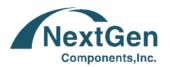


SPECIFICATION SHEET

SPECIFICATION SHEET NO.	P1125- GT225M050HDABA
DATE	Nov.25, 2022
REVISION	A1
DESCRIPITION	Through Hole Low Impedance Aluminum Electrolytic Capacitors, Radial Type GT series, 2 Pins, Capacitance: 2.2μF, Tolerance ±20%, Voltage 50V, Case size: Ø5.0*L11mm, Ripple Current 53mA, Max. Impedance: 2.2Ω Load Life:5000 Hours Sleeve: PET, Operating Temp. Range -40°C ~+105°C RoHS/RoHS III Compliant & Halogen Free Package in Bulk, 500pcs/Bag
CUSTOMER	
CUSTOMER PART NUMBER	
CROSS REF. PART NUMBER	
ORIGINAL PART NUMBER	Aillen CBE225M1HHGTD11RR
PART CODE	GT225M050HDABA

VENDOR APPROVE

Issued/Checked/Approved



DATE: Nov.25, 2022

CUSTOMER APPROVE	
DATE:	
11/25/2022	1

DIP ALUMINUM ELECTROLYTIC CAPACITORS GT SERIES

MAIN FEATURE

- Through Hole Low Impedance Aluminum Electrolytic Capacitors, Radial Type
- Long Load Life
- RoHS Complaint And Halogen Free
- Tape Package And Lead Cut 3.5~7.0mm Optional

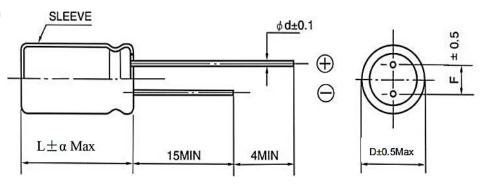
APPLICATION

• For Standard Circuit Like Coupling Filter And Energy Storage Etc.

PART CODE GUIDE

GT	225	М	050	н	D	Α	В	Α
1	2	3	4	5	6	7	8	9

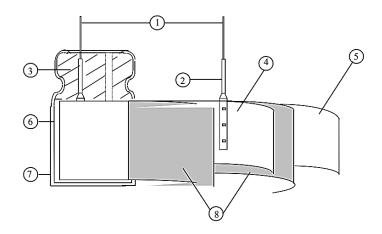
- 1) GT: Through Hole Low Impedance Aluminum Electrolytic Capacitors, Radial Type, GT series
- 2) **225**: Rated Capacitance Code, 105: 1.0μF; **225: 2.2μF**; 335: 3.3μF; 475: 4.7μF; 685: 6.8μF; 106: 10μF; 226: 22μF; 336: 33μF; 476: 47μF; 686: 68μF; 107: 100μF; 227: 220μF; 337: 330μF; 477: 470μF
- 3) M: Capacitance tolerance code, M: ±20%; V: -10% ~ ±20%; R: -0~ ±20%
- 4) **050**: Rated Voltage Code, 6V3: 6.3V; 010: 10V; 016:16V; 025: 25V; 035: 35V; **050**: **50V**; 063: 63V; 100: 100V; 160: 160V 200: 200V; 250: 250V; 350: 350V; 400: 400V; 450V: 450V
- 5) H: Environmental Requirements code, R: RoHS Complaint; H: RoHS III Complaint & Halogen Free
- 6) **D**: Aluminum Case size code, **D**: **Ø5.0mm**; E: Ø6.3mm; F: Ø8.0mm; G: Ø10.0mm; I: Ø12.5mm; J: Ø13.0mm; K: Ø16.0mm L: Ø18.0mm; N: Ø22.0mm
- 7) **A**: Aluminum case Heigh code, 7: L7.0mm; **A**: L11mm; B: L11.5mm; C: L12mm; D: L12.5mm; E: L20mm; F: L21.5mm; G: L31.5mm; H: L35mm; J: L25mm; K: L30mm;
- 8) B: Package in Bulk, 500pcs/Bag
- 9) A: Internal control or Special Code (A~Z or 1~9)

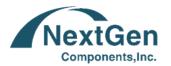


DIP ALUMINUM ELECTROLYTIC CAPACITORS GT SERIES

Image for reference

GT Series
Case Ø5.0*L11mm


Symbol	Dimension (mm)
D	Ø5.0
F	2.0
d	Ø0.50
L	11.0+/-α
α	1.5


DIP ALUMINUM ELECTROLYTIC CAPACITORS GT SERIES

CONSTRUCTION

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be impregnated with electrolyte will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber, then finished by putting on the vinyl sleeve.

No.	Component	Material
1	Lead Line	Tinned CP Wire (Pb Free)
2	Terminal	Aluminum Wire
3	Sealing Material	Rubber
4	Al-Foil (+)	Formed Aluminum Foil
5	Al-Foil (-)	Etched aluminum foil or formed Aluminum Foil
6	Case	Aluminum case
7	Sleeve	PET
8	Separator	Electrolyte paper

DIP ALUMINUM ELECTROLYTIC CAPACITORS GT SERIES

CHARACTERISTICS

Standard atmospheric conditions

The standard range of atmospheric conditions for making measurements/test as follows:

Ambient temperature: 15°C to 35°C

Relative humidity: 45% to 85% Air Pressure: 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature: 20°C \pm 2°C

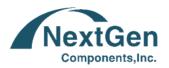
Relative humidity: 60% to 70%

Air Pressure: 86kPa to 106kPa

As to the detailed information, please refer to following Table 1 and Table 2

Table 1

ITEM	CHARACTERISTICS
Operating Temperature Range	-40~+105°C
Rated Voltage Range	50 V
Capacitance Range	2.2 μF
Capacitance Tolerance at 20°C, 120Hz	\pm 20%

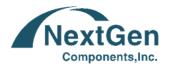


DIP ALUMINUM ELECTROLYTIC CAPACITORS GT SERIES

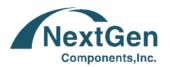
Table 2

											Table	2 _
ITEM					СН	ARAC	TERIS	TICS				
Rated Voltage (WV)/Surge Voltage (SV)		WV	6.3		10	16	2	5	35	50	63	
(viv)		SV	8.0	1	13	20	3	2	44	63	79	
		WV	100									
		SV	125									
Nominal capacitance (Tolerance)	Mea Mea	ndition> asuring Fr asuring Vo asuring Te	ltage : N	Not mo	re than		ms					
	Sha	ll be withir	n the sp	ecified	capacita	ance to	olerar	nce				
Leakage current	Con and <cr 6.3="" 60~="" c:="" c<="" i:="" le="" td=""><td>ndition> necting the then, measiteria> ~100V: I (µ/ 450V: I (µ/ rakage cur apacitance ated DC w</td><td>asure lea μΑ)≤0.03 Α)≤0.030 rent (μΑ ε (μF)</td><td>akage of the second sec</td><td>current. 3 (μΑ) w Ο (μΑ)</td><td></td><td></td><td></td><td></td><td>series foi</td><td>2 minu</td><td>tes</td></cr>	ndition> necting the then, measiteria> ~100V: I (µ/ 450V: I (µ/ rakage cur apacitance ated DC w	asure lea μΑ)≤0.03 Α)≤0.030 rent (μΑ ε (μF)	akage of the second sec	current. 3 (μΑ) w Ο (μΑ)					series foi	2 minu	tes
tanδ	See	ndition> Nominal o teria>	apacita	nce, fo	r measu	ring fr	reque	ncy, volt	age and t	emperat	ure.	
	\C''				İ		_	25	35	50	63	7
	CIT	W.V(\	/)	6.3	10	10	6	25				
		W.V(\ Tan δ M	-	6.3 0.22	0.19	0.1		0.14	0.12	0.10	0.09	
	CII		ax. /)									

6


DIP ALUMINUM ELECTROLYTIC CAPACITORS GT SERIES

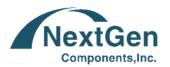
ITEM					CHAR	ACTEI	RISTICS			
Terminal strength	<cor< td=""><td>ndition></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></cor<>	ndition>								
	Tens	ile strengt	h of termi	nals Fixe	d the d	capac	itor, appli	ed forc	e to the te	rminal in
	lead	out direct	ion for 10	± 1 seco	nds. B	endir	ng strengt	h of ter	minals. Fix	ed the
			lied force t				•		•	
			onds, and t	then ben	t it for	r 90°	to its orig	inal pos	sition withi	n 2~3
	Seco	nds.								
		Diame	ter of lead	wire	Ten	isile f	orce N (kg	gf) B	ending for	ce N (kgf
		0.5	mm and le	ss		5 (0.51)		2.5 (0.	25)
		Over 0	.5mm to 0.	8mm		10	(1.0)		5 (0.5	51)
		eria> oticeable	changes sh	nall be fo	und, n	no bre	akage or	loosene	ess at the t	erminal
Temperature	<cor< td=""><td>ndition></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></cor<>	ndition>								
characteristics		Step	Testing	tempera	ture(°	C)	Time			
		1		20±2			Time to	reach t	hermal equ	uilibrium
		2	(-4	40) -25±	:3		Time to	reach t	hermal equ	uilibrium
		3		20±2			Time to	reach t	hermal equ	uilibrium
		4		105 ± 2			Time to	reach t	hermal equ	uilibrium
		5		20±2			Time to	reach t	hermal equ	uilibrium
	a. At at +2 not r b. In than	20°C: tan δ more than step 5, ta the specif -25 °C: Im	8 times of n δ shall be fied value. apedance (2) bltage (V)	rithin the its speci	limit of the limit of the limits	of tar alue. nit of t	iδ, The lea	akage c	urrent mea	asured shall hall not more
11/25/2022	Capa	icitance, ta	an δ , and in	mpedano	e shal	ll be n	neasured	at 120H	łz.	


DIP ALUMINUM ELECTROLYTIC CAPACITORS GT SERIES

ITEM		CHARACTERISTICS	
Load life test	<condition></condition>		
	According to IEC60384-4 No.4	4.13 methods, The capacito	or is stored at a temperature
	of 105 \pm 2 $^{\circ}$ C with DC bias vo	oltage plus the rated ripple	current for 2000+48/0 hours.
	(The sum of DC and ripple pe	ak voltage shall not exceed	the rated working voltage)
	Then the product should be t	ested after 16 hours recov	ering time at atmospheric
	conditions. The result should	meet the following table:	
	Load life	6.3~10V	16~100V
	ф5~ф6.3	4000H	5000H
	ф8~ф10	6000H	7000H
	>ф10	8000H	10000H
	<criteria> The characteristic shall meet</criteria>	the following requirement	s
	Leakage current	Value in 4.3 sh	all be satisfied
	Capacitance Change	Within $\pm 20\%$	of initial value
	tanδ	Not more than 200% of	of the specified value.
	Appearance	There shall be no lea	akage of electrolyte.
Shelf life test	<condition></condition>		
	The capacitors are then store	d with no voltage applied a	at a temperature of 105±2°C
	for 1000+48/0 hours. Followi	ng this period the capacito	rs shall be removed from the
	test chamber and be allowed	to stabilized at room temp	perature for 4~8 hours. Next
	they shall be connected to a s	series limiting resistor(1k±1	$.00\Omega$) with D.C. rated voltage
	applied for 30min. After whic	h the capacitors shall be di	scharged, and then, tested
	the characteristics. <criteria> The characteristic shall meet</criteria>	the following requirement	s.
	Leakage current	Value in 4.3 shall	be satisfied
	Capacitance Change	Within \pm 20% of	initial value
	tanδ	Not more than 200% of t	he specified value.
	Appearance	There shall be no leaka	ge of electrolyte.
	Remark: If the capacitors are	stored more than 1 year, t	he leakage current may
	increase. Please apply voltage	e through about 1 K Ω resis	tor, if necessary.

DIP ALUMINUM ELECTROLYTIC CAPACITORS GT SERIES

ITEM		CHARACTERISTICS
Surge test	<condition> Applied a surge voltage to the</condition>	e capacitor connected with a (100 \pm 50)/CR (K Ω)
	resistor. The capacitor shall be	e submitted to 1000 cycles, each consisting of
	charge of 30 \pm 5s, followed d	ischarge of 5 min 30s. The test temperature shall be
	15~35°C. CR :Nominal Capacit	tance (μF)
	<criteria></criteria>	
	Leakage current	Not more than the specified value
	Capacitance Change	Within \pm 15% of initial value
	tanδ	Not more than the specified value
	Appearance	There shall be no leakage of electrolyte.
	Attention: This test simulates applicable to such over voltage	over voltage at abnormal situation only. It is not
	applicable to such over voltage	де из оттентируней.
Solderability test	<condition></condition>	
	The capacitor shall be tested	under the following conditions: Soldering
	temperature : 245±3°C	
	Dipping depth : 2mm	
	Dipping speed : 25±2.5mm/s	
	Dipping time : 3±0.5s <criteria< td=""><td>a></td></criteria<>	a>
	<criteria></criteria>	
	Coating quality : A minimum o	of 95% of the surface being immersed
Impedance	<condition></condition>	
	Measuring frequency:100kHz	;
	Measuring temperature:20±2	°C
	Measuring point: 2mm Max. f	rom the surface of a sealing rubber on the lead wire.
	<criteria></criteria>	
	(20°C)Less than the initial lim	it(See Point 5).


DIP ALUMINUM ELECTROLYTIC CAPACITORS GT SERIES

ITEM			CHARACTERISTICS
Vibration test	<condition></condition>		
	The following conditions s	hall be	applied for 2 hours in each 3 mutually
	perpendicular directions.		
	Vibration frequency range	: 10Hz	: ~ 55Hz
	Peak to peak amplitude : 1	1.5mm	
	Sweep rate : 10Hz ~ 55Hz	~ 10Hz	in about 1 minute
	Mounting method: The ca	pacito	with diameter greater than 12.5mm or longer than
	25mm must be fixed in pla	ace wit	h a bracket.
	4m	m or less	Within 30° To be soldered
	<criteria> After the test, t</criteria>	he follo	owing items shall be tested:
	Inner construction	No	intermittent contacts, open or short circuiting. No damage of tab terminals or electrodes
	Appearance	1	mechanical damage in terminal. No leakage of ectrolyte or swelling of the case. The markings shall be legible
Resistance to solder heat test	<condition></condition>	•	
	Terminals of the capacitor	shall b	e immersed into solder bath at
	260±5°Cfor10±1seconds o	or 400±	10°Cfo for3 01 seconds to 1.5~2.0mm from the
			citor shall be left under the normal temperature and
	normal humidity for 1~2 h	iours b	erore measurement.
	<criteria></criteria>		
	Leakage curren	t	Not more than the specified value
	Capacitance Char	nge	Within $\pm 10\%$ of initial value
	tanδ		Not more than the specified value
	Appearance		There shall be no leakage of electrolyte.

DIP ALUMINUM ELECTROLYTIC CAPACITORS GT SERIES

ITEM		CHARACTERISTICS
Change of temperature test	<condition> Temperature cycle</condition>	: According to IEC60384-4 No.4.7 methods, capacitor
	shall be placed in an oven, the	condition according as below:
	Temperature	Time
	(1)+20°C	≤ 3 Minutes
	(2)-40°C	30±2 Minutes
	(3)+105°C	30±2 Minutes
	(1)	To (3) = 1 cycle, Total 5 Cycles
	<criteria></criteria>	
	The characteristic shall meet th	e following requirement.
	Leakage current	Not more than the specified value.
	Tan δ	Not more than the specified value.
	Appearance	There shall be no leakage of electrolyte.
	for 500±8 hours in an atmosphe	$60384-4$ No.4.12 methods, capacitor shall be exposed ere of $90^{\circ}95\%$ R H .at $40\pm2^{\circ}$ C, the characteristic change
	for 500±8 hours in an atmosphe shall meet the following require	ere of 90~95%R H .at 40±2°C, the characteristic change
	for 500±8 hours in an atmosphe shall meet the following require <criteria></criteria>	ere of 90~95%R H .at 40±2°C, the characteristic change ement.
	for 500±8 hours in an atmosphe shall meet the following require <criteria> Leakage current</criteria>	ere of 90~95%R H .at 40±2°C, the characteristic change ement. Not more than the specified value.
	for 500±8 hours in an atmosphe shall meet the following require <criteria> Leakage current Capacitance Change</criteria>	ere of $90^95\%$ R H .at $40\pm2^{\circ}$ C, the characteristic change ement. Not more than the specified value. Within $\pm20\%$ of initial value
	for 500±8 hours in an atmosphe shall meet the following require <criteria> Leakage current Capacitance Change Tan δ</criteria>	ere of 90~95%R H .at $40\pm2^{\circ}$ C, the characteristic change ement. Not more than the specified value. Within $\pm20\%$ of initial value Not more than 120% of the specified value.
	for 500±8 hours in an atmosphe shall meet the following require <criteria> Leakage current Capacitance Change</criteria>	ere of $90^95\%$ R H .at $40\pm2^{\circ}$ C, the characteristic change ement. Not more than the specified value. Within $\pm20\%$ of initial value
Vent test	for 500±8 hours in an atmosphe shall meet the following require <criteria> Leakage current Capacitance Change Tan δ Appearance <condition> The following test only apply to with vent. D.C. test</condition></criteria>	Pere of 90~95%R H .at 40±2°C, the characteristic change ement. Not more than the specified value. Within ±20% of initial value Not more than 120% of the specified value. There shall be no leakage of electrolyte. those products with vent products at diameter ≥Ø 6.3 at its polarity reversed to a DC power source. Then a
Vent test	for 500±8 hours in an atmosphe shall meet the following require <criteria> Leakage current Capacitance Change Tan δ Appearance <condition> The following test only apply to with vent. D.C. test The capacitor is connected with current selected from Table 2 is</condition></criteria>	Pere of 90~95%R H .at 40±2°C, the characteristic change ement. Not more than the specified value. Within ±20% of initial value Not more than 120% of the specified value. There shall be no leakage of electrolyte. those products with vent products at diameter ≥Ø 6.3 its polarity reversed to a DC power source. Then a sapplied.
Vent test	for 500±8 hours in an atmosphe shall meet the following require <criteria> Leakage current Capacitance Change Tan δ Appearance <condition> The following test only apply to with vent. D.C. test The capacitor is connected with current selected from Table 2 is Diameter (mm)</condition></criteria>	Pere of 90~95%R H .at 40±2°C, the characteristic change ement. Not more than the specified value. Within ±20% of initial value Not more than 120% of the specified value. There shall be no leakage of electrolyte. those products with vent products at diameter ≥Ø 6.3 at its polarity reversed to a DC power source. Then a sapplied. DC Current (A)
Vent test	for 500±8 hours in an atmosphe shall meet the following require <criteria> Leakage current Capacitance Change Tan δ Appearance <condition> The following test only apply to with vent. D.C. test The capacitor is connected with current selected from Table 2 is Diameter (mm) 22.4 or less <criteria></criteria></condition></criteria>	Pere of 90~95%R H .at 40±2°C, the characteristic change ement. Not more than the specified value. Within ±20% of initial value Not more than 120% of the specified value. There shall be no leakage of electrolyte. those products with vent products at diameter ≥Ø 6.3 at its polarity reversed to a DC power source. Then a sapplied. DC Current (A) 1 dangerous conditions such as flames or dispersion of

DIP ALUMINUM ELECTROLYTIC CAPACITORS GT SERIES

CASE SIZE & MAX RIPPLE CURRENT

Rated Voltage (V)	Capacitance (Tol.+/-20%) (μF)	Case Size Ø*L (mm)	Surge Volt (V)	Tanδ @+105°C, 120Hz	Load Life (Hrs)	Impedance @100KHz/20°C (Ω)	Ripple Current @+105°C, 100KHz (mA r.m.s.)
50	2.2	5.0*11	63	0.10	5000	2.2 Max.	53

FREQUENCY COEFFICIENT OF ALLOWABLE RIPPLE CURRENT

Cap.	Frequency	50Hz(60Hz)	120Hz	1KHz	10KHz	≥100kHz
2.2μF	Coefficient	-	0.40	0.75	0.90	1.00

Remark:

- 1) Specification are subject to change without notice should a safety or technical concern arise regarding the product ,please be sure to contact our sales offices
- 2) The sizes in the above table are all general specifications. If you need other specifications, please contact us \circ

DIP ALUMINUM ELECTROLYTIC CAPACITORS GT SERIES

ATTENTION

When using Aluminum Electrolytic Capacitor, please pay attention to the points listed below. If the following types of electrical loads are applied to Aluminum Electrolytic Capacitor, rapid deterioration of electrical property occurs:

- Reverse voltage
- · Overvoltage exceeding rated working voltage
- Current exceeding rated ripple current
- Severe charging/discharging

At such time, severe heat is generated, gas electrolyte leaks from the sealed area, and pressure relief vent operates due to increase of internal pressure. In the worst case, explosion or ignition may occur, and along with destruction of the capacitor combustibles may burst out.

1.CAUTION DURING CIRCUIT DESIGN

1) OPERATIONAL ENCIRONMENT, MOUNTING ENVIRONMENT AND CONDITIONS Ensure that operational and mounting conditions follow the specified conditions detailed in the catalog and specification sheets

2) OPERATING TEMPERARURE, RIPPLE CURRENT AND LOAD LIFE.

Operating temperature and applied ripple current should be within the specified value in the catalog or specification sheets. Do not use Aluminum Electrolytic Capacitors at temperature which exceeds the specified category temperatures range. Do not apply excessive current to the capacitors, which exceeds the specified rated ripple current. During circuit design ,please ensure that capacitors are selected to match with the lifetime requirements of the application

3) APPLICATION

Aluminum Electrolytic Capacitors are normally polarized .Reverse voltage or AC Voltage should not be applied.

When polarity may flip over, non-polar type should be used, but the non-polar type cannot be used for AC. Standard Aluminum Electrolytic Capacitors are not suitable for rapid charge and discharge applications. Group in your area about specialty signed capacitors for rapid charge and discharge.

4) APPLIED COLTAGE

Do not exceed the rated voltage of capacitors

5) INSULATION

Aluminum Electrolytic Capacitors should be electrically isolated from the following. Aluminum case, cathode lead wire, anode lead wire and circuit pattern; Auxiliary terminals of snap-in type, anode terminal, outward terminals and circuit pattern. The PVC sleeve of Aluminum Electrolytic Capacitors is not recognized as an insulator, and therefore ,the standard capacitor should not be used in a place where insulation function is needed. Please consult with Shanghai Suzuki Electronics or sales office of Suzuki Techno Group in your area, if you require a higher grade of insulating sleeve.

DIP ALUMINUM ELECTROLYTIC CAPACITORS GT SERIES

6) CONDITIONS OF USE

The following environments should be avoided when suing Aluminum Electrolytic Capacitors. Damp conditions such as water ,salt water or oil spray or fumes, high humidity or humidity condensation situations. Hazardous gas/fumes such as hydrogen sulfide, sulfurous acid gas, nitrous acid, chlorine gas, ammonia or bromine gas; Exposure of ozone ,ultraviolet rays or radiation; Severe vibration or shock which exceeds the condition specified in the catalog or specification sheet.

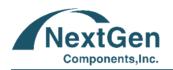
7) CONSIDERATION TO ASSEMBLY CONDITION

In designing a circuit, the following matters should be ensured in advance to the capacitor's assembly on the printed circuit board (PC board) Design the appropriate hole spacing to match the lead pitch of capacitors; Do not locate any wiring and circuit patterns directly above the capacitor's vent; Ensure enough free space above the capacitor's vent. The recommended space is specified in the catalog or specification sheets; In case the capacitor's vent is facing the PC board, make a gas release hole on PC board. The sealing side of the screw terminal type should not face down in the application. When the capacitors are mounted horizontally, the anode screw terminals must be positioned at upper side..

8) CONSIDERATION TO CIRCUIT DESIGN

Any copper lines or circuit patterns should not be laid under the capacitor; Parts which radiate heat should not be placed close to the reverse side of the Aluminum Electrolytic Capacitors on the PC board.

9) OTHERS


Performance of electrical characteristics of Aluminum Electrolytic Capacitors is affected by variation of operating temperature and frequency. Consider this variation when designing the circuit. Excessive holes and connection hole between both sides on the PC board should be avoided around or under the mounting area of the Aluminum Electrolytic Capacitors on double sided or multilayer PC board. Torque of tightening screw terminals should not exceed the specified maximum value which is described in the catalog and specification sheets. Consider current balance when 2 or more Aluminum Electrolytic Capacitors are connected in parallel. Use bleeding resistors when 2 or more Aluminum Electrolytic Capacitors are connected in series. In this case, the resistors should be connected parallel to the capacitors.

2. CAUTION FOR ASSEMBLING CAPACITORS

1) CAUTION BEFORE ASSEMBLY

Aluminum Electrolytic Capacitors cannot be recycled after mounting and applying electricity in unit. The capacitors, which are removed from PC board for the purpose of measuring electrical characteristics at the periodical inspection, should only be recycled for the same position.; Aluminum Electrolytic Capacitors may accumulate charge naturally during storage. In this case, discharge through a 1KOHM resistor before use; Leakage current of Aluminum Electrolytic Capacitors may be increased during long storage time. In this case, the capacitors should be subject to voltage treatment through a 1KOHM resistor before use.

11/25/2022 14

DIP ALUMINUM ELECTROLYTIC CAPACITORS GT SERIES

2) IN THE ASSEMBLY PROCESS-1

Ensure rated voltage and capacitance of the capacitors before mounting; Ensure capacitors polarity before mounting; Do not use a capacitor which has been dropped onto a hard surface; Do not use a capacitor with damaged or dented cased or seals.

3) IN THE ASSEMBLY PROCESS-2

Capacitors should be mounted after confirmation that hole spacing on PC board matches the lead pitch of the capacitors; The snap-in type of capacitors should be mounted firmly on the PC board without a gap between the capacitor body and the surface of PC board;. Avoid excessive force when clinching lead wire during auto-insertion process; Avoid excessive shock to capacitors by automatic inserting machine, during mounting, parts inspection or centering operations; Please utilize supporting material such as strap of adhesive to mount capacitors to PC board when it is anticipated that vibration or shock is applied.

4) SOLDERING

Soldering conditions (temperature and time) should be within the specified conditions which are described in the catalog or specification sheets; In case lead wire reforming is needed due to inappropriate pitch between capacitor and holes on PC board, stress to the capacitor should be avoided; In case of maintenance by soldering iron, if it is required to detach the capacitor, it should be removed from PC board after solder has melted sufficiently in order to reduce stress on the lead wires/terminals of the capacitor; Soldering iron should never touch the capacitor's body.

5) FLOW SOLDERING

Do not dip capacitor's body into melted solder. It should only be soldered on the reverse side of the PC board on which the capacitors are mounted; Soldering condition (preheat, soldering temperature, dipping time)should be within the specified standard which is described in the catalog or specification sheets; Flux should not be adhered to capacitor's body but only to its terminals; Other devices which are mounted close to capacitors should not touch the capacitors.

6) REFLOW SOLDERING

Reflow soldering conditions(preheat, soldering, temperature, reflow time)should follow the specified standard which is described in the catalog or specification sheets; Heating standard should depend on surface of the capacitor color or materials when infrared rays are used because the capacitor's heat absorption depends on the surface color or materials. Check heat condition; Standard Aluminum Electrolytic Capacitors cannot withstand two or more reflow processes.

7) HANDLING AFTER SOLDERING Do not bend or twist the capacitor's body after soldering on PC board; Do not pick-up or move PC board by holding the soldered capacitors; Do not hit the capacitors and isolate capacitors from the PC board or other device when stacking PC boards in store.

DIP ALUMINUM ELECTROLYTIC CAPACITORS GT SERIES

8) PC BOARD CLEANING

Standard Aluminum Electrolytic Capacitors should be free from halogenated solvents during PC board cleaning after soldering

9) ADHESIVES AND COATNG MATERIALS

Do not use halogenated adhesives and coating materials to fix Aluminum Electrolytic Capacitors; Flux between the surface of the PC board and sealing of capacitors should be cleaned before using adhesives or coating materials; Solvents should be dried up before using adhesives or coating materials; Do not cover up all the sealing area of capacitors with adhesives or coating materials, make coverage only partial.

3. CAUTION DURING USE OF CAPACITORS IN SETS

- 1) Do not touch the terminals of capacitors;
- 2) Do not connect electrical terminals of the capacitors. Keep the capacitors free from conductive solution, such as acid, alkali and so on;
- 3) Ensure the operational environment of the equipment in which the capacitor has been built is within the specified condition mentioned in the catalog or specification sheets.

4. MAINTENANCE

- 1) Periodical inspection should be carried out for the capacitors, which are used with industrial equipment;. Check the following points at the inspection.
- 2) Visual inspection to check pressure relief vent open or leakage of electrolyte.
- 3) Electrical characteristics: leakage current, capacitance, dissipation factor and the other points which are mentioned in the catalog or specification sheets.

5. EMERGENCY ACTION

- 1) If the pressure relief vent is open and some gas blows out from the capacitor, turn the main switch of the equipment off or pull out the plug from the power outlet immediately.
- 2) During pressure relief vent operation, extremely hot gas (over 100°C)may blow out from the vent area of the capacitors. So keep your face and skin away from capacitors during its operation. In case of eye contact, flush the open eye(s)with large amount of clean water immediately. In case of ingestion, gargle with water immediately, and do not swallow .Also do not touch electrolyte but wash skin with soap and water in case of skin contact.

6. STORAGE CONDITIO

- 1) Aluminum Electrolytic Capacitors should not be stored in high temperature or in high humidity. The suitable storage condition is 5°C-35°C, and less than 75% in relative humidity;
- 2) Aluminum Electrolytic Capacitors should not be stored in damp conditions such as water, salt water spray or oil spray;
- 3) Do not store Aluminum Electrolytic Capacitors in an environment full of hazardous gas (hydrogen sulfide gas, sulfurous acid gas, nitrous acid, chlorine gas, ammonia or bromine gas.

11/25/2022 16

DIP ALUMINUM ELECTROLYTIC CAPACITORS GT SERIES

- 4) Aluminum Electrolytic Capacitors should not be stored under exposure to ozone ,ultraviolet rays or radiation.
- 5) After one year, a capacitor should be reconditioned by applying rated voltage in series with a 1000Ω current limiting resistor for a time period of 30 minutes.

7. DISPOSAL

Please take either of the following actions in case of disposal. Incineration (high temperature of more than 800°C) after crushing the capacitor's body; Consignment to specialists of industrial waste.

DISCLAIMER

NextGen Component, Inc. reserves the right to make changes to the product(s) and or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information