
PHOTONIC Silicon Photodiode, Blue Enhanced Solderable Chips

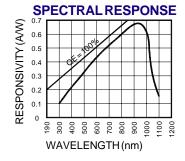
Photoconductive Type PDB-C603 Photovoltaic Type PDB-V603

FEATURES

- Blue enhanced
- Photovoltaic type
- Photoconductive type
- High quantum efficiency

DESCRIPTION: Low cost blue enhanced planar diffused

silicon solderable photodiode. The **PDB-V603** cell is designed for low noise, photovoltaic applications. The **PDB-C603** cell is designed for low capacitance, high speed, photoconductive


operation. They are available bare, PVC or buss wire leads.

APPLICATIONS

- Optical encoder
- Position sensor
- Industrial controls
- Instrumentation

ABSOLUTE MAXIMUM RATING (TA=25°C unless otherwise noted)

SYMBOL	PARAMETER .	PDB-	C603	PDB-	V603	UNITS	
01111202	17000021210		MAX	MIN	MAX	011110	
VBR	Reverse Voltage		75		25	V	
T _{STG}	Storage Temperature	-40	+125	-40	+125	∘C	
To	Operating Temperature Range	-40	+100	-40	+100	∘C	
Ts	Soldering Temperature		+224		+224	°C	
I	Light Current		500		500	mA	

ELECTRO-OPTICAL CHARACTERISTICS (TA=25°C unless otherwise noted)

SYMBOL	CHARACTERISTIC	TESTCONDITIONS	PDB-C603			PDB-V603			LINITO
			MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Isc	Short Circuit Current	H = 100 fc, 2850 K	28	32		25	30		μ A
ΙD	Dark Current	H = 0, V _R = 5 V*		3	5		5	10	nA
Rsн	Shunt Resistance	H = 0, V _R = 10 mV	18	40		30	60		MΩ
TC RsH	RsH Temp. Coefficient	H = 0, V _R = 10 mV		-8			-8		%/°C
Сл	Junction Capacitance	H = 0, V _R = 5 V**		25			350		рF
λrange	Spectral Application Range	Spot Scan	350		1100	350		1100	nm
λр	Spectral Response - Peak	Spot Scan		940			940		nm
VBR	Breakdown Voltage	I = 10 μA	25	50		5	15		V
NEP	Noise Equivalent Power	V _R = 0 V @ Peak	3 x 10 ⁻¹³ TYP		4 x 2 ⁻¹⁴ TYP			W/ √Hz	
tr	Response Time	RL = 1 KΩ V _R = 5 V**		12			400		nS

 $^{^*}VR = 100 \text{ mV}$ on Photovoltaic type $^{**}VR = 0 \text{ V}$ on Photovoltaic type