

NC7NP14 TinyLogic[®] ULP Triple Inverter with Schmitt Trigger Input

Features

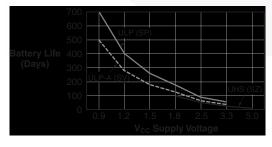
- Space saving US8 package
- Ultra small MicroPak[™] package
- 0.9V to 3.6V V_{CC} supply operation
- 3.6V overvoltage tolerant I/O's at V_{CC} from 0.9V to 3.6V
- Power-Off high impedance inputs and outputs
- Static Drive (I_{OH}/I_{OL}):
 - ±2.6mA @ 3.00V V_{CC}
 - ±2.1mA @ 2.30V V_{CC}
 - ±1.5mA @ 1.65V V_{CC}
 - ±1.0mA @ 1.40V V_{CC}
 - ±0.5mA @ 1.10V V_{CC}
 - ±20µA @ 0.9V V_{CC}
- Low noise switching using design techniques of Quiet Series[™] noise/EMI reduction circuitry
- Ultra low dynamic power

Ordering Information

General Description

The NC7NP14 is a triple inverter with Schmitt trigger input from Fairchild's Ultra Low Power (ULP) Series of TinyLogic[®]. Ideal for applications where battery life is critical, this product is designed for ultra low power consumption within the V_{CC} operating range of 0.9V to 3.6V V_{CC}.

The internal circuit is composed of a minimum of inverter stages, including the output buffer, to enable ultra low static and dynamic power.


The NC7NP14 is designed for optimized power and speed, and is fabricated with an advanced CMOS technology to achieve high speed, low noise operation while maintaining extremely low CMOS power dissipation.

ordering into				
Order Number	Package Number	Product Code Top Mark	Package Description	Supplied As
NC7NP14K8X	MAB08A	NP14	8-Lead US8, JEDEC MO-187, Variation CA 3.1mm Wide	3k Units on Tape and Reel
NC7NP14L8X	MAC08A	X6	8-Lead MicroPak, 1.6mm Wide	5k Units on Tape and Reel

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering number.

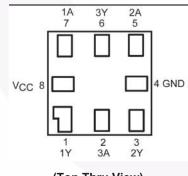
All packages are lead free per JEDEC: J-STD-020B standard.

Battery Life vs. V_{CC} Supply Voltage

TinyLogic ULP and ULP-A with up to 50% less power consumption can extend your battery life significantly.

Battery Life = $(V_{battery} \times I_{battery} \times 0.9) / (P_{device}) / 24hrs/day$ Where, $P_{device} = (I_{CC} \times V_{CC}) + (C_{PD} + C_L) \times V_{CC}^2 \times f$

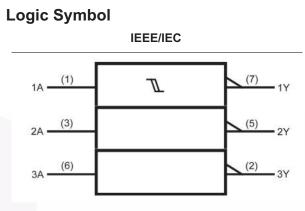
Assumes ideal 3.6V Lithium Ion battery with current rating of 900mAH and derated 90% and device frequency at 10MHz, with $C_L = 15$ pF load.



AAA represents Product Code Top Mark – see ordering code

Pin One

Note: Orientation of Top Mark determines Pin One location. Read the top product code mark left to right, Pin One is the lower left pin (see diagram).



(Top Thru View)

Pin Description

Pin Names	Description
A	Input
Y	Output

Function Table

 $Y = \overline{A}$

Input	Output
A	Y
L	Н
Н	L

H = HIGH Logic Level

L = LOW Logic Level

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

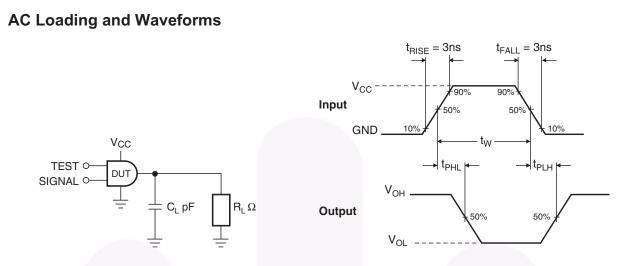
Symbol	Parameter	Rating
V _{CC}	Supply Voltage	-0.5V to +4.6V
V _{IN}	DC Input Voltage	-0.5V to +4.6V
V _{OUT}	DC Output Voltage HIGH or LOW State ⁽¹⁾ $V_{CC} = 0V$	-0.5V to V _{CC} +0.5V -0.5V to +4.6V
I _{IK}	DC Input Diode Current @ V _{IN} < 0V	–50mA
I _{OK}	DC Output Diode Current	
	V _{OUT} < 0V	–50mA
	V _{OUT} > V _{CC}	+50mA
I _{OH} /I _{OL}	DC Output Source/Sink Current	±50mA
I _{CC} or Ground	DC V _{CC} or Ground Current per Supply Pin	±50mA
T _{STG}	Storage Temperature Range	-65°C to +150°C
TJ	Junction Temperature Under Bias	150°C
TL	Junction Lead Temperature (Soldering, 10 seconds)	260°C
P _D	Power Dissipation @ +85°C	
	US8	245mW
	Micropak-8	165mW

Recommended Operating Conditions⁽²⁾

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	0.9V to 3.6V
V _{IN}	Input Voltage	0V to 3.6V
V _{OUT}	Output Voltage	
	HIGH or LOW State	0V to V _{CC}
	$V_{CC} = 0V$	0V to 3.6V
I _{OH} /I _{OL}	Output Current in I _{OH} /I _{OL}	
	$V_{CC} = 3.0V \text{ to } 3.6V$	±2.6mA
	$V_{CC} = 2.3V$ to 2.7V	±2.1mA
	V _{CC} = 1.65V to 1.95V	±1.5mA
	$V_{CC} = 1.40V$ to 1.60V	±1.0mA
	$V_{CC} = 1.10V$ to 1.30V	±0.5mA
	$V_{CC} = 0.9V$	±20µA
T _A	Free Air Operating Temperature	-40°C to +85°C
$\Delta t / \Delta V$	Minimum Input Edge Rate @ $V_{IN} = 0.8V$ to 2.0V, $V_{CC} = 3.0V$	10ns/V
θ_{JA}	Thermal Resistance	
	US8	265°C/W
	Micropak-8	395°C/W

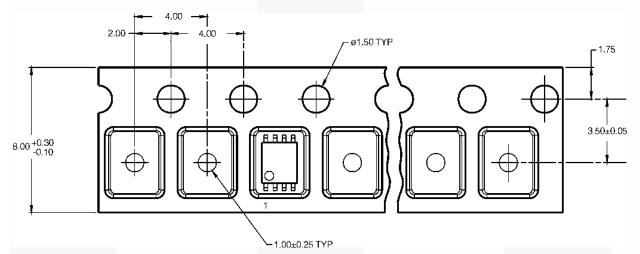
Notes:


- 1. I_O Absolute Maximum Rating must be observed.
- 2. Unused inputs must be held HIGH or LOW. They may not float.

				T _A = -	+25°C	T _A = -40°0	C to +85°C	
Symbol	Parameter	V _{CC} (V)	Conditions	Min.	Max.	Min.	Max.	Unit
VP	Positive	0.90		0.3	0.6	0.3	0.6	V
	Threshold	1.10		0.4	1.0	0.4	1.0	1
	Voltage	1.40		0.5	1.2	0.5	1.2	1
		1.65		0.7	1.5	0.7	1.5	1
		2.30]	1.0	1.9	1.0	1.9]
		3.00		1.5	2.6	1.5	2.6]
V _N	Negative	0.90		0.1	0.6	0.1	0.6	V
	Threshold	1.10		0.15	0.7	0.15	0.7	
	Voltage	1.40		0.2	0.8	0.2	0.8	
		1.65		0.25	0.9	0.25	0.9]
		2.30		0.4	1.15	0.4	1.15	
		3.00		0.6	1.5	0.6	1.5	
V _H	Hysteresis	0.90		0.07	0.5	0.07	0.5	V
	Voltage	1.10		0.08	0.6	0.08	0.6	
		1.40		0.09	0.8	0.09	0.8	
		1.65		0.10	1.0	0.10	1.0	
		2.30		0.25	1.1	0.25	1.1	
		3.00		0.60	1.8	0.60	1.8	
V _{OH}	HIGH Level	0.90	Ι _{ΟΗ} = –20μΑ	V _{CC} – 0.1		V _{CC} – 0.1		
	Output Voltage	$1.10 \le V_{CC} \le 1.30$		V _{CC} – 0.1		V _{CC} – 0.1		
		$1.40 \le V_{CC} \le 1.60$		V _{CC} – 0.1		V _{CC} – 0.1		
		$1.65 \le V_{CC} \le 1.95$		V _{CC} – 0.1		V _{CC} – 0.1		
		$2.30 \le V_{CC} < 2.70$		V _{CC} – 0.1		V _{CC} – 0.1		
		$3.00 \le V_{CC} \le 3.60$		V _{CC} – 0.1		V _{CC} – 0.1		
		$1.10 \le V_{CC} \le 1.30$	$I_{OH} = -0.5 \text{mA}$	0.75 x V _{CC}		0.70 x V _{CC}		
		$1.40 \le V_{CC} \le 1.60$	$I_{OH} = -1.0 \text{mA}$	1.07		0.99		
		$1.65 \le V_{CC} \le 1.95$	$I_{OH} = -1.5 \text{mA}$	1.24		1.22		
		$2.30 \le V_{CC} < 2.70$	$I_{OH} = -2.1 \text{mA}$	1.95		1.87		
		$3.00 \le V_{CC} < 3.60$	I _{OH} = -2.6mA	2.61		2.55		
V _{OL}	LOW Level	0.90	I _{OL} = 20μΑ		0.1		0.1	V
	Output Voltage	$1.10 \le V_{CC} \le 1.30$	_		0.1		0.1	-
		$1.40 \le V_{CC} \le 1.60$	-		0.1		0.1	-
		$1.65 \le V_{CC} \le 1.95$	-		0.1		0.1	-
		$2.30 \le V_{CC} < 2.70$			0.1		0.1	-
		$3.00 \le V_{CC} \le 3.60$			0.1		0.1	
		$1.10 \le V_{CC} \le 1.30$	I _{OL} = 0.5mA		0.30 x V _{CC}		0.30 x V _{CC}	
		$1.40 \le V_{CC} \le 1.60$	I _{OL} = 1.0mA		0.31		0.37	
		$1.65 \le V_{CC} \le 1.95$	$I_{OL} = 1.5 \text{mA}$		0.31		0.35	
		$2.30 \le V_{CC} < 2.70$	I _{OL} = 2.1mA		0.31		0.33	
		$3.00 \le V_{CC} < 3.60$	I _{OL} = 2.6mA		0.31		0.33	
I _{IN}	Input Leakage Current	0.90 to 3.60	$0 \le V_I \le 3.6V$		±0.1		±0.5	μA
I _{OFF}	Power Off Leakage Current	0	$0 \le (V_I, V_O) \le 3.6V$		0.5		0.5	μA
I _{CC}	Quiescent Supply Current	0.90 to 3.60	$V_I = V_{CC}$ or GND		0.9		0.9	μA

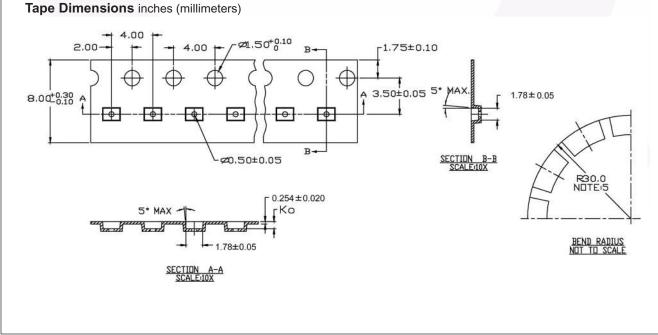
				T _A = +25°C			T _A = -40°C to +85°C			Figure
Symbol	Parameter	V _{CC} (V)	Conditions	Min.	Тур.	Max.	Min.	Max.	Units	Number
	Propagation	0.90	$C_L = 10 \text{pF}, R_L = 1 \text{M}\Omega$		66.0				ns	Figure 1
	Delay	$1.10 \le V_{CC} \le 1.30$		3.5	24.0	34.5	3.0	41.6		Figure 2
		$1.40 \le V_{CC} \le 1.60$		2.5	7.0	14.8	2.0	15.0		
		$1.65 \le V_{CC} \le 1.95$]	2.0	6.0	12.0	1.5	12.2		
		$2.30 \le V_{CC} < 2.70$		1.5	5.0	9.4	1.0	9.9		
		$3.00 \le V_{CC} \le 3.60$		1.0	4.0	8.3	1.0	9.0		
		0.90	$C_L = 15 \text{pF}, R_L = 1 \text{M}\Omega$		71.0				ns	Figure 1
		$1.10 \le V_{CC} \le 1.30$		4.0	28.0	37.3	3.5	46.3		Figure 2
		$1.40 \le V_{CC} \le 1.60$		3.0	8.0	15.5	2.5	16.5		
	-	$1.65 \le V_{CC} \le 1.95$		2.5	6.0	12.6	2.0	13.6		
		$2.30 \le V_{CC} < 2.70$		2.0	5.0	9.9	1.5	10.8		
		$3.00 \le V_{CC} \le 3.60$		1.5	4.0	8.7	1.0	9.5		
		0.90	$C_L = 30 \text{pF}, R_L = 1 \text{M}\Omega$		76.0				ns	Figure 1
		$1.10 \le V_{CC} \le 1.30$		5.0	31.0	39.3	4.0	49.7		Figure 2
		$1.40 \le V_{CC} \le 1.60$		4.0	9.0	17.8	3.5	18.2		
		$1.65 \le V_{CC} \le 1.95$		3.0	7.0	14.4	2.0	15.9		
		$2.30 \le V_{CC} < 2.70$		2.0	6.0	11.3	1.5	12.8		
		$3.00 \le V_{CC} \le 3.60$		1.5	5.0	9.2	1.0	10.7		
C _{IN}	Input Capacitance	0			2.0				pF	
C _{PD}	Power Dissipation Capacitance	0.90 to 3.60	$V_I = 0V \text{ or } V_{CC},$ f = 10MHz		8.0				pF	

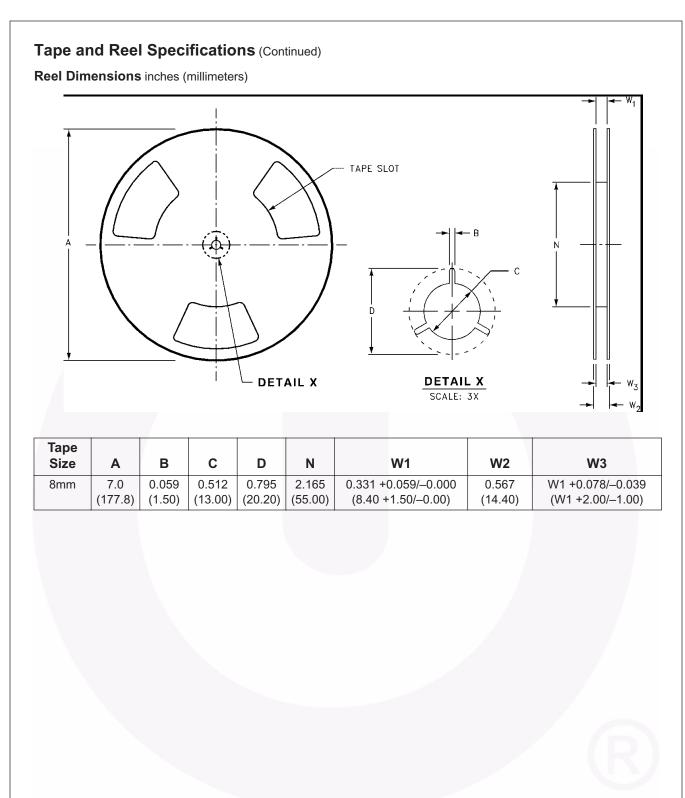
NC7NP14 — TinyLogic[®] ULP Triple Inverter with Schmitt Trigger Input

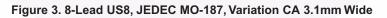

	V _{cc}						
Symbol	3.3V ± 0.3V	2.5V ± 0.2V	1.8V ± 0.15V	1.5V ± 0.1V	1.2V ± 0.1V	0.9V	
V _{mi}	1.5V	V _{CC} /2					
V _{mo}	1.5V	V _{CC} /2	V _{CC} /2	$V_{CC}/2$	V _{CC} /2	V _{CC} /2	

Tape and Reel Specifications

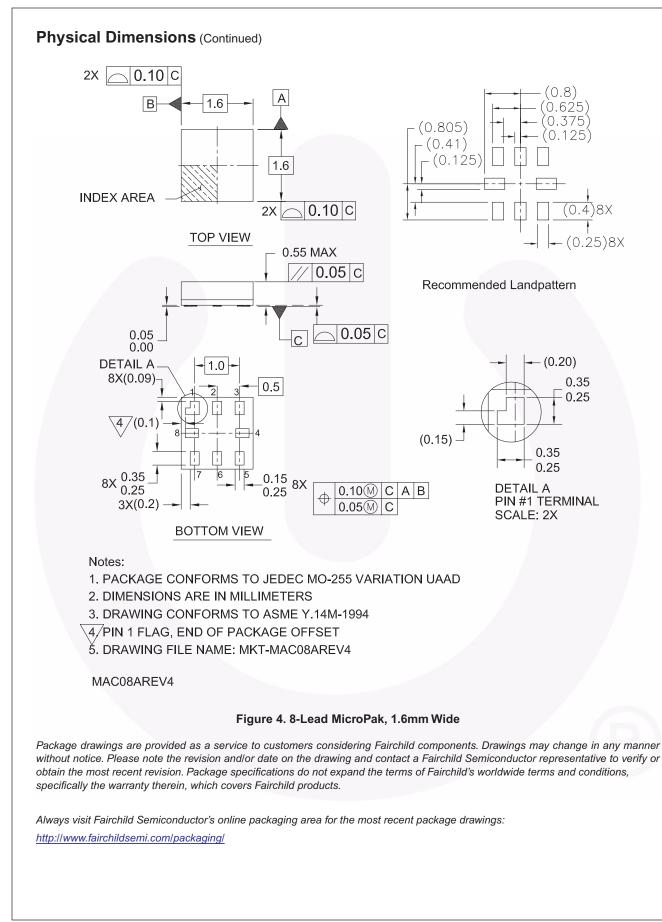
Tape Format for US8


Package Designator	Tape Section	Number of Cavities	Cavity Status	Cover Tape Status
K8X	Leader (Start End)	125 (typ.)	Empty	Sealed
	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (typ.)	Empty	Sealed


Tape Dimensions inches (millimeters)


Tape Format for MicroPak

Package Designator	Tape Section	Number of Cavities	Cavity Status	Cover Tape Status
L8X	Leader (Start End)	125 (typ.)	Empty	Sealed
	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (typ.)	Empty	Sealed



Physical Dimensions

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: <u>http://www.fairchildsemi.com/packaging/</u>

SEMICONDUCT

franchise

TinyBoost™

TinyBuck™

TinyLogic®

TINYOPTO™

TinyPower™

TinyPWM™

TinyWire™

SerDes™

Ultra FRFET™

UniFET™

VisualMax™

VCX™

 $\mu_{_{Ser}}$

UHC

FRFFT® CorePLUS™ Programmable Active Droop™ Global Power Resource SM CorePOWER™ **OFET**[®] CROSSVOLT™ Green FPS™ QS™ Green FPS™ e-Series™ Quiet Series™ CTL™ Current Transfer Logic™ RapidConfigure™ **GTO™** EcoSPARK[®] IntelliMAX[™] EfficentMax™ ISOPLANAR™ тм EZSWITCH™ * MegaBuck™ Saving our world, 1mW/W/kW at a time™ MICROCOUPLER™ SmartMax™ MicroFET™ SMART START™ MicroPak™ SPM[€] MillerDrive™ STEALTH™ airchild® MotionMax™ SuperFET™ airchild Semiconductor® Motion-SPM™ SuperSOT™-3 FACT Quiet Series™ **OPTOLOGIC[®]** SuperSOT™-6 FACT® **OPTOPLANAR[®]** SuperSOT™-8 FAST® SupreMOS™ astvCore™ SyncFET™ FlashWriter® PDP ...PM™ SYSTEM @ GENERAL EPSTM Power-SPM™ EZSWITCH™ and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are sted by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification Product Status

Definition