
Hub Event Timings (Continued)	•			•	•
Time to detect a reset from upstream for non High-speed capable devices	t DETRST		2.5	10000	μS
Inter-packet delay for Full-speed	tiPD		2		Bit times
Inter-packet delay for device response with detachable cable for Full-speed	trspipd1			6.5	Bit times
SetAddress() completion time	tdsetaddr			50	ms
Time to complete standard request with no data	†DRQCMPLTND			50	ms
Time to deliver first and subsequent (except last) data for standard request	†DRETDATA1			500	ms
Time to deliver last data for standard request	†DRETDATAN			50	ms
Time for which a suspended hub will see a continuous SE0 on upstream before beginning the High-speed detection handshake	tfiltse0		2.5		μs
Time a hub operating in non-suspended Full-speed will wait after start of SE0 on upstream before beginning the High-speed detection handshake	twtrstfs		2.5	3000	ms
Time a hub operating in High-speed will wait after start of SE0 on upstream before reverting to Full-speed	twrrev		3.0	3.125	ms
Time a hub will wait after reverting to Full- speed before sampling the bus state on upstream and beginning the High-speed will wait after start of SE0 on upstream before reverting to Full-speed	twrrsths		100	875	ms
Minimum duration of a Chirp K on upstream from a hub within the reset protocol	tucн		1.0		ms
Time after start of SE0 on upstream by which a hub will complete its Chirp K within the reset protocol	tuchend			7.0	ms
Time between detection of downstream chip and entering High-speed state	twтнs			500	μS
Time after end of upstream Chirp at which hub reverts to Full-speed default state if no downstream Chirp is detected	twrfs		1.0	2.5	ms

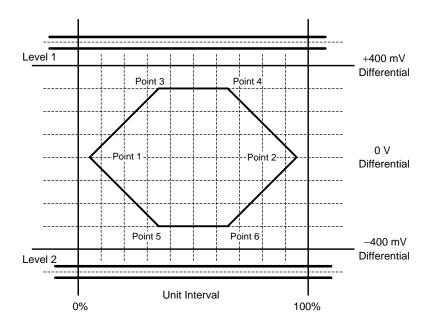
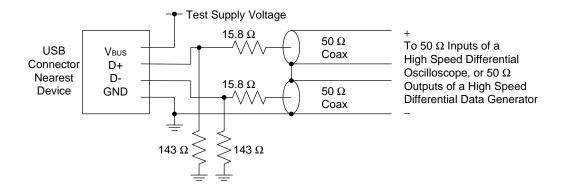
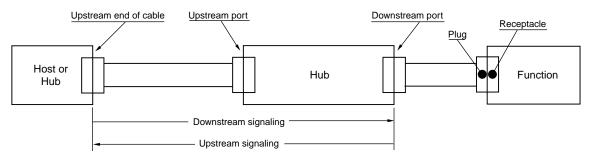



Figure 3-13. Transmit Waveform for Transceiver at DP/DM

Figure 3-14. Transmitter Measurement Fixtures

Upstream Crossover Upstream End of Port of Hub Point 50% Point of Cable Initial Swing Vss 50% Point of **Hub Delay Hub Delay** Downstream Downstream Initial Swing Downstream Downstream Port of Hub Port of Hub **t**HDD1 thdd2 Vss Vss A. Downstream Hub Delay with Cable B. Downstream Hub Delay without Cable Downstream Crossover


Figure 3-15. Hub Differential Delay, Differential Jitter, and SOP Distortion

Downstream
Port of Hub
Vss

Upstream Port
or
End of Cable
Vss

Hub Delay
Upstream
thddt
thddt
thddt
thddt

C. Upstream Hub Delay with or without Cable

D. Measurement Points

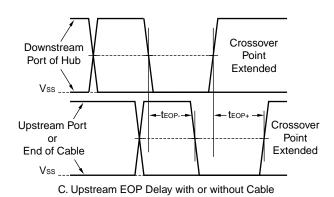
Hub Differential Jitter:

thdj1 = thddx(J) - thddx(K) or thddx(K) - thddx(J) Consecutive Transitions

 $thd_{J2} = thd_{Dx}(J) - thd_{Dx}(J)$ or $thd_{Dx}(K) - thd_{Dx}(K)$ Paired Transitions

Bit after SOP Width Distortion (same as data jitter for SOP and next J transition):

tFSOP = tHDDx(next J) - tHDDx(SOP)


Low-speed timings are determined in the same way for:

tlhdd, tldhj1, tldjH2, tluhj1, tlujH2, and tlsop

B. Downstream EOP Delay without Cable

50% Point of Initial Swing Upstream Upstream Crossover End of Port of Hub Point Cable Extended Vss Vss teopteop+ teop- teop+ Downstream Downstream Port of Hub Port of Hub Vss

Figure 3-16. Hub EOP Delay and EOP Skew

EOP Delay:

A. Downstream EOP Delay with Cable

 $t_{\text{FEOPD}} = t_{\text{EOPy}} - t_{\text{HDDx}}$

(teopy means that this equation applies to teop- and teop+)

EOP Skew:

 $t_{\text{FHESK}} = t_{\text{EOP+}} - t_{\text{EOP-}}$

Low-speed timings are determined in the same way for: tleopd and tlhesk

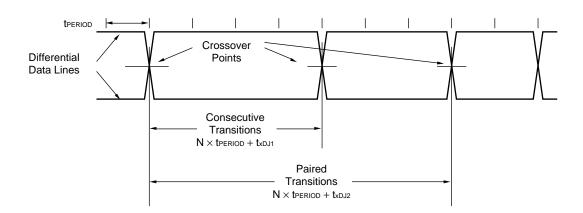


Figure 3-17. USB Differential Data Jitter for Low-/Full-speed

Figure 3-18. USB Differential-to-EOP Transition Skew and EOP Width for Low-/Full-speed

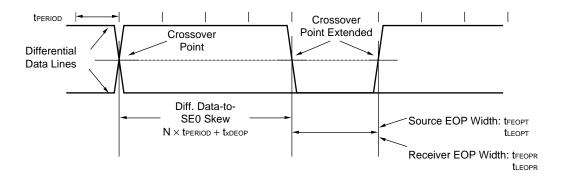
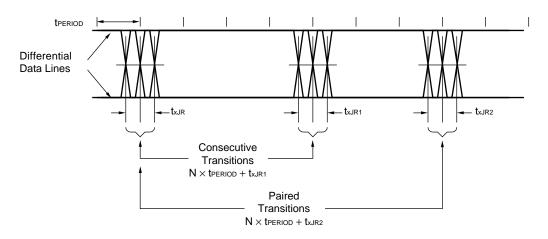



Figure 3-19. USB Receiver Jitter Tolerance for Low-/Full-speed

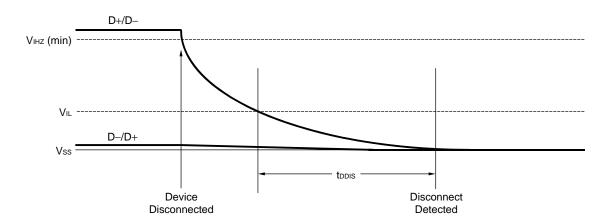
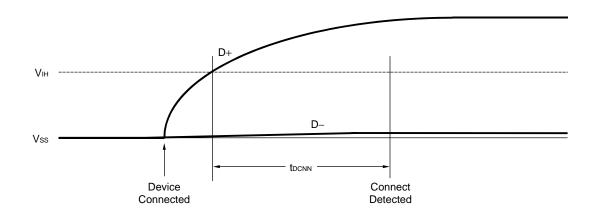
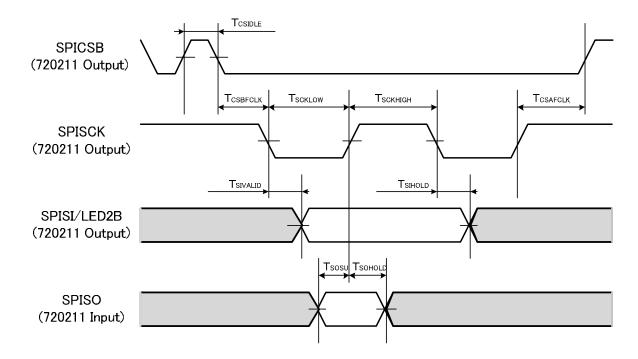



Figure 3-20. Low-/Full-speed Disconnect Detection

Figure 3-21. Full-/High-speed Device Connect Detection

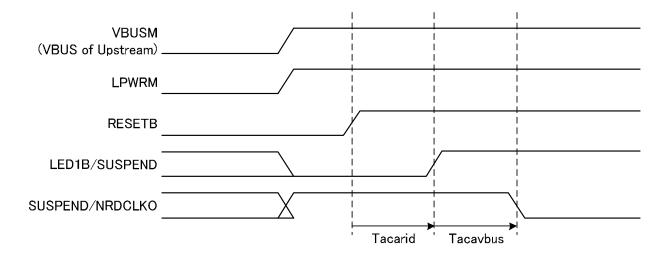


3.8.6 SPI Type Serial ROM Interface

Table 3-23. SPI Type Serial ROM Interface Signals Timing (SPI Mode 0)

Parameter	Symbol	Min.	Max.	Units
SPISCK clock frequency		-	2.0	MHz
Chip select idle time	TCSIDEL	500	-	ns
Chip select assertion time before clock	Тсѕвғськ	250	-	ns
Chip select deassertion time after clock	TCSAFCLK	250	-	ns
Clock pulses width low	T _{SCKLOW}	250	-	ns
Clock pulses width high	T _{SCKHIGH}	250	-	ns
SPISI/LED2B validate time from SPISCK falling edge	T _{SIVALID}	-	10	ns
SPISI/LED2B hold time from SPISCK falling edge	T _{SIHOLD}	-10	10	ns
SPISO setup time to SPISCK rising edge	T _{SOSU}	5	-	ns
SPISO hold time from SPISCK rising edge	T _{SOHOLD}	5	-	ns

Figure 3-22. SPI Type Serial ROM Signal Timing



3.8.7 ACA-Dock function control signal output timing

Table 3-24. ACA-Dock Function Control Signal Output Timing

Parameter	Symbol	Condition	Min.	Max.	Units
RID control signal of ACA-Dock function output timing	Tacarid	See Figure 3-24		100	ms
VBUS control signal of ACA-Dock function output timing	Tacavbus	See Figure 3-24		100	ms

Figure 3-23. SPI Type Serial ROM Signal Timing

3.9 Power Consumption

Table 3-25. Power Consumption of μ PD720211 (without On-chip Regulators Operating)

Parameter	Device connection	Condition	VDD10 line	VDD33 line	AVDD33 line	Units
Power No host Hub is not connected to host control Consumption connection		Hub is not connected to host controller.	1.8	0.1	0.2	mA
	Global Suspend	Hub is connected to host controller both with SuperSpeed and HighSpeed. And the system is suspended (S3).				
		"Low Power Mode during suspend" function is enabled Note2	3.8	0.2	0.1	mA
		"Low Power Mode during suspend" function is disabled.	5.8	0.3	1.7	mA
	Selective Suspend	Hub is connected to host controller both with SuperSpeed and HighSpeed. The system is working and hub goes into U3 state.	5.8	0.3	1.7	mA
	1 device	Hub is connected to host controller both with SuperSpeed and HighSpeed. Only one device is connected on the port.				
		Low-speed data transfer on the port.	20	23	12	mA
		Full-speed data transfer on the port.	20	25	12	mA
		High-speed data transfer on the port.	22	53	12	mA
		SuperSpeed transfer on the port. Note1	278	1.5	12	mA
	2 devices	Hub is connected to host controller both with SuperSpeed and HighSpeed. Two devices are connected on the ports.				
		High-speed data transfer on the both ports.	25	76	12	mA
		SuperSpeed transfer on the both ports. Note1	386	1.5	12	mA
	2 SS hubs with SS and HS devices	Hub is connected to host controller both with SuperSpeed and HighSpeed . Two SuperSpeed hubs are connected on all ports under SS and HS data transfer.	437	75	23	mA

Typical condition ($T_A = 25^{\circ}C$, $V_{DD33} = 3.3 \text{ V}$, $V_{DD10} = 1.05 \text{ V}$)

Notes 1. U1/U2 is enabled in this condition.

2. The external serial ROM is needed in order to set to enable Low power mode during suspend.

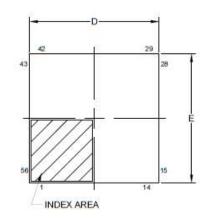
Table 3-26. Power Consumption of μPD720211 (with On-chip Regulators)

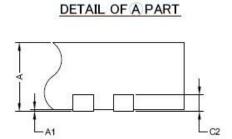
Parameter	Device connection	Condition	Total Power Note2	Units
Power	No host	Hub is not connected to host controller.		
Consumption	connection	"Low Power Mode during suspend" is enabled	6	mW
		"Low Power Mode during suspend" is disabled	13	mW
	Global Suspend	Hub is connected to host controller both with SuperSpeed and HighSpeed. And the system is suspended (S3).		
		"Low Power Mode during suspend" is enabled	10	mW
		"Low Power Mode during suspend" is disabled	23	mW
	Selective Suspend	Hub is connected to host controller both with SuperSpeed and HighSpeed. The system is working and hub goes into U3 state.		
		Low Power Mode during suspend is enabled	15	mW
		Low Power Mode during suspend is disabled	24	mW
	1 device	Hub is connected to host controller both with SuperSpeed and HighSpeed. Only one device is connected on the port.		
		Low-speed data transfer on the port.	140	mW
		Full-speed data transfer on the port.	150	mW
		High-speed data transfer on the port.	245	mW
		SuperSpeed transfer on the port. Note1	410	mW
	2 devices	Hub is connected to host controller both with SuperSpeed and HighSpeed. Two devices are connected on the ports.		
		High-speed data transfer on the both ports.	315	mW
		SuperSpeed transfer on the both ports. Note1	595	mW
	2 SS hubs with SS and HS devices	Hub is connected to host controller both with SuperSpeed and HighSpeed. Two SuperSpeed hubs are connected on all ports under SS and HS data transfer.	880	mW

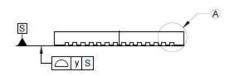
Typical condition ($T_A = 25^{\circ}C$, $V_{DD33} = 3.3 \text{ V}$, $V_{DD10} = 1.05 \text{ V}$)

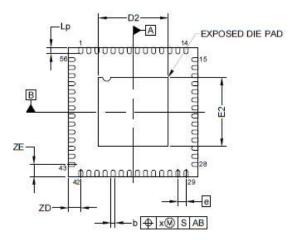
Notes 1. U1/U2 is enabled in this condition.

- **2.** The values on this page do NOT represent the chip's pure power consumption. The values include power loss by external components, too.
- 3. The external serial ROM is needed in order to set to enable Low power mode during suspend.


Remark Input voltage for on-chip regulators is 3.3 V.


4. PACKAGE DRAWINGS


- μPD720211K8-611-BAL-A
- μPD720211K8-711-BAL-A


56- PIN QFN (8 × 8)

JEITA Package code	RENESAS code	Previous code	MASS(TYP.)[g]
P-HVQFN56-8x8-0.50	PVQN0056KC-A	T56K8-50A-BAL	0.18

Reference	Dimension in Millimeters		
Symbol	Min.	Nom.	Max.
D	7.90	8.00	8.10
E	7.90	8.00	8.10
Α	-	A. T.	0.90
A1	0.00	-	-
b	0.18	0.25	0.30
е	-	0.50	-
Lp	0.35	0.40	0.45
x	_	8=	0.05
У	-	22.75	0.05
ZD	1-	0.75	-
ZE	_	0.75	-
c2	-	0.20	-
D2	-	4.30	-
E2	_	4.30	_

5. RECOMMENDED SOLDERING CONDITIONS

The μ PD720211 should be soldered and mounted under the following recommended conditions.

For soldering methods and conditions other than those recommended below, contact a Renesas Electronics sales representative.

For technical detail information, see the following website.

- <R> Semiconductor Package Mount Manual (http://www.renesas.com/products/package/index.jsp)
 - μPD720211K8-611-BAL-A: 56-pin QFN (8 × 8)
 - μPD720211K8-711-BAL-A: 56-pin QFN (8 × 8)

Soldering Method	Soldering Conditions		
Infrared reflow	Peak package's surface temperature: 260°C		
	Reflow time: 30 seconds or less (Over 255°C)		
	60 to 150 seconds (217°C or higher)		
	Maximum allowable number of reflow processes: 3 Exposure limit Note: 7 days (10 hours pre-backing is required at 125°C afterwards)		
	<caution></caution>		
	Non-heat-resistant trays, such as magazine and taping trays, cannot be baked before unpacking.		

Note The Maximum number of days during which the product can be stored at a temperature of 5 to 30°C and a relative humidity of 70% or less after dry-pack package is opened.

RFV	ISION	I HIS	TORY
1 (L V	10101		

μ PD720211 Data Sheet

Rev.	Rev. Date		Description
		Page	Summary
0.01	July 17, 2013	-	First Edition issued
0.02	Sep. 30, 2013	-	Second Edition issued.
0.03	Oct. 22, 2013	-	 LED1B/SUSPEND, SPICSB, SPISO and SPISI/LED2B pin function description are modified in section 2.
0.04	Dec. 4, 2013		 Added the new part in section 1.3, 1.5, 4 and 5. Updated Table 1-1. Pin function descriptions are modified in section 2. Modified the buffer type of SUSPEND/NRDCLKO in section 3.1. Updated the cut-off current of on-chip regulator in Table 3-8.
0.05	Mar. 4, 2014		 Modified Table 3-12. NRDRST output and CLKOUT Signal Timing Added Table 3-13, Table 3-14, Figure 3-9, Figure 3-10, Figure 3-11 and Figure 3-12. Added section 3.8.7 Added section 3.8.8 Modified Table 3-26 Power Consumption of µPD720211 (without on-chip
		-	 regulators operating) Added Note 2 of Table 3-26 Modified Table 3-27 Power Consumption of μPD720211 (with on-chip regulators operating) Added Note 3 of Table 3-27 Changed the package picture of 4. PACKAGE DRAWINGS.
1.00	Mar. 14, 2014	-	Document promoted from preliminary data to full data. (Document Number. R19DS0080E)
2.00	Jul. 24, 2014	-	 Delete the Note description in Table 3-5 Recommended Operating Ranges. Change section 4 PACKAGE DRAWING Change section 5 RECOMMENDED SOLDERING CONDITIONS
3.00	Nov. 25, 2014		 Modified the feature to section 1.1 Features Modified the Function to section 2. Pin Function as below pins LX1 SUSPEND/NRDCLKO LED1B/SUSPEND SPICSB SPISI/LED2B Modified section 3.1 Buffer List Modified to Table 3-9 Modified typo of section 3.8.2 Added section 3.8.7 ACA-Dock function signal output timing
4.00	Sep 16, 2015	28,29 34 40	 Deleted the following parameters. † SIGATT, † ATTDB, † SUSAVGI, † RSMRCY, † RSTRCY Deleted Figure 3-22 "Power-on and Connection Events Timing" Modified the URL

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information
- 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc
 - Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.
- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information

Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004

Renesas Electronics Europe Limited Dukes Meadow. Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-162-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: 486-21-2226-0888, Fax: 486-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1611, 161F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyllux Innovation Centre, Singapore 339949 TEI: +55-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.

Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tei: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141