MCT5200

MCT5201

MCT5210

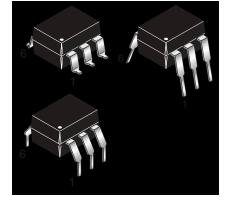
MCT5211

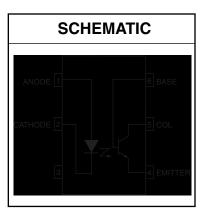
Description

The MCT52XX series consists of a high-efficiency AlGaAs, infrared emitting diode, coupled with an NPN phototransistor in a six pin dual-in-line package.

The MCT52XX is well suited for CMOS to LSTT/TTL interfaces, offering 250% $CTR_{CE(SAT)}$ with 1 mA of LED input current. When an LED input current of 1.6 mA is supplied data rates to 20K bits/s are possible.

The MCT52XX can easily interface LSTTL to LSTTL/TTL, and with use of an external base to emitter resistor data rates of 100K bits/s can be achieved.


Features


- High CTR_{CE(SAT)} comparable to Darlingtons
- CTR guaranteed 0°C to 70°C
- High common mode transient rejection $5kV/\mu s$
- Data rates up to 150 kbits/s (NRZ)
- Underwriters Laboratory (UL) recognized (file #E90700)
- VDE recognized (file #94766)
 - Add option 300 (e.g., MCT5211.300)

Applications

- CMOS to CMOS/LSTTL logic isolation
- LSTTL to CMOS/LSTTL logic isolation
- RS-232 line receiver
- Telephone ring detector
- AC line voltage sensing
- Switching power supply

Parameters		Device	Value	Units
TOTAL DEVICE				
Storage Temperature	T _{STG}	All	-55 to +150	°C
Operating Temperature	T _{OPR}	All	-55 to +100	°C
Lead Solder Temperature	T _{SOL}	All	260 for 10 sec	°C
Total Device Power Dissipation @ 25°C (LED plus detector)	В	All	260	mW
Derate Linearly From 25°C	Derate Linearly From 25°C		3.5	mW/°C
EMITTER				
Continuous Forward Current	١ _F	All	50	mA
Reverse Input Voltage	V _R	All	6	V
Forward Current - Peak (1 µs pulse, 300 pps)	l _F (pk)	All	3.0	A
LED Power Dissipation	В	All	75	mW
Derate Linearly From 25°C	PD	All	1.0	mW/°C
DETECTOR				
Continuous Collector Current	۱ _C	All	150	mA
Detector Power Dissipation		All	150	mW
Derate Linearly from 25°C	PD	All	2.0	mW/°C

MCT5200

MCT5201

MCT5210

MCT5211

ELECTRICAL CHARACTERISTICS (T _A = 25°C Unless otherwise specified.)							
INDIVIDUAL COMPONENT	CHARACTERISTICS						
Parameters	Test Conditions	Symbol	Device	Min	Тур**	Max	Units
EMITTER							
Input Forward Voltage	(I _F = 5 mA)	V _F	All		1.25	1.5	v
Forward Voltage Temp. Coefficient	(I _F = 2 mA)	$\frac{\Delta V_{F}}{\Delta T_{A}}$	All		-1.75		mV/ °C
Reverse Voltage	(I _R = 10 μA)	V _R	All	6			V
Junction Capacitance	(V _F = 0 V, f = 1.0 MHz)	CJ	All		18		pF
DETECTOR							
Collector-Emitter Breakdown Voltage	(I _C = 1.0 mA, I _F = 0)	BV _{CEO}	All	30	100		V
Collector-Base Breakdown Voltage	$(I_{C} = 10 \ \mu A, I_{F} = 0)$	BV _{CBO}	All	30	120		V
Emitter-Base Breakdown Voltage	$(I_{C} = 10 \ \mu A, I_{F} = 0)$	BV _{EBO}	All	5	10		V
Collector-Emitter Dark Current	$(V_{CE} = 10V, I_F = 0, R_{BE} = 1M\Omega)$	I _{CER}	All		1	100	nA
Capacitance Collector to Emitter	(V _{CE} = 0, f = 1 MHz)	C _{CE}	All		10		pF
Collector to Base	(V _{CB} = 0, f = 1 MHz)	C _{CB}	All		80		pF
Emitter to Base	(V _{EB} = 0, f = 1 MHz)	C _{EB}	All		15		pF

ISOLATION CHARACTERISTICS

Characteristic Test Conditions		Symbol	Device	Min	Typ**	Max	Units	
Input-Output Isolation Voltage ⁽¹⁰⁾	(f = 60Hz, t = 1 min.)	V _{ISO}	All	5300			Vac(rms)	
Isolation Resistance ⁽¹⁰⁾	$V_{I-O} = 500 \text{ VDC}, T_A = 25^{\circ}C$	R _{ISO}	All	10 ¹¹			Ω	
Isolation Capacitance ⁽⁹⁾	$V_{I-O} = 0, f = 1 MHz$	C _{ISO}	All		0.7		pF	
Common Mode Transient	$V_{CM} = 50 V_{P-P1}, R_L = 750\Omega, I_F = 0$	CM	MCT5210/11		5000		V/µs	
Rejection – Output High	$V_{CM} = 50 \ V_{P-P}, \ R_L = 1 K \Omega, \ I_F = 0$	CM _H	MCT5200/01		5000		v/µs	
Common Mode Transient	$V_{CM} = 50 V_{P-P1}, R_L = 750\Omega, I_F = 1.6mA$	1.6mA CM _I MCT5210/11			5000		V/µs	
Rejection – Output Low	V_{CM} = 50 V_{P-P1} , R_L = 1K Ω , I_F = 5 mA		MCT5200/01		5000		v/µ5	

**All typical $T_A=25^{\circ}C$

MCT5200

MCT5201

MCT5210

MCT5211

TRANSFER CHA	TRANSFER CHARACTERISTICS ($T_A = 0^{\circ}C$ to 70°C Unless otherwise specified.)							
DC Characteristics	Test Condition	ns	Symbol	Device	Min	Тур**	Max	Units
	I _F = 10 mA, V _{CE} = 0.4 V			MCT5200	75			
Saturated Current	I _F = 5 mA, V _{CE} = 0.4 V			MCT5201	120			
Transfer Ratio ⁽¹⁾	I _F = 3.0 mA, V _{CE} = 0.4 V		CTR _{CE(SAT)}	MCT5210	60			%
(Collector to Emitter)	I _F = 1.6 mA, V _{CE} = 0.4 V			MCT5211	100			
	I _F = 1.0 mA, V _{CE} = 0.4 V			WIC15211	75			
	I _F = 3.0 mA, V _{CE} = 5.0 V			MCT5210	70			
Current Transfer Ratio (Collector to Emitter) ⁽¹⁾	I _F = 1.6 mA, V _{CE} = 5.0 V		CTR _(CE)	MCT5211	150			%
	I _F = 1.0 mA, V _{CE} = 5.0 V			WIC15211	110			
	I _F = 10 mA, V _{CB} = 4.3 V			MCT5200	0.2			
	I _F = 5 mA, V _{CB} = 4.3 V			MCT5201	0.28			
Current Transfer Ratio	I _F = 3.0 mA, V _{CE} = 4.3 V		CTR _(CB)	MCT5210	0.2			%
Collector to Base(2)	I _F = 1.6 mA, V _{CE} = 4.3 V		(02)	NOTENIA	0.3			
	$I_{\rm F} = 1.0 \text{ mA}, V_{\rm CE} = 4.3 \text{ V}$			MCT5211	0.25			
	$I_{\rm F} = 10$ mA, $I_{\rm CE} = 7.5$ mA			MCT5200			0.4	
	$I_{\rm F} = 5 {\rm mA}, I_{\rm CE} = 6 {\rm mA}$			MCT5201			0.4	
Saturation Voltage	$I_{\rm F} = 3.0 \text{ mA}, I_{\rm CE} = 1.8 \text{ mA}$		V _{CE(SAT)}	MCT5210			0.4	V
	$I_{\rm F} = 1.6 \text{ mA}, I_{\rm CE} = 1.6 \text{ mA}$			MCT5211			0.4	1
AC Characteristics	Test Condition	ns	Symbol	Device	Min	Тур	Max	Units
	R _L = 330 Ω, R _{BE} = ∞	I _F = 3.0 mA		MOTEOTO		10		
	R_L = 3.3 kΩ, R_{BE} = 39 kΩ	$V_{CC} = 5.0 V$		MCT5210		7		
	R _L = 750 Ω, R _{BE} = ∞	I _F = 1.6mA				14		
Propagation Delay	R_L = 4.7 kΩ, R_{BE} = 91 kΩ	$V_{CC} = 5.0V$	-	⊥ IMCT5211	15			
High to Low ⁽³⁾	$R_L = 1.5 \text{ k}\Omega, R_{BE} = \infty$	I _F = 1.0mA	T _{PHL}			17		- µs - -
	R _L = 10 kΩ, R _{BE} = 160 kΩ	$V_{CC} = 5.0V$				24		
	$V_{CE} = 0.4$ V, $V_{CC} = 5$ V,	I _F = 10mA		MCT5200		1.6	12	
	$R_{L} = fig. 13, R_{BE} = 330 \text{ k}\Omega$	I _F = 5mA		MCT5201		3	30	
	R _L = 330 Ω, R _{BE} = ∞	I _F = 3.0 mA		MOTEOLO		0.4		
	R_{L} = 3.3 kΩ, R_{BE} = 39 kΩ	$V_{CC} = 5.0 V$		MCT5210		8		
	R _L = 750 Ω, R _{BE} = ∞	I _F = 1.6mA				2.5		-
Propagation Delay	R_L = 4.7 kΩ, R_{BE} = 91 kΩ	$V_{CC} = 5.0V$	-	NOTENIA		11		
Low to High ⁽⁴⁾	$R_L = 1.5 \text{ k}\Omega, R_{BE} = \infty$	I _F = 1.0mA	T _{PLH}	MCT5211		7		μs
	$R_L = 10 \text{ k}\Omega, R_{BE} = 160 \text{ k}\Omega$				16			
-	$V_{CE} = 0.4V, V_{CC} = 5V,$	I _F = 10mA		MCT5200		18	20	
	$R_{L} = fig. 13, R_{BE} = 330 \text{ k}\Omega$	I _F = 5mA		MCT5201		12	13	
	$V_{CE} = 0.4V,$	I _F = 10mA		MCT5200		0.5	7	
Delay Time ⁽⁵⁾	$R_{BE} = 330 \text{ k}\Omega,$ $R_{L} = 1 \text{ k}\Omega, \text{ V}_{CC} = 5\text{V}$	I _F = 5mA	t _d	MCT5201		1.1	15	μs
	$V_{CE} = 0.4V,$	I _F = 10mA		MCT5200		1.3	6	
Rise Time ⁽⁶⁾		I _F = 5mA	t _r	MCT5201		2.5	20	μs

MCT5200

MCT5201

MCT5210

MCT5211

TRANSFER CHA	TRANSFER CHARACTERISTICS ($T_A = 0^{\circ}C$ to 70°C Unless otherwise specified.) (Continued)							
DC Characteristics	Test Conditions		Symbol	Device	Min	Тур**	Max	Units
(7)	$V_{CE} = 0.4 V,$	I _F = 10mA		MCT5200		15	18	
Storage Time ⁽⁷⁾		I _F = 5mA	t _s	MCT5201		10	13	μs
(0)	$V_{CE} = 0.4V,$	I _F = 10mA		MCT5200		16	30	
Fall Time ⁽⁸⁾		I _F = 5mA	t _f	MCT5201		16	30	μs

**All typicals at T_A = 25°C

Notes

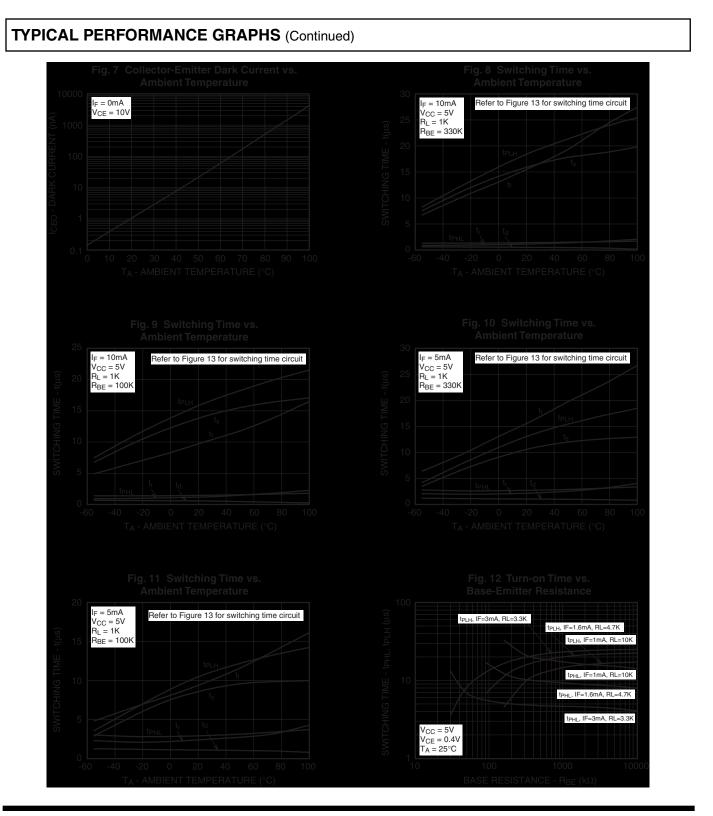
- DC Current Transfer Ratio (CTR_{CE}) is defined as the transistor collector current (I_{CE}) divided by the input LED current (I_F) x 100%, at a specified voltage between the collector and emitter (V_{CE}).
- The collector base Current Transfer Ratio (CTR_{CB}) is defined as the transistor collector base photocurrent(I_{CB}) divided by the input LED current (I_F) time 100%.
- Referring to Figure 14 the T_{PHL} propagation delay is measured from the 50% point of the rising edge of the data input pulse to the 1.3V point on the falling edge of the output pulse.
- Referring to Figure 14 the T_{PLH} propagation delay is measured from the 50% point of the falling edge of data input pulse to the 1.3V point on the rising edge of the output pulse.
- 5. Delay time (t_d) is measured from 50% of rising edge of LED current to 90% of Vo falling edge.
- 6. Rise time (t_r) is measured from 90% to 10% of Vo falling edge.
- 7. Storage time (t_s) is measured from 50% of falling edge of LED current to 10% of Vo rising edge.
- 8. Fall time (t_f) is measured from 10% to 90% of Vo rising edge.
- 9. C_{ISO} is the capacitance between the input (pins 1, 2, 3 connected) and the output, (pin 4, 5, 6 connected).
- 10. Device considered a two terminal device: Pins 1, 2, and 3 shorted together, and pins 5, 6 and 7 are shorted together.

MCT5200

MCT5201

MCT5210

MCT5211

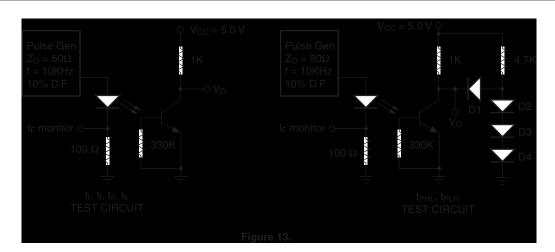

TYPICAL PERFORMANCE GRAPHS $T_A = -55^{\circ}C$ T_A = 25°C Normalized to $I_F = 5mA$ T_A = 100°C $V_{CE} = 5V$ $T_A = 25^{\circ}C$ Normalized to: $I_F = 5mA$ I_F = 10 mA . V_{CE} = 5V T_A = 25°C I_F = 10mA $I_F = 5 \text{ mA}$ $I_F = 2mA$. I_F = 5mA $I_F = 2 \text{ mA}$ $I_F = 1 \text{ mA}$ I_F = 0.5 mA $I_F = 1mA$ $I_F = 0.2 \text{ mA}$ F = 0.5 mA Normalized to: _F = 0.2 mA $I_F = 5mA$ $V_{CE} = 5V$ $T_A = 25^{\circ}C$ I_F = 10 mA $I_F = 5 \text{ mA}$ $I_F = 2 \text{ mA}$ $I_F = 1 \text{ mA}$ I_F = 0.5 mA Normalized to: Normalized to: I_F = 0.2 mA $I_F = 5mA$ $I_F = 5mA$ $V_{CB} = 4.3V$ $T_A = 25^{\circ}C$ $V_{CB} = 4.3V$ $T_A = 25^{\circ}C$

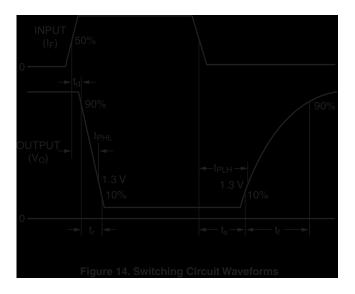
MCT5200

MCT5201

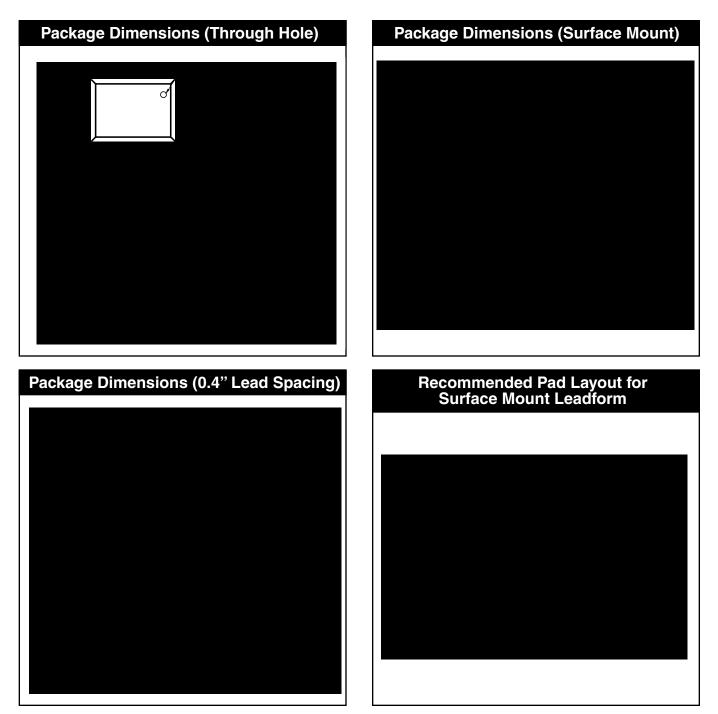
MCT5210

MCT5211


MCT5200


MCT5201

MCT5210


MCT5211

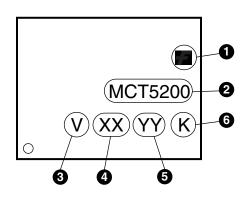
TYPICAL ELECTRO-OPTICAL CHARACTERISTICS (TA = 25°C Unless Otherwise Specified)

MCT5200	MCT5201	MCT5210	MCT5211
---------	---------	---------	---------

Note All dimensions are in inches (millimeters)

MCT5200

MCT5201


MCT5210

MCT5211

ORDERING INFORMATION


Option	Order Entry Identifier	Description
S	.S	Surface Mount Lead Bend
SD	SD .SD .SD Surface Mount; Tape and Reel	
W	.W 0.4" Lead Spacing	
300 .300 VDE 0884		VDE 0884
300W	V .300W VDE 0884, 0.4" Lead Spacing	
3S	.3S	VDE 0884, Surface Mount
3SD	.3SD	VDE 0884, Surface Mount, Tape and Reel

MARKING INFORMATION

Definiti	Definitions				
1	1 Fairchild logo				
2	Device number				
3	VDE mark (Note: Only appears on parts ordered with VDE option – See order entry table)				
4	Two digit year code, e.g., '03'				
5	Two digit work week ranging from '01' to '53'				
6	Assembly package code				

MCT5200	MCT5201	MCT5210	MCT5211

NOTE

All dimensions are in inches (millimeters)

Reflow Profile (Black Package, No Suffix)	
300 215°C, 10–30 s 250 225°C peak 150 150	
$\begin{bmatrix} 100 \\ 50 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	 Peak reflow temperature: 225°C (package surface temperature) Time of temperature higher than 183°C for 60–150 seconds One time soldering reflow is recommended

MCT5200

MCT5201

MCT5210

MCT5211

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BUY

Datasheet

datasheet

PDF

□- **1**

Download this

Home >> Find products >>

MCT5210

6-Pin DIP Low Current Input Phototransistor Output Optocoupler

Contents

•General description•Order Samples•Features•Safety agency certificates•Applications•Qualification Support

General description

The MCT52XX series consists of a high-efficiency AlGaAs, infrared emitting diode, coupled with an NPN phototransistor in a six pin dual-in-line package.

The MCT52XX is well suited for CMOS to LSTT/TTL interfaces, offering 250% CTR CE(SAT) with 1 mA of LED input current. When an LED input current of 1.6 mA is supplied data rates to 20K bits/s are possible. The MCT52XX can easily interface LSTTL to LSTTL/TTL, and with use of an external base to emitter resistor data rates of 100K bits/s can be achieved.

back to top

Features

- High CTR_{CE(SAT)} comparable to Darlingtons
- CTR guaranteed 0°C to 70°C
- High common mode transient rejection 5kV/µs
- Data rates up to 150 kbits/s (NRZ)
- Underwriters Laboratory (UL) recognized (file #E90700)
- VDE recognized (file #94766)
 - Add option 300 (e.g., MCT5211.300)

back to top

Applications

Related Links

Request samples

How to order products

Product Change Notices (PCNs)

<u>_____</u>

Support

Sales support

Quality and reliability

Design center

This page Print version

e-mail this datasheet

- CMOS to CMOS/LSTTL logic isolation
 LSTTL to CMOS/LSTTL logic isolation
- RS-232 line receiver

- Telephone ring detector
 AC line voltage sensing
 Switching power supply

back to top

Product status/pricing/packaging

Product	Product status	Pb-free Status	Package type	Leads	Packing method
MCT5210	Lifetime Buy	Ø	DIP-B	6	BULK
MCT5210300	Lifetime Buy	Ø	DIP-B	6	BULK
MCT5210300W	Lifetime Buy	Ø	DIP-B	6	BULK
MCT52103S	Lifetime Buy	Ø	SMDIP-B	6	BULK
MCT52103SD	Lifetime Buy	Ø	SMDIP-B	6	TAPE REEL
MCT5210S	Lifetime Buy	Ø	SMDIP-B	6	BULK
MCT5210SD	Lifetime Buy	Ø	SMDIP-B	6	TAPE REEL
MCT5210W	Lifetime Buy	Ø	DIP-B	6	BULK

Indicates product with Pb-free second-level interconnect. For more information click here.

BUY

back to top

Safety agency certificates

Certificate		Agency
<u>E90700, Vol. 1</u> (936 K)	UL (1577)	Underwriters Laboratories Inc.
<u>E90700, Vol. 1</u> (936 K)	C-UL	Underwriters Laboratories Inc.
<u>0122085</u> (677 K)	SEMKO	SEMKO
P01101067 (1638 K)	NEMKO	NEMKO
<u>FI 16812</u> (964 K)	FIMKO	FIMKO

<u>310684-02</u> (623 K)	DEMKO	DEMKO Testing & Certification
<u>1027742</u> (2305 K)	CSA	Canadian Standards Association
<u>94766</u> (1673 K)	VDE	VDE Pruf-und Zertifizierungsinstitut

back to top

Qualification Support

Click on a product for detailed qualification data

Product		
MCT5210		
MCT5210300		
MCT5210300W		
MCT52103S		
MCT52103SD		
MCT5210S		
MCT5210SD		
MCT5210W		

back to top

© 2007 Fairchild Semiconductor

Products | Design Center | Support | Company News | Investors | My Fairchild | Contact Us | Site Index | Privacy Policy | Site Terms & Conditions | Standard Terms & Conditions (

