Creating the first project in

mikroPascal

iF \Mlkrnlilel(trnnlka
DEVELOPMENT TOOLS | COMPILERS | BOOKS

Copyright © mikro€Elektronika, 2012. All rights reserved.

10 OUR VALUED CUSTOMERS

| want to express my thanks to you for being interested in our products and for having

confidence in MikroElektronika.

The primary aim of our company is to design and produce high quality electronic products
and to constantly improve the performance thereof in order to better suit your needs.

Nebojsa Matic
General Manager

Table of Contents

1. Introduction to mikroPascal PROfor AVR®

2. Hardware ConneCtion vv vt

3.Creating aNew Projecto e
Step 1 -Project Settings oo
Step 2-Add files ...

Step 3 -Include Libraries ..o
Step 4 - FiNiShiNgo
Blank new project created ...

4. 00de EXAMPIE . .

5. BUIldING the SOUMCE . . .ot e
6. Changing Project SettingS v v it

7 WAt S MEXE e

1. Introduction to mikroPascal PRO for AVR®

mikroPascal PRO for AVR® organizes
applications into projects consisting of a
single project file (file with the .mppav
extension) and one or more source files
(files with the .mbas extension). The
mikroPascal PRO for AVR® compiler allows
you to manage several projects at a time.
Source files can be compiled only if they are
part of the project.

A project file contains:

* Project name and optional description;
* Target device in use;

* Device clock;

« List of the project source files;

« Binary files (*.mcl); and

« Other files.

In this reference guide, we will create a
new project, write code, compile it and test
the results. The purpose of this project is
to make microcontroller PORTA LEDs blink,
which will be easy to test.

v} -seleinicn nmicePhey RO o
e s B
TN S . BT A £ 408 5 BEA AR S Cde
T e

o
S Wik

T - p— [ESEr=)

~bOe g im0
e = £l - i)

@ Messages

@ Main Toolbar @ Project Manger
@ Code Explorer @ Code Editor @ Library Manager
@ Project Settings @ Image Preview

Page 4

2. Hardware Connection

Let's make a simple “Hello world” example for the
selected microcontroller. First thing embedded
programmers usually write is a simple LED blinking
program. So, let's do that in a few simple lines of Pascal
code.

LED blinking is just turning ON and OFF LEDs that are
connected to desired PORT pins. In order to see the
example in action, it is necessary to connect the target
microcontroller according to schematics shown on Figure
2-1.In the project we are about to write, we will use only
PORTA, so you should connect the LEDs to PORTA only.
Eight LEDs are more then enough for demonstration.

Figure 2-1:
Hardware connection schematics
vee
LD4 LDO
PAG RS PAO R
K7 4K7
LD\; LD1
PAS R6 PAL R2
K7 4K7
L\D\é D2
o
= PAG R7 PA2 R3
C1]| 220F,
|||_| = Lw K7
£ LD7 LD3
8MHz [1X1 & PA7 R8 PA3 R4
i - L~ L~
- -

Prior to creating a new project, it is necessary to do the following:

Step 1: Install the compiler

Step 2: Start up the compiler

Install the mikroPascal PRO for AVR® compiler from the Product Double click on the compiler icon in the Start menu, or on your desktop

DVD or download it from the MikroElektronika website:

http://www.mikroe.com/eng/products/view/227/mikropascal-pro-for-avr/

to Start up the mikroPascal PRO for AVR® compiler. The mikroPascal
PRO for AVR® IDE (Integrated Development Environment) will appear
on the screen. Now you are ready to start creating a new project.

3. Creating a New Project

The process of creating a new project is

. MNew Project Wizard
very simple. Select the New Project option

=

from the Project menu as shown below.
The New Project Wizard window appears.
It can also be opened by clicking the New
Project icon from the Project toolbar.

Broject | Build Run Tools Help
FY New Project... Shift=Ctrl+ N
E% OpenProject.. Shift+Ctrl+ 0
E% Open Project Group...

Becent Projects »

The New Project Wizard (Figure 3-1)
will guide you through the process of

Welcome to the New Project
Wizard

This wizard helps you:

Create a new project

Select the device for your project
Setup device clock

Add project files

Click Next to continue

creating a new project. The introductory
window of this application contains a list

Cancel

[A8 Back]_ﬂe;;;?j

of actions to be performed when creating ™
a new project.

@ Click Next.

Figure 3-1: Introductory window of the New Project Wizard

Step 1 - Project Settings

First thing we have to do is to specify the
general project information. This is done
by selecting the target microcontroller, it's
operating clock frequency, and of course
- naming our project. This is an important
step, because compiler will adjust the
internal settings based on this information.
Default configuration is already suggested
to us at the begining. We have to change
the device name to ATMEGA16 as it is our
microcontroller of choice for this project.

(5

Mew Project Wizard

Step 1: Project Settings:
Project Name: MyProject
Project folder: C:\Users\Public\Documents'\Mikroelektronikalmikrot Browse
Device Name: ATMEGAL28 -
Device Clock: 10.000000 MHZ
Enter project name, project folder, select device name and enter 5 device dock
(for example: 80.000).
Note: Project name and project folder must not be left empty.
4 Back |: Next » LCancel

Figure 3-2: You can specify project name, path, device and clock in the first step

Step 1 - Project Settings

If you do not want to use the suggested
path for storing your new project, you can
change the destination folder. In order to
do that, follow a simple procedure:

@ Click the Browse button of the Project
Settings window to open the Browse
for Folder dialog.

@ Select the desired folder to be the
destination path for storing your new
project files.

@ Click the OK button to confirm your
selection and apply the new path.

Mew Project Wizard

Step 1: Project Settings:

Browse For Folder

-kl:ronika\.mikrot Browse f

-

I L&l My Documents
4) Public Decuments
J mikroc

») mikroElektronika

&}y RAD Studio | |M8 device dodk
I |y Rentcom
!_';_HECLI"#_@ I
i JP Music L
I Make Mew Falder ‘ I ok I [Cancel l

Cancel

Figure 3-3: Change the destination folder using Browse For Folder dialog

Step 1 - Project Settings

Once we have selected the destination
project folder, let's do the rest of the project
settings:

@ Enter the name of your project. Since
we are going to blink some LEDs,
it's appropriate to call the project
“LedBlinking”

@ For this demonstration, we will use
the external crystal 8MHz clock.
Clock speed depends on your target
hardware, but however you configure
your hardware, make sure to specify
the exact clock (Fosc) that the
microcontroller is operating at.

@ Click the OK button to proceed.

© =kl
New Project Wizard [ﬁ

Step 1: Project Settings:

Project Name: | IEEEIRENEN o—(g)
Project folder: C:\Users\Public\Drocuments\Work!, Browse

Device Name: ATMEGALG -

Device Clack: E 5.000000 MHZ

Enter project name, project folder, select device name and enter a device dock
(for example: 80.000).

Hote: Project name and project folder must not be left empty.

4 Back Mext Ebf Cancel

|

Figure 3-4: Enter project name and change device clock speed if necessary

Step 2 - Add files

This step allows you to include additional
files that you need in your project: some
headers or source files that you already
wrote, and that you might need in further
development. Since we are building a simple
application, we won't be adding any files at
this moment.

@ Click Next.

-

|5

New Project Wizard

Step 2: Select files you want to add to project.
Add File To Project:
@& add
Remove
File Name
Remove All
4 Back Cancel

Figure 3-5: Add existing headers, sources or other files if necessary

Step 3 - Include Libraries

Following step allows you to quickly set
whether you want to include all libraries in
your project, or not. Even if all libraries are
included, they will not consume any memory
unless they are explicitely used from within
your code. The main advantage of including
all libraries is that you will have over 500
functions available for use in your code
right away, and visible from Code Assistant
[CTRL+Space]. We will leave this in default
configuration:

@ Make sure to leave “Include All”
selected.

@ Click Next.

a T
New Project Wizard [&J

Step 3: Select initial state for library manager:

Indude Libraries
@ Indude All (Default)

= Indude None (Advanced)

Selecting all libraries is recommended for beginners.,

Selecting libraries manually using Library Manager .
{recommended for advanced users) results in faster compilation, Library Manager Help

4 Back |G : Mext » f Cancel

|)

Figure 3-6: Include all libraries in the project, which is a default configuration.

Step 4 - Finishing

After all configuration is done, final step
allows you to do just a bit more.

@ There is a check-box called “Open Edit
Project window to set Configuration
bits” at the final step. Edit Projectis a
specialized window which allows you to
do all the necessary oscillator settings,
as well as to set desired fuse bits. We
made sure that everything is described
in plain English, so you will be able
to do the settings without having to
open the datasheet. Anyway, since we
are only building a simple application,
we will leave it at default configuration
(external crystal oscillator). Therefore,
leave the checkbox unchecked.

@ Cick Finish.

' =y
New Project Wizard [i_:hJ

Step 4: You have successfully created a new project. Click "Finish” to close a wizard.

Q)‘?o

pen Edit Project window to set Configuration bits

Checking "Open Edit Project window" will open "Edit project form” after
dosing this wizard. This enables you to set device configurations bits,

4 Back |} Fi;lish? Cancel

e ¥

Figure 3-7: Choose whether to open Edit Project window after dialog closes.

Blank new project created

New project is finally created. A new source
file called “LedBlinking.mpas” is created
and it contains the main begin...end
block, which will hold the program. You may
notice that project is configured according
to the settings done in the New Project
Wizard.

rrrrErrerE-

=g MCL Clock

Frequency: 8.000000| MHz

B BL AT AR e I FE LT it

%

Tools
0 A-HG R & BN

|==| Ledlinking.mpas
| 1 program LedBlinkinp

Help

{ Declarations se

= begin
3 { Main progz

- end.

5 T et Masacar {177 - Leengereray 7 (EE1
ol ot i -l o SN

eS|

Figure 3-8: New blank project is created with your configuration

Page 13

4. Code Example

Time has come to do some coding. First LedBIinking mpas - source code
thing we need to do is to initialize PORTA -

to act as digital output. DDRA data direction 1 program LedBlinking;
register, associated with PORTA, is used to > begin
set whether each pin acts as input or output. 3 // set PORTA to be digital output
. 4 DDRA := 0;
// set PORTA to be digital output
DDRA := 0; S
6 // Turn OFF LEDs on PORTA
We can now initialize PORTA it with logic 7 PORTA := 0;
zeros on every pin: 8 .
9 while TRUE do
// Turn OFF LEDs on PORTA 10 begin
PORTA := 0; 11 // Toggle LEDs on PORTA
12 PORTA := not PORTA;
Finally, in a while loop we will invert all bits 13
in PORTA in every iteration, and put a 1000 14 // Delay 1000 ms
ms delay, so the blinking is not too fast (see 15 Delay ms(1000);
Figure 4-1). 16 end;
17 end.
// Toggle LEDs on PORTA
PORTA := not PORTA;

// Delay 1000 ms
Delay ms(1000) ; Figure 4-1: Complete source code of the PORTA LED blinking

u mikroPascal PRO for AVR .5.8.0 - C:\Users\Public\Documents\WorkiLedBlinking mppav

File Edit View Project Build Run Tools Help

HNE AN S s (s e A W= R RS, S W)

A T HB F o

8 Code Explorer 2| | LecBlnking.mpas
Bl | - | program LeaBlinking:

web links [.

{ Declarations secti }

Image firks

Active Camments

Include g o

Eiteme // set PORTA te be digital ontput

Fowards BERE: 20

Types

Globals C // Turn OFF LEDs on PORTA
@ Functions 10 PORTA

while TRUE do

= T = B begin
§‘Pm]ectsmngs & [EE]y /¢ Toggle LEDs on PORTA
E\@DEVIEE = { PORTA not PORTA;

Name: ATMEGATG - // Delay 1660 ms
Delay ms(1000);
% end;
4 MU Clock 2ol cna.
Frequency: 5.000000] MHz
written in compiler code editor window
< [3

Messages | Quick Converter
© ¥ Errors ¥ Warnings ¥ Hints
Line Message ... Message Text Unit
0 1184 StaticRAM (bytes): 0 Dynamic RAM (bytes): 1024 Static RAM (bytes): 0 Dynamic RAM (bytes): 1024
i 1184 Used ROM (bytes): 128 (1%) Free ROM (bytes): 14208 (99%) Used ROM (bytes): 128 (1%) Free ROM (bytes): 14208 ...
0 145 Project Linked Successfully LedBlinking.mppav
o 140 Linked in 234 ms
o 141 Project LedBlinking. mppav' completed: 359 ms
0 103 Firished successfully: 18 Jul 2012, 12: LedBlinking.mppay

Ll i

20,25 Inset Compiled Ci\Users\Public\Doc

dBlinki

SR ES S8 %
LedBlinking.mppav |

B) Sources

Ledglinking.mpas

1) Binaries

1) Project Level Defines

IE2) Image Files
EEPROM Files

15 Active Comments Files

B

) output Files
{Z=7 Other Files

Library Mansger

i | B
milaoE |
@ [# ADc 7]
@ [@ Button
@ [F] CAN_SPI
@ [¥ Compact_Flash
@[] Compact_Flash_FAT1S
@ [¥ Conversions
@ [@ c_Type
@[] EePrOM
@ [¥] EPSON_S1D13700
@ [@ FLasH
® Gled
Gled_Fonts
@ Keypadax4
- @ Ld
Led_Constants i
@ [¥] Manchester
@ MemManager
@ [@] Mmc
[} Mmc_FAT16
Mmc_FAT15_Defs
@ One_Wire
@ [¥] Port_Expander
@ ¥ Ps2
G (@] Pamt
@ [@ PwMishit
@

5. Building the Source

When we are done writing our first
LedBlinking code, we can now build
the project and create a .HEX file
which can be loaded into our target
microcontroller, so we can test the
program on real hardware. “Building”

includes compilation,

Build | Run Tools Help

|"& Build Ctrl+F9 |
Rebuild All Sources
& Build All Pr ts Shift+Fo

Stop Build All

Alt+F9

Cirl+F12

Cirl+F11

% Build + Program

linking and

optimization which are done automatically. Build your code by clicking
on the #. icon in the main toolbar, or simply go to Build menu and
click Build [CTRL+F9]. Message window will report the details of
the building process (Figure 5-2). Compiler automatically creates

necessary output files.

LedBlinking.hex (Figure 5-1) is among them.

i SN LS

Messages |E QuickConverhar|

Mame Date modified Type Size

[] LedBlinking.mcl 2012-07-18 1218 PM Windows Media C... 2KB
|- LedBlinking.mppav_... 2012-07-13 1218 PM TXT File L KB
|| LedBlinking.user.dic 2012-07-18 1218 PM Text Document 0KB
= LedBlinking.log 2012-07-18 1218 PM Text Document KB
|} LedBlinking.rmpas 2012-07-18 1217 PM MPAS File 1KB
I LedBlinking.mppav ~ 2012-07-1812:18 PM mikroPascal proje... 2KB
=] LedBlinking.lst 2012-07-18 12:18 PM LST File 469 KB

l |*] LedBlinking.hex 2012-07-18 12:18 PM HEX File 1 KB
|| LedBlinking.dit 2012-07-18 12:18 PM DLT File 1KB
|_| LedBlinking.dbg 2012-07-18 12:18 PM DBG File 41 KB
% LedBlinking.mpas.ini 2012-07-18 1217 PM Configuration sett.., 1 KB
|Z] LedBlinking.cfg 2012-07-18 12218 PM CFG File 1LKB
|| LedBlinking.brik 2012-07-18 12:17 PM ERK File LKB
|| LedBlinking.bmk 2012-07-1812:17 PM BMEK File 1 KB
= LedBlinking.asm 2012-07-18 1218 PM ASM File 1 KB
|ﬂ LedBlinking.dct 2012-07-18 12:18 PM Adobe lllustrator 5... 32KkB

Figure 5-1: Listing of project files after building is done

i W Errors v \Warnings v Hints
Line Message ... Message Text Unit
a 1144 Static RAM (bytes): 0 Dynamic RAM (bytes): 1024 Static RAM (bytes): @ Dynamic RAM (bytes): 1024
1] 1144 Used ROM (bytes): 128 (1%:) Free ROM (bytes): 14208 {99%:) Used ROM {bytes): 128 {1%:) Free ROM (bytes): 14208 ...
a 145 Project Linked Successfully LedBlinking. mppay
0 140 Linked in 234 ms
a 141 Project 'LedBlinking.mppav' completed: 355 ms
a 103 Finished successfully: 18 Jul 2012, 12:18:07 LedBlinking.mppav
< | (1
(2 25 Insert G iled C\Users\PubliciDocuments\Work\LedBlinking.mpas

Figure 5-2: After the successful compilation and linking, the message window should look something like this

S

If you need to change the target microcontroller or clock speed, you don't have to go through the new project wizard all over again. This can be
done quickly in the Edit Project window. You can open it using Project->€dit Project [CTRL+SHIFT+E] menu option.

P @
Edit Project

\7) Application {Boot Flash Section can be used)

2 B

IEcot Flash section size=1024 words; Boot start address=$1C00

[st@rtup tme: s 6 +0ms

[Ext. ack

™ Heap
Size 2000

Configuration Registers

===
l MCU and Oscillator
OCDEN BOOTRST
e acorr veutane
R SPIEN o
Oscillator Frequency [MHz] 8.00000
EESAVE
Program Memory is used for
[EDD disabled '] @ Application (Boot Flash Section is reserved)

LOoW = 0xCO = 1100 0000 i

HIGH = 0xD9 = 1101 1001

General Output Settings ...

——@ Default

Cancel

4

Figure 6-1: Edit Project Window

@

@

To change your MCU, just select the
desired microcontroller from the
dropdown list.

To change your settings enter
the oscillator value and adjust
configuration register bits using
drop-down boxes.

You can always load the default
configuration by clicking the
Default button.

For more experienced users there
is a box that displays generated
values of LOW and HIGH
configuration registers.

7. What's next? Erere L

o) é:'-,Users'n,Puinc‘Dommenisiq\l‘iikroéiéi{h'onikli

More examples

mikroPascal PRO for AVR® comes with 96 examples which demonstrate a variety of
features. They represent the best starting point when developing a new project. You
will find projects written for mikroElektronika development boards, additional boards,
internal MCU modules and other examples. This way you always have a starting point,
and don't have to start from scratch. In most cases, you can combine different simple
projects to create a more complex one. For example, if you want to build a temperature
datalogger, you can combine temperature sensor example with MMC/SD example and
do the job in much less time. All projects are delivered with a working .HEX files, so you
don't have to buy a compiler license in order to test them. You can load them into your
development board right away without the need for building them.

Community

If you want to find answers to your questions on many interesting topics we invite you
to visit our forum at http://www.mikroe.com/forum and browse through more than 170
thousand posts. You are likely to find just the right information for you.

On the other hand, if you want to download more free projects and libraries, or share your
own code, please visit the Libstock website http://www.libstock.com. With user profiles,
you can get to know other programmers, and subscribe to receive notifications on their code.

-)y Development systems
i [L, BIGAVRG
. B L) EasyAVRS
. [@-|}) ADConlEDs

E! |, Button

& Glod

E| ., Keypad 4x4
B Led

El-) Led Blinking

E LedBlinking.mppav
i- B Led_Curtain.mppav

@..
-

, One Wire
| Port Expander
#- 4 PS2keyboard
& L) Serial LCD (COG 2x15)
- jy Touch Panel
@ , UART
E- |l USBUART
, Extra Boards
, Can Spi
| Compact Flash

@ || DAC (SoftsPI)
. B} DAC(sPD)
. B) EEPROM (TWI)

Figure 7-1: Project explorer window
enables you to easily access provided
examples and load them quickly

s

m

DISCLAIMER

All the products owned by MikroElektronika are protected by copyright law and international copyright treaty. Therefore, this manual is to be treated as any
other copyright material. No part of this manual, including product and software described herein, may be reproduced, stored in a retrieval system, translated or
transmitted in any form or by any means, without the prior written permission of MikroElektronika. The manual PDF edition can be printed for private or local use,
but not for distribution. Any modification of this manual is prohibited. MikroElektronika provides this manual ‘as is’ without warranty of any kind, either expressed
or implied, including, but not limited to, the implied warranties or conditions of merchantability or fitness for a particular purpose.

MikroElektronika shall assume no responsibility or liability for any errors, omissions and inaccuracies that may appear in this manual. In no event shall
MikroElektronika, its directors, officers, employees or distributors be liable for any indirect, specific, incidental or consequential damages (including damages for
loss of business profits and business information, business interruption or any other pecuniary loss) arising out of the use of this manual or product, even if
MikroElektronika has been advised of the possibility of such damages. MikroElektronika reserves the right to change information contained in this manual at any
time without prior notice, if necessary.

HIGH RISK ACTIVITIES

The products of MikroElektronika are not fault - tolerant nor designed, manufactured or intended for use or resale as on - line control equipment in hazard-
ous environments requiring fail - safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic
control, direct life support machines or weapons systems in which the failure of Software could lead directly to death, personal injury or severe physical
or environmental damage (‘'High Risk Activities'). MikroElektronika and its suppliers specifically disclaim any expressed or implied warranty of fitness for
High Risk Activities.

TRADEMARKS

The MikroElektronika name and logo, the MikroElektronika logo, mikroC™, mikroBasic™, mikroPascal™, mikroProg™, EasyAVR6™, mikromedia™ for XMEGA®,
mikromedia™ for ATMEGA®, and Ready for AVR® are trademarks of MikroElektronika. All other trademarks mentioned herein are property of their respective
companies. All other product and corporate names appearing in this manual may or may not be registered trademarks or copyrights of their respective companies,
and are only used for identification or explanation and to the owners’ benefit, with no intent to infringe.

Copyright © MikroElektronika, 2012, All Rights Reserved.

If you want to learn more about our products, please
visit our website at www.mikroe.com. If you are
experiencing some problems with any of our products or
just need additional information, please place your ticket
at www.mikroe.com/esupport If you have any questions,
comments or business proposals, do not hesitate to
contact us at office@mikroe.com

Designed by
Mikro€Elektronika,
November 2012.

Creating the first project in
mikroPascal PRO for AVR ver. 2.00

0"100000 " 022900

