
## INTEGRATED CIRCUITS



Product data Supersedes data of 2001 Feb 13 2002 Dec 13

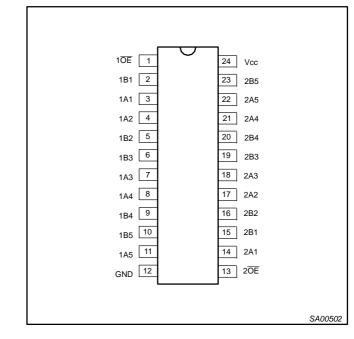


PHILIP

## **CBTS3384**

### **FEATURES**

- 5  $\Omega$  switch connection between two ports
- TTL compatible control input and output levels
- Undershoot protection included to prevent shoot through level changes
- Latch-up protection exceeds 500 mA per JESD78
- ESD protection exceeds 2000 V HBM per JESD22-A114, 200 V MM per JESD22-A115 and 1000 V CDM per JESD22-C101


### DESCRIPTION

The CBTS3384 provides ten bits of high-speed TTL-compatible bus switching. The low on-state resistance of the switch allows connections to be made with minimal propagation delay.

The CBTS3384 device is organized as two 5-bit bus switches with separate output-enable ( $\overline{OE}$ ) inputs. When  $\overline{OE}$  is LOW, the switch is on and port A is connected to B. When  $\overline{OE}$  is HIGH, the switch is open and high-impedance state exists between the two ports.

The CBTS3384 is characterized for operation from -40 to +85 °C.

### **PIN CONFIGURATION**

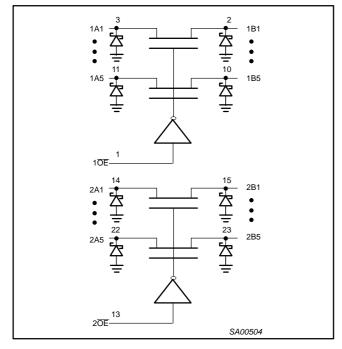


### **PIN DESCRIPTION**

| PIN NUMBER         | SYMBOL                    | NAME AND FUNCTION       |
|--------------------|---------------------------|-------------------------|
| 1, 13              | 1 <u>0E</u> , 2 <u>0E</u> | Output enables          |
| 3, 4, 7, 8, 11     | 1A1-1A5                   | Inputs                  |
| 14, 17, 18, 21, 22 | 2A1-2A5                   | Inputs                  |
| 2, 5, 6, 9, 10     | 1B1-1B5                   | Outputs                 |
| 15, 16, 19, 20, 23 | 2B1-2B5                   | Outputs                 |
| 12                 | GND                       | Ground (0 V)            |
| 24                 | V <sub>CC</sub>           | Positive supply voltage |

### QUICK REFERENCE DATA

| SYMBOL                               | PARAMETER                     | CONDITIONS<br>T <sub>amb</sub> = 25 °C; GND = 0 V | TYPICAL | UNIT |
|--------------------------------------|-------------------------------|---------------------------------------------------|---------|------|
| t <sub>PLH</sub><br>t <sub>PHL</sub> | Propagation delay<br>An to Yn | C <sub>L</sub> = 50 pF; V <sub>CC</sub> = 5 V     | 250     | ps   |
| C <sub>IN</sub>                      | Input capacitance             | $V_I = 0 V \text{ or } V_{CC}$                    | 4       | pF   |
| C <sub>OUT</sub>                     | Output capacitance            | Outputs disabled; $V_0 = 0 V$ or $V_{CC}$         | 10      | pF   |
| I <sub>CCZ</sub>                     | Total supply current          | Outputs disabled; $V_{CC}$ = 5.5 V                | 3       | μA   |


#### **ORDERING INFORMATION**

| PACKAGES                   | TEMPERATURE RANGE | ORDER CODE | DWG NUMBER |
|----------------------------|-------------------|------------|------------|
| 24-Pin Plastic SO          | -40 to +85 °C     | CBTS3384D  | SOT137-1   |
| 24-Pin Plastic SSOP        | -40 to +85 °C     | CBTS3384DB | SOT340-1   |
| 24-Pin Plastic SSOP (QSOP) | -40 to +85 °C     | CBTS3384DK | SOT556-1   |
| 24-Pin Plastic TSSOP       | -40 to +85 °C     | CBTS3384PW | SOT355-1   |

Standard packing quantities and other packaging data is available at www.philipslogic.com/packaging.

## CBTS3384

## LOGIC SYMBOL



## **FUNCTION TABLE**

| INP             | UTS               | OUTF    | PUTS    |
|-----------------|-------------------|---------|---------|
| 1 <del>0E</del> | 2 <mark>0E</mark> | 1A, 1B  | 2A, 2B  |
| L               | L                 | 1A = 1B | 2A= 2B  |
| L               | Н                 | 1A = 1B | Z       |
| н               | L                 | Z       | 2A = 2B |
| н               | н                 | Z       | Z       |

H = High voltage level

L = Low voltage level

Z = High impedance "off" state

## ABSOLUTE MAXIMUM RATINGS<sup>1, 2</sup>

| SYMBOL           | PARAMETER                     | CONDITIONS         | RATING       | UNIT |
|------------------|-------------------------------|--------------------|--------------|------|
| V <sub>CC</sub>  | DC supply voltage             |                    | -0.5 to +7.0 | V    |
| I <sub>IK</sub>  | DC input diode current        |                    | -50          | mA   |
| VI               | DC input voltage <sup>3</sup> |                    | -1.2 to +7.0 | V    |
| I <sub>SW</sub>  | DC output diode current       | V <sub>O</sub> < 0 | ±128         | mA   |
| T <sub>stg</sub> | Storage temperature range     |                    | -65 to +150  | °C   |

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150°C.

3. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

## **RECOMMENDED OPERATING CONDITIONS**

| SYMBOL           | PARAMETER                            | LIM | UNIT |      |
|------------------|--------------------------------------|-----|------|------|
|                  | PARAMETER                            | Min | Max  | UNIT |
| V <sub>CC</sub>  | DC supply voltage                    | 4.5 | 5.5  | V    |
| V <sub>IH</sub>  | High-level input voltage             | 2.0 |      | V    |
| V <sub>IL</sub>  | Low-level Input voltage              |     | 0.8  | V    |
| T <sub>amb</sub> | Operating free-air temperature range | -40 | +85  | °C   |

## **CBTS3384**

## DC ELECTRICAL CHARACTERISTICS

| SYMBOL                       | PARAMETER                                            | TEST CONDITIONS                                                                         |     | T <sub>amb</sub> = -40 to +85 °C |      |    |
|------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------|-----|----------------------------------|------|----|
|                              |                                                      |                                                                                         |     | Typ <sup>1</sup>                 | Max  |    |
| V <sub>IK</sub>              | Input clamp voltage                                  | V <sub>CC</sub> = 4.5 V; I <sub>I</sub> = -18 mA                                        |     | —                                | -1.2 | V  |
| l <sub>l</sub>               | Input leakage current                                | $V_{CC}$ = 5.5 V; $V_{I}$ = GND or 5.5 V                                                |     | —                                | ±1   | μΑ |
| I <sub>CC</sub>              | Quiescent supply current <sup>2</sup>                | $V_{CC}$ = 5.5 V; $I_O$ = 0, $V_I$ = $V_{CC}$ or GND                                    |     | —                                | 3    | μΑ |
| $\Delta I_{CC}$              | Additional supply current per input pin <sup>2</sup> | $V_{CC}$ = 5.5 V, one input at 3.4 V, other inputs at $V_{CC}$ or GND                   | _   | -                                | 2.5  | mA |
| CI                           | Control pins                                         | V <sub>I</sub> = 3.0 V or 0                                                             |     | 4                                | —    | pF |
| C <sub>I(OFF)</sub>          | Power-off leakage current                            | $V_{O} = 3.0 \text{ V or } 0, \overline{OE} = V_{CC}$                                   |     | 10                               | —    | pF |
|                              |                                                      | $V_{CC} = 4.5 \text{ V}; \text{ V}_{I} = 0 \text{ V}; \text{ I}_{I} = 64 \text{ mA}$    |     | 5                                | 7    |    |
| r <sub>on</sub> <sup>3</sup> | On-resistance                                        | $V_{CC} = 4.5 \text{ V}; \text{ V}_{I} = 0 \text{ V}; \text{ I}_{I} = 30 \text{ mA}$    |     | 5                                | 7    | Ω  |
|                              |                                                      | $V_{CC} = 4.5 \text{ V}; \text{ V}_{I} = 2.4 \text{ V}; \text{ I}_{I} = -15 \text{ mA}$ |     | 10                               | 15   |    |
| VP                           | Pass voltage                                         | $V_{I}$ = $V_{CC}$ = 5.0 V; $I_{O}$ = -100 $\mu$ A                                      | 3.4 | 3.6                              | 3.9  | V  |
| I <sub>UCP</sub>             | Undershoot static current protection                 | $V_{CC}$ = 5.0 V, $I_B$ = 400 $\mu A;$ $\overline{OE}$ = 5.0 V; $V_B \ge 3.0$ V         | _   | 8                                | —    | mA |

NOTES:

1. All typical values are at  $V_{CC} = 5 \text{ V}$ ,  $T_{amb} = 25 \text{ °C}$ . 2. This is the increase in supply current for each input that is at the specified TTL voltage level rather than  $V_{CC}$  or GND. 3. Measured by the voltage drop between the A and the B terminals at the indicated current through the switch. On-state resistance is determined by the lowest voltage of the two (A or B) terminals.

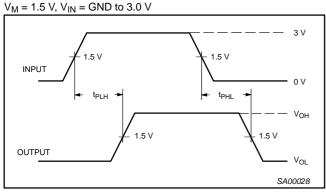
### **AC CHARACTERISTICS**

 $GND = 0 V; t_{R}; C_{L} = 50 pF$ 

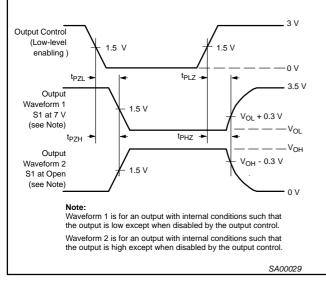
|                  | PARAMETER                                      |                 |                | LIMITS                   |      |      |  |
|------------------|------------------------------------------------|-----------------|----------------|--------------------------|------|------|--|
| SYMBOL           |                                                | FROM<br>(INPUT) | TO<br>(OUTPUT) | $V_{CC}$ = +5.0 V ±0.5 V |      | UNIT |  |
|                  |                                                |                 |                | Min                      | Max  |      |  |
| t <sub>pd</sub>  | Propagation delay <sup>1</sup>                 | A or B          | B or A         | —                        | 0.25 | ns   |  |
| t <sub>en</sub>  | Output enable time<br>to High and Low level    | ŌĒ              | A or B         | 1.0                      | 5.7  | ns   |  |
| t <sub>dis</sub> | Output disable time<br>from High and Low level | ŌĒ              | A or B         | 1.0                      | 5.2  | ns   |  |

NOTE:

1. This parameter is warranted but not production tested. The propagation delay is based on the RC time constant of the typical on-state resistance of the switch and a load capacitance of 50 pF, when driven by an ideal voltage source (zero output impedance).

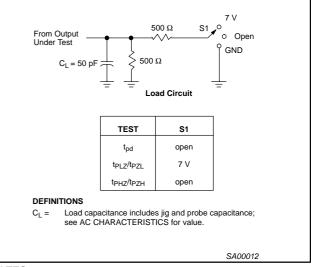

|                  |                                    | LIMITS |                               |      |    |
|------------------|------------------------------------|--------|-------------------------------|------|----|
| CYMDOL           |                                    |        |                               | UNIT |    |
| SYMBOL           | PARAMETER DESCRIPTION              |        | V <sub>CC</sub> = 5 V, ±0.5 V |      |    |
|                  |                                    | MIN.   | MEAN                          | MAX. |    |
| t <sub>PD</sub>  | Propagation delay (see Note 1)     | —      | —                             | 250  | pS |
| t <sub>PZH</sub> | Output enable time to High level   | 1.6    | 3.4                           | 5.6  | nS |
| t <sub>PHZ</sub> | Output enable time from High level | 1.7    | 3.3                           | 5.5  | nS |
| t <sub>PZL</sub> | Output enable time to Low level    | 2.3    | 4                             | 6    | nS |
| t <sub>PLZ</sub> | Output enable time from Low level  | 2.5    | 4.5                           | 6.6  | nS |

NOTE:


1. This parameter is warranted but not production tested. The propagation delay is based on the RC time constant of the typical on-state resistance of the switch and a load capacitance of 50 pF, when driven by an ideal voltage source (zero output impedance); at +25 °C.

## CBTS3384

### AC WAVEFORMS




#### Waveform 1. Input (An) to Output (Yn) Propagation Delays



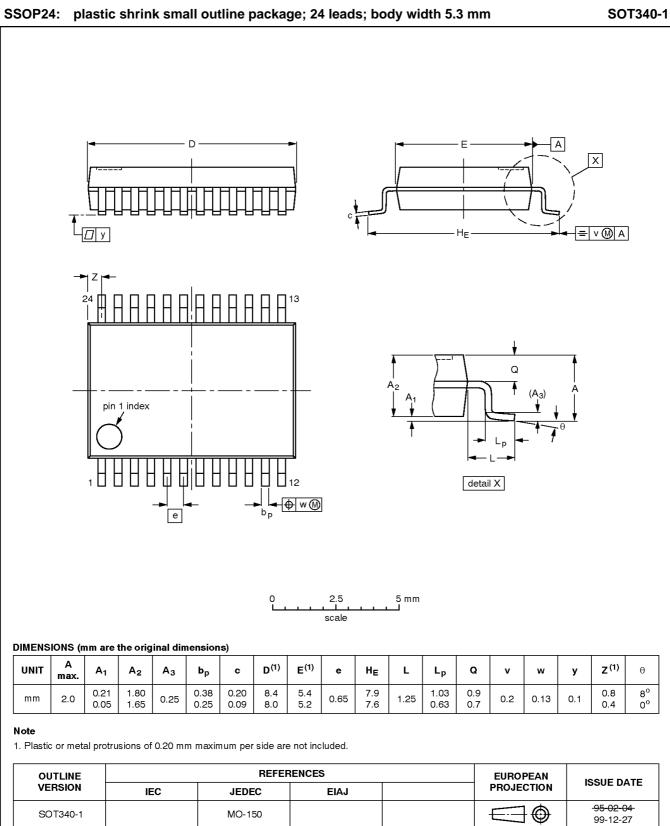
Waveform 2. 3-State Output Enable and Disable Times

### **TEST CIRCUIT AND WAVEFORMS**

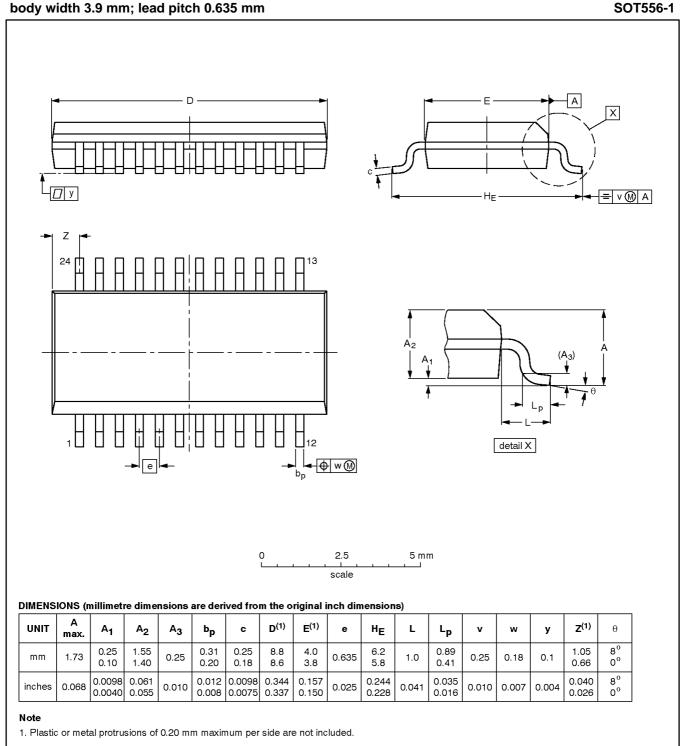


#### NOTES:

- 1. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  10 MHz, Z<sub>O</sub> = 50  $\Omega$ , t<sub>r</sub>  $\leq$  2.5 ns, t<sub>f</sub>  $\leq$  2.5 ns.
- The outputs are measured one at a time with one transition per measurement.

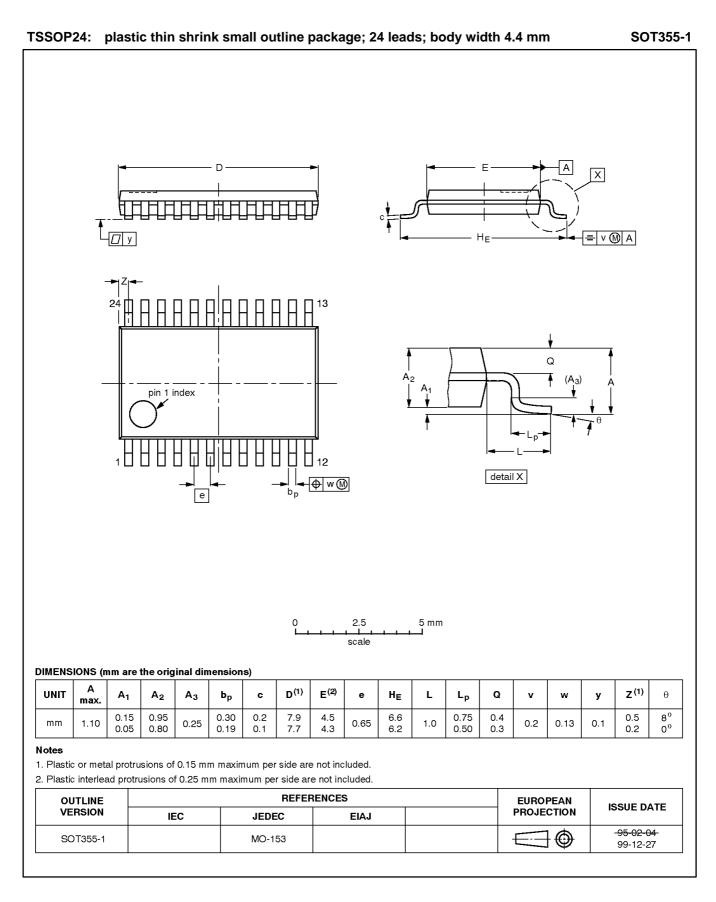

## CBTS3384

Product data




## **CBTS3384**

Product data




SSOP24: plastic shrink small outline package; 24 leads; body width 3.9 mm; lead pitch 0.635 mm



**CBTS3384** 

**CBTS3384** 



## **REVISION HISTORY**

| Rev | Date     | Description                                                            |
|-----|----------|------------------------------------------------------------------------|
| _2  | 20021213 | Product data (9397 750 09249); ECN 853-2238 27501 of 20 December 2001. |
|     |          | Modifications:                                                         |
|     |          | <ul> <li>New package release.</li> </ul>                               |
| _1  | 20010213 | Product data (9397 750 08073); ECN 853-2238 25635 of 13 February 2001. |

CBTS3384

## CBTS3384

### Data sheet status

| Level | Data sheet status <sup>[1]</sup> | Product<br>status <sup>[2] [3]</sup> | Definitions                                                                                                                                                                                                                                                                                    |
|-------|----------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I     | Objective data                   | Development                          | This data sheet contains data from the objective specification for product development.<br>Philips Semiconductors reserves the right to change the specification in any manner without notice.                                                                                                 |
| II    | Preliminary data                 | Qualification                        | This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.             |
| 111   | Product data                     | Production                           | This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). |

[1] Please consult the most recently issued data sheet before initiating or completing a design.

[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

#### Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

**Application information** — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

#### Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

**Right to make changes** — Philips Semiconductors reserves the right to make changes in the products—including circuits, standard cells, and/or software—described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

#### **Contact information**

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 © Koninklijke Philips Electronics N.V. 2002 All rights reserved. Printed in U.S.A.

Date of release: 12-02

For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com

Document order number:

9397 750 09249

Let's make things better.



