Regulations No.	IC3	F56	44					ŀ	Total Pa	ages	Page
110.								L	32		1
		D	lroo	luc	\+ C	t_{-}	nd		do		
	Product Standards										
			Dort No				060	0 1 0	٨		
	Part No. AN26218A										
	P	acka	age Code	e No.	>	XLGA011-W-1216AKA					
				I							
				. .							
						tor Co: Corpo	mpany ration	1			
				i anc		Corpo					
		Esta	blished by	Appli	ed by	Chec	ked by	Pre	pared by		
				M.Hir	amatsu	H.Tak	ahashi	M.	Iwaida		
2011-07-20		T									
Established	Revis	ed									
							Semico	onductor	Company	/, Pana	sonic Corporation

Page

Total Pages

Product Standards

32

Total Pages Page 2

Contents

Overview	3
■ Features	3
Applications	3
Package	3
■ Туре	3
Application Circuit Example (Block Diagram)	4
■ Pin Descriptions	5
Absolute Maximum Ratings	6
■ Operating Supply Voltage Range	6
■ Allowable Current and Voltage Range	7
Electrical Characteristics	8
Electrical Characteristics (Referred design parameters)	12
Control Pins Mode Table	25
■ Test Circuit Diagram	26
Technical Data	30
• I/O block circuit diagrams and pin function descriptions	30
Usage Notes	32

2011-07-20		
Established	Revised	
		Semiconductor Company, Panasonic Corporation

Product Standards

Total Pages

Page 3

AN26218A UMTS triple band LNA-IC

Overview

- AN26218A is LNA-IC for 800 MHz / 1.7 GHz / 2.1 GHz Band Applications.
- Realizing high performance by using 0.18 µm SiGeC Bi-CMOS process(fT = 90 GHz, fmax = 140 GHz).
- Each band is selectable and High/Low Gain-mode is changeable, controlled by integrated CMOS logic circuit.
- Achieving miniaturization by using small size package.

Features

 Low voltage operation 	+2.8 V typ.		
 Low current consumption 	3.3 mA typ.		(High-Gain mode)
	11 µA typ.	2.1 GHz	(Low-Gain mode)
	25 µA typ.	800 MHz / 1.7 GHz	(Low-Gain mode)
 High gain(Gain) 	16.7 dB typ.	fRX = 2140 MHz	(High-Gain mode)
	16.7 dB typ.	fRX = 884.5 MHz	(High-Gain mode)
	16.5 dB typ.	fRX = 1862.5 MHz	(High-Gain mode)
• Low noise figure(NF)	1.75 dB typ.	fRX = 2140 MHz	(High-Gain mode)
	1.80 dB typ.	fRX = 884.5 MHz	(High-Gain mode)
	1.65 dB typ.	fRX = 1862.5 MHz	(High-Gain mode)
 Low distortion 	0.0 dBm typ.	fRX = 2140 MHz	(High-Gain mode)
(IIP3 +10 MHz offset)	–5.0 dBm typ.	fRX = 884.5 MHz	(High-Gain mode)
	-3.0 dBm typ.	fRX = 1862.5 MHz	(High-Gain mode)

• Small package(WLCSP)

Applications

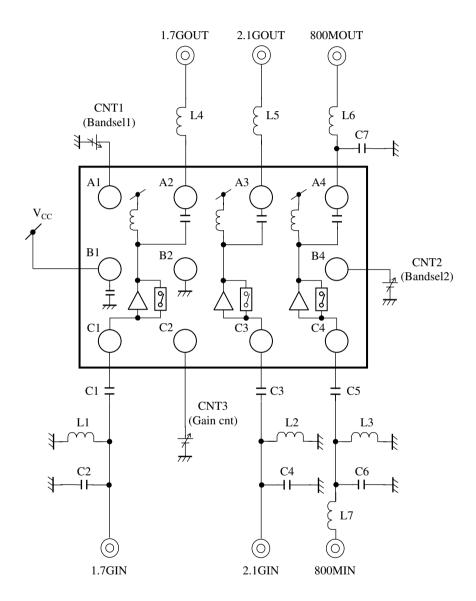
• UMTS triple-band handset

Package

• 11 pin Wafer level chip size package (WLCSP) Size : 1.16 mm × 1.56 mm (0.4 mm pitch)

■ Туре

• Bi-CMOS IC


2011-07-20		
Established	Revised	
		Semiconductor Company, Panasonic Corporation

Total Pages 32

Page 4

Application Circuit Example (Block Diagram)

(Top View)

- This application circuit is an example. The operation of mass production set is not guaranteed. You should perform enough evaluation and verification on the design of mass production set. You are fully responsible for the incorporation of the above application circuit and information in the design of your equipment.
 - This block diagram is for explaining functions. Part of the block diagram may be omitted, or it may be simplified.
 - External components : See page 29.

	AN26	218A
Product Standards	Total Pages	Page
	32	5

Pin Descriptions

Pin No.	Pin name	Туре	Description
A1	CNT1	Input	Band Selective SW1
A2	OUT1	Output	1.7 GHz RF Output
A3	OUT2	Output	2.1 GHz RF Output
A4	OUT3	Output	800 MHz RF Output
B1	V _{CC}	Power Supply	V _{cc}
B2	GND	Ground	GND
B4	CNT2	Input	Band Selective SW2
C1	IN1	Input	1.7 GHz RF Input
C2	CNT3	Input	High-Gain / Low-Gain Selective SW
C3	IN2	Input	2.1 GHz RF Input
C4	IN3	Input	800 MHz RF Input

Product Standards

Total Pages Page 32 6

Absolute Maximum Ratings

Note) Absolute maximum ratings are limit values which do not result in damages to this IC, and IC operation is not guaranteed at these limit values.

A No.	Parameter	Symbol	Rating	Unit	Notes
1	Supply voltage	V _{CC}	3.6	V	*1
2	Supply current	I _{CC}	20	mA	_
3	Power dissipation	P _D	50.8	mW	*2
4	Operating ambient temperature	T _{opr}	-30 to +85	°C	*3
5	Storage temperature	T _{stg}	-55 to +125	°C	*3

Notes)*1: The values under the condition not exceeding the above absolute maximum ratings and the power dissipation.

*2 : The power dissipation shown is the value at $T_a = 85^{\circ}$ C for the independent (unmounted) IC package without a heat sink. When using this IC, refer to the P_D - T_a diagram of the package standard and design the heat radiation with sufficient margin so that the allowable value might not be exceeded based on the conditions of power supply voltage, load, and ambient temperature.

*3 : Except for the power dissipation, operating ambient temperature, and storage temperature, all ratings are for $T_a = 25^{\circ}C$.

Operating Supply Voltage Range

Parameter	Symbol	Range	Unit	Notes
Supply voltage range	V _{CC}	2.7 to 2.875	V	*1

Note) *1: The values under the condition not exceeding the above absolute maximum ratings and the power dissipation.

Semiconductor Company, Panasonic Corporation

Product Standards

Semiconductor Company, Panasonic Corporation

Total Pages Page 7

■ Allowable Current and Voltage Range

Notes) • Allowable current and voltage ranges are limit ranges which do not result in damages to this IC, and IC operation is not guaranteed within these limit ranges.

- Voltage values, unless otherwise specified, are with respect to GND.
- Do not apply external currents or voltages to any pin not specifically mentioned.

Pin No.	Pin name	Rating	Unit	Notes
A1	CNT1	-0.3 to (V _{CC} + 0.3)	V	*2
A2	OUT1	-0.3 to (V _{CC} + 0.3)	V	*2
A3	OUT2	-0.3 to (V _{CC} + 0.3)	V	*2
A4	OUT3	-0.3 to (V _{CC} + 0.3)	V	*2
B4	CNT2	-0.3 to (V _{CC} + 0.3)	V	*2
C1	IN1		V	*1
C2	CNT3	-0.3 to (V _{CC} + 0.3)	V	*2
C3	IN2		V	*1
C4	IN3		V	*1

Notes) *1 : Do not apply more than 0 dBm at high gain mode (5 dBm at low gain mode) to RF input. This is a RF signal input pin. Do not apply DC.

*2 : $(V_{CC} + 0.3)$ V must not be exceeded 3.6 V.

Total Pages 32 Page 8

Electrical Characteristics at V_{CC} = 2.80 V

Note) All parameters are specified under $T_a = 25^{\circ}C \pm 2^{\circ}C$ unless otherwise specified.

B No.	Parameter	Sumbol	Test	Conditions		Limits		Unit	Notes		
B NO.	Parameter	Symbol	Circuit	Conditions	Min	Тур	Max	Onit	Notes		
DC ele	DC electrical characteristics										
DC-1	Circuit current HG (2.1 GHz)	IccHSa	1	V _{CC} current at 2.1 GHz , High-Gain mode. No input signal.	_	3.3	4.25	mA	_		
DC-2	Circuit current HG (800 MHz)	IccHSb	2	V _{CC} current at 800 MHz , High-Gain mode. No input signal.		3.3	4.25	mA			
DC-3	Circuit current HG (1.7 GHz)	IccHSc	3	V _{CC} current at 1.7 GHz , High-Gain mode. No input signal.	_	3.3	4.25	mA			
DC-4	Circuit current LG (2.1 GHz)	IccLSa	1	V _{CC} current at 2.1 GHz , Low-Gain mode. No input signal.	_	11	35	μΑ			
DC-5	Circuit current LG (800 MHz)	IccLSb	2	V _{CC} current at 800 MHz , Low-Gain mode. No input signal.	_	25	50	μΑ			
DC-6	Circuit current LG (1.7 GHz)	IccLSc	3	V _{CC} current at 1.7 GHz , Low-Gain mode. No input signal.		25	50	μΑ			
DC-7	SW voltage (High)	VIHS	1	_	2.16	_	2.875	V			
DC-8	SW voltage (Low)	VILS	1	_	0		0.6	V	_		
DC-9	SW Current (High)	IIHS	1	Current at SW pin VIHS = 2.9 V		10	20	μΑ			
DC-10	SW Current (Low)	IILS	1	Current at SW pin VILS = 0 V	_	10	20	μΑ	_		

Product S	tandards
------------------	----------

32

Total Pages Page 9

Electrical Characteristics (continued) V_{CC} = 2.80 V

Note) All parameters are specified under $T_a = 25^{\circ}C \pm 2^{\circ}C$, fRXa = 2 140 MHz, PRXa = -30 dBm, CW unless otherwise specified.

B No.	Devemeter	Symphol	Test	Conditions		Limits		dB dBm	Natas	
	Parameter	Symbol	Circuit	Conditions	Min	Тур	Max		Notes	
2.1 GH	2.1 GHz : LNA AC characteristics (High-gain mode / Low-gain mode)									
A-1	Gain Step	G∆Sa	1	G∆Sa = GHSa – GLSa	18.2	21.7	23.5	dB	—	
2.1 GH	z : LNA AC characteristics (High	n-gain mode)								
A-2	Power gain	GHSa	1	f1 = fRXa f2 = fRXa - 190 MHz PRX1 = -30 dBm PRX2 = -24 dBm Input 2 signals (f1, f2)	15.3	16.7	18.0	dB	_	
A-3	ШРЗ	IIP3H1Sa	1	f1 = fRXa + 10 MHz f2 = fRXa + 20 MHz Input 2 signals (f1, f2)	-10	0		dBm	_	
2.1 GH	z : LNA AC characteristics (Low	-gain mode)								
A-4	Power gain	GLSa	1	f1 = fRXa f2 = fRXa - 190 MHz PRX1 = -24 dBm PRX2 = -24 dBm Input 2 signals (f1, f2)	-6.1	-5.0	-4.0	dB		

2011-07-20		
stablished	Revised	Revised

Product S	tandards
------------------	----------

Total Pages 32

Page 10

\blacksquare Electrical Characteristics (continued) V_{CC} = 2.80 V

Note) All parameters are specified under $T_a = 25^{\circ}C \pm 2^{\circ}C$, fRXb = 881.5 MHz, PRXb = -30 dBm, CW unless otherwise specified.

B No.	Parameter	Symbol	Test	Conditions	Limits			Unit	Notes
B NO.	Parameter	Symbol	Circuit	Conditions	Min	Тур	Max	Onit	Notes
800 MH	300 MHz : LNA AC characteristics (High-gain mode / Low-gain mode)								
B-1	Gain Step	G∆Sb	2	$G\Delta Sb = GHSb - GLSb$	18.2	22.2	23.8	dB	—
800 MH	Hz : LNA AC characteristics (Hig	h-gain mode)						
В-2	Power gain	GHSb	2	f1 = fRXb f2 = fRXb - 45 MHz PRX1 = -30 dBm PRX2 = -24 dBm Input 2 signals (f1, f2)	15.5	16.7	18.0	dB	
В-3	IIP3	IIP3H1Sb	2	f1 = fRXb + 10 MHz f2 = fRXb + 20 MHz Input 2 signals (f1, f2)	-10	-5		dBm	_
800 MH	Hz : LNA AC characteristics (Low	v-gain mode))						
В-4	Power gain	GLSb	2	f1 = fRXb f2 = fRXb - 45 MHz PRX1 = -24 dBm PRX2 = -24 dBm Input 2 signals (f1, f2)	-5.9	-5.5	-4.0	dB	

Product Standards

AN26218A

Total Pages 32 Page 11

Electrical Characteristics (continued) $V_{CC} = 2.80 V$

Note) All parameters are specified under $T_a = 25^{\circ}C \pm 2^{\circ}C$, fRXc = 1862.5 MHz, PRXc = -30 dBm, CW unless otherwise specified.

B No.	Deveneter	Currente e l	Test	Conditions		Limits		- Unit dB dB dBm	Natas
	Parameter	Symbol	Circuit	Conditions	Min	Тур	Max		Notes
1.7 GH	.7 GHz : LNA AC characteristics (High-gain mode / Low-gain mode)								
C-1	Gain Step	G∆Sc	3	$G\Delta Sc = GHSc - GLSc$	17.9	21.5	23.7	dB	—
1.7 GH	1.7 GHz : LNA AC characteristics (High-gain mode)								
C-2	Power gain	GHSc	3	f1 = fRXc f2 = fRXc - 95 MHz PRX1 = -30 dBm PRX2 = -24 dBm Input 2 signals (f1, f2)	15.0	16.5	17.8	dB	
C-3	ШРЗ	IIP3H1Sc	3	f1 = fRXc + 10 MHz f2 = fRXc + 20 MHz Input 2 signals (f1, f2)	-7.5	-3	_	dBm	_
1.7 GH	z : LNA AC characteristics (Low	-gain mode)							
C-4	Power gain	GLSc	3	f1 = fRXc f2 = fRXc - 95 MHz PRX1 = -24 dBm PRX2 = -24 dBm Input 2 signals (f1, f2)	-6.0	-5.0	-4.0	dB	

	Product Standards	AN26	218A
		Total Pages	Page
	32	12	

■ Electrical Characteristics (Reference values for design) at V_{CC} = 2.8 V

Notes) • All characteristics are specified under $T_a = 25^{\circ}C \pm 2^{\circ}C$, fRXa = 2110 MHz to 2170 MHz, PRXa = -30 dBm, CW

• The characteristics listed below are reference values derived from the design of the IC and are not guaranteed by inspection. If a problem does occur related to these characteristics, we will respond in good faith to user concerns.

	_		Test		Refe	rence values			
B No.	Parameter	Symbol	Circuit	Conditions	Min	Тур	Max	Unit	Notes
2.1 GH	z : LNA AC characteristics (H	igh-gain mode	/ Low-ę	gain mode)					
D-1	Gain Step	G∆a	1	G∆a = GHa – GLa	18.2	21.7	23.5	dB	_
D-2	In - band gain deviation	Gch∆a	1	_	_		1.8	dB	_
2.1 GH	2.1 GHz : LNA AC characteristics (High-gain mode)								
D-3	Input VSWR	Vswr_inHa	1		_		2.1		—
D-4	Output VSWR	Vswr_outHa	1	_	_	_	2.3	_	_
D-5	Power gain	GHa	1	f1 = fRXa f2 = fRXa - 190 MHz PRX1 = -30 dBm PRX2 = -24 dBm Input 2 signals (f1, f2)	15.3	16.7	18.0	dB	_
D-6	Noise figure	NFHa	1	f1 = fRXa f2 = fRXa - 190 MHz PRX2 = -24 dBm Input 2 signals (f1, f2)		1.75	1.95	dB	_
D-7	IIP3	IIP3H1a	1	f1 = fRXa + 10 MHz f2 = fRXa + 20 MHz Input 2 signals (f1, f2)	-10	0	_	dBm	_
D-8	Reverse isolation	Ris_H1a	1	2 .1GHz band Output → 2 .1GHz band input f = 1920 to 2170 MHz	_	-34	-30	dB	_

Semiconductor Company, Panasonic Corporation

	Product Standards	AN26	218A
		Total Pages	Page
		32	13

Electrical Characteristics (Reference values for design) (continued) at $V_{CC} = 2.8 V$

Notes) • All characteristics are specified under $T_a = 25^{\circ}C \pm 2^{\circ}C$, fRXa = 2110 MHz to 2170 MHz, PRXa = -30 dBm, CW

	D .	0 1 1	Test		Reference		alues		
B No.	Parameter	Symbol	Circuit	Conditions	Min	Тур	Max	Unit	Notes
2.1 GH	z : LNA AC characteristics (Lo	ow-gain mode)							
D-9	Input VSWR	Vswr_inLa	1	_	_	_	2.1	_	_
D-10	Output VSWR	Vswr_outLa	1	_	_		2.5	_	_
D-11	Power gain	GLa	1	f1 = fRXa f2 = fRXa - 190 MHz PRX1 = -24 dBm PRX2 = -24 dBm Input 2 signals (f1, f2)	-6.1	-5.0	-4.0	dB	
D-12	Noise figure	NFLa	1	f1 = fRXa f2 = fRXa - 190 MHz PRX2 = -24 dBm Input 2 signals (f1, f2)		5	6.8	dB	
D-13	IIP3	IIP3_LGa	1	f1 = fRXa + 3.5 MHz f2 = fRXa + 6.5 MHz PRX1 = -15 dBm PRX2 = -15 dBm Input 2 signals (f1, f2)	2	20		dBm	
D-14	Reverse isolation	Ris_L1a	1	2 .1GHz band Output → 2.1 GHz band input	-6.1	-5.0	-4.0	dB	

		AN26	218A
	Product Standards	Total Pages	Page
		32	14

■ Electrical Characteristics (Reference values for design) (continued) at V_{CC} = 2.8 V

Notes) • All characteristics are specified under $T_a = 25^{\circ}C \pm 2^{\circ}C$, fRXb = 869 MHz to 895 MHz, PRXb = -30 dBm, CW

• The characteristics listed below are reference values derived from the design of the IC and are not guaranteed by inspection. If a problem does occur related to these characteristics, we will respond in good faith to user concerns.

			Test	O	Refe	rence values			
B No.	Parameter	Symbol	Circuit	Conditions	Min	Тур	Max	Unit	Notes
800 MI	Hz : LNA AC characteristics (H	ligh-gain mode	/ Low-	gain mode)					
E-1	Gain Step	GΔb	2	$G\Delta b = GHb - GLb$	18.2	22.2	23.8	dB	
E-2	In - band gain deviation	Gch∆b	2			_	1.8	dB	
800 MI	800 MHz : LNA AC characteristics (High-gain mode)								
E-3	Input VSWR	Vswr_inHb	2				1.8		
E-4	Output VSWR	Vswr_outHb	2			_	2.0		_
E-5	Power gain	GHb	2	f1 = fRXb f2 = fRXb - 45 MHz PRX1 = -30 dBm PRX2 = -24 dBm Input 2 signals (f1, f2)	15.5	16.7	18.0	dB	
E-6	Noise figure	NFHb	2	f1 = fRXb f2 = fRXb - 45 MHz PRX2 = -24 dBm Input 2 signals (f1, f2)		1.8	2.0	dB	
E-7	ПРЗ	IIP3H1b	2	f1 = fRXb + 10 MHz f2 = fRXb + 20 MHz Input 2 signals (f1, f2)	-10	-5		dBm	
E-8	Reverse isolation	Ris_H2b	2	800 MHz band Output → 800 MHz band input f = 830 to 885 MHz		-26	-21.5	dB	

Semiconductor Company, Panasonic Corporation

	Product Standards	AN26	218A
		Total Pages	Page
		32	15

■ Electrical Characteristics (Reference values for design) (continued) at V_{CC} = 2.8 V

Notes) • All characteristics are specified under $T_a = 25^{\circ}C \pm 2^{\circ}C$, fRXb = 869 MHz to 895 MHz, PRXb = -30 dBm, CW

			Test		Reference v		alues		
B No.	Parameter	Symbol	Circuit	Conditions	Min	Тур	Max	Unit	Notes
800 MI	Hz : LNA AC characteristics (L	ow-gain mode)						
E-9	Input VSWR	Vswr_inLb	2	_			1.8		
E-10	Output VSWR	Vswr_outLb	2	_		_	1.8		
E-11	Power gain	GLb	2	f1 = fRXb f2 = fRXb - 45 MHz PRX1 = -24 dBm PRX2 = -24 dBm Input 2 signals (f1, f2)	-5.9	-5.5	-4.2	dB	
E-12	Noise figure	NFLb	2	f1 = fRXb f2 = fRXb - 45 MHz PRX2 = -24 dBm Input 2 signals (f1, f2)		5.5	7	dB	
E-13	IIP3	IIP3_LGb	2	f1 = fRXb + 3.5 MHz f2 = fRXb + 6.5 MHz PRX1 = -15 dBm PRX2 = -15 dBm Input 2 signals (f1, f2)	2	20		dBm	
E-14	Reverse isolation	Ris_L2b	2	800 MHz band Output → 800 MHz band input	-5.9	-5.5	-4.2	dB	

	Product Standards	AN2621					
		Total Pages	Page				
		32	16				

Electrical Characteristics (Reference values for design) (continued) at $V_{CC} = 2.8 V$

Notes) • All characteristics are specified under $T_a = 25^{\circ}C \pm 2^{\circ}C$, fRXc = 1844.9 MHz to 1879.9 MHz, PRXc = -30 dBm, CW

• The characteristics listed below are reference values derived from the design of the IC and are not guaranteed by inspection. If a problem does occur related to these characteristics, we will respond in good faith to user concerns.

	Parameter		Test		Reference		nce values			
B No.		Symbol	Circuit	Conditions	Min	Тур	Max	Unit	Notes	
1.7 GH	Iz : LNA AC characteristics (Hi	gh-gain mode	/ Low-	gain mode)						
F-1	Gain Step	GΔc	3	$G\Delta c = GHc - GLc$	17.9	21.5	23.7	dB		
F-2	In - band gain deviation	Gch∆c	3				1.8	dB		
1.7 GH	1.7 GHz : LNA AC characteristics (High-gain mode)									
F-3	Input VSWR	Vswr_inHc	3	—	_		2.0	_	_	
F-4	Output VSWR	Vswr_outHc	3				2.1		_	
F-5	Power gain	GHc	3	f1 = fRXc f2 = fRXc - 95 MHz PRX1 = -30 dBm PRX2 = -24 dBm Input 2 signals (f1, f2)	15.0	16.5	17.8	dB		
F-6	Noise figure	NFHc	3	f1 = fRXc f2 = fRXc - 95 MHz PRX2 = -24 dBm Input 2 signals (f1, f2)		1.65	1.85	dB		
F-7	IIP3	IIP3H1c	3	f1 = fRXc + 10 MHz f2 = fRXc + 20 MHz Input 2 signals (f1, f2)	-7.5	-3	_	dBm	_	
F-8	Reverse isolation	Ris_H3c	3	1.7 GHz band Output → 1.7 GHz band input f = 1745 to 1880 MHz	_	-37	-32	dB	_	

Semiconductor Company, Panasonic Corporation

		AN26218A				
	Product Standards	Total Pages	Page			
		32	17			

Electrical Characteristics (Reference values for design) (continued) at $V_{CC} = 2.8 V$

Notes) • All characteristics are specified under $T_a = 25^{\circ}C \pm 2^{\circ}C$, fRXc = 1844.9 MHz to 1879.9 MHz, PRXc = -30 dBm, CW

D N1		Symbol	Test Circuit		Reference v		alues		
B No.	Parameter			Conditions	Min	Тур	Max	Unit	Notes
1.7 GH	Iz : LNA AC characteristics (L	ow-gain mode)							
F-9	Input VSWR	Vswr_inLc	3	_	_	_	1.8	_	_
F-10	Output VSWR	Vswr_outLc	3	_	_		2.4	_	_
F-11	Power gain	GLc	3	f1 = fRXc f2 = fRXc - 95 MHz PRX1 = -24 dBm PRX2 = -24 dBm Input 2 signals (f1, f2)	-6.0	-5.0	-4.0	dB	
F-12	Noise figure	NFLc	3	f1 = fRXc f2 = fRXc - 95 MHz PRX2 = -24 dBm Input 2 signals (f1, f2)	_	5.0	6.8	dB	
F-13	IIP3	IIP3_LGc	3	f1 = fRXc + 3.5 MHz f2 = fRXc + 6.5 MHz PRX1 = -15 dBm PRX2 = -15 dBm Input 2 signals (f1, f2)	2.0	20		dBm	
F-14	Reverse isolation	Ris_L3c	3	1.7 GHz band Output → 1.7 GHz band input	-6.0	-5.0	-4.0	dB	

		AN2621			
	Product Standards	Total Pages	Page		
		32	18		

Electrical Characteristics (Reference values for design) (continued) at $V_{CC} = 2.7 \text{ V}$ to 2.875V

Notes) • All characteristics are specified under $T_a = -20^{\circ}$ C to 85°C, unless otherwise specified.

	Deremeter	Currente al	Test	Test	Reference values				
B No.	Parameter	Symbol	Circuit	Conditions	Min	Тур	Max	Unit	Notes
DC ele	ctrical characteristics								
DCT-1	Circuit current HG (2.1 GHz)	ІссНТа	1	V _{CC} current at 2.1 GHz , High-Gain mode. No input signal.	_	3.3	4.5	mA	_
DCT-2	Circuit current HG (800 MHz)	IccHTb	2	V _{CC} current at 800 MHz , High-Gain mode. No input signal.		3.3	4.5	mA	
DCT-3	Circuit current HG (1.7 GHz)	IccHTc	3	V _{CC} current at 1.7 GHz , High-Gain mode. No input signal.	_	3.3	4.5	mA	
DCT-4	Circuit current LG (2.1 GHz)	IccLTa	1	V _{CC} current at 2.1 GHz , Low-Gain mode. No input signal.		11	40	μΑ	
DCT-5	Circuit current LG (800 MHz)	IccLTb	2	V _{CC} current at 800 MHz , Low-Gain mode. No input signal.		25	60	μΑ	
DCT-6	Circuit current LG (1.7 GHz)	IccLTc	3	V _{CC} current at 1.7 GHz , Low-Gain mode. No input signal.		25	60	μΑ	
DCT-7	SW voltage (High)	VIHT	1		2.16	_	2.875	v	
DCT-8	SW voltage (Low)	VILT	1	_	0	_	0.6	V	_

	Product Standards	218A	
		Total Pages	Page
		32	19

Electrical Characteristics (Reference values for design) (continued) at V_{CC} = 2.7 V to 2.875V

Notes) • All characteristics are specified under $T_a = -20^{\circ}$ C to 85° C, fRXa = 2110 MHz to 2170 MHz, PRXa = -30 dBm, CW

	D .		Test		Reference values		alues		
B No.	Parameter	Symbol	Circuit	Conditions	Min	Тур	Max	Unit	Notes
2.1 GH	z : LNA AC characteristics (H	igh-gain mode	/ Low-ę	gain mode)					
G-1	Gain Step	G∆Ta	1	G∆Ta = GHTa – GLTa	17.2	21.7	24.5	dB	
G-2	In - band gain deviation	Gch∆Ta	1				2	dB	
2.1 GH	2.1 GHz : LNA AC characteristics (High-gain mode)								
G-3	Power gain	GHTa	1	f1 = fRXa f2 = fRXa - 190 MHz PRX1 = -30 dBm PRX2 = -24 dBm Input 2 signals (f1, f2)	14.2	16.7	19.2	dB	
G-4	Noise figure	NFHTa	1	f1 = fRXa f2 = fRXa - 190 MHz PRX2 = -24 dBm Input 2 signals (f1, f2)		1.75	2.6	dB	
G-5	IIP3	IIP3H1Ta	1	f1 = fRXa + 10 MHz f2 = fRXa + 20 MHz Input 2 signals (f1, f2)	-11	0		dBm	

		AN26	218A
	Product Standards	Total Pages	Page
		32	20

Electrical Characteristics (Reference values for design) (continued) at $V_{CC} = 2.7 \text{ V}$ to 2.875V

Notes) • All characteristics are specified under $T_a = -20^{\circ}$ C to 85° C, fRXa = 2110 MHz to 2170 MHz, PRXa = -30 dBm, CW

			Test		Reference v		alues				
B No.	Parameter	Symbol	Circuit	Conditions	Min	Тур	Max	Unit	Notes		
2.1 GH	2.1 GHz : LNA AC characteristics (Low-gain mode)										
G-6	Power gain	GLTa	1	f1 = fRXa f2 = fRXa - 190 MHz PRX1 = -24 dBm PRX2 = -24 dBm Input 2 signals (f1, f2)	-6.5	-5.0	-3.5	dB			
G-7	Noise figure	NFLTa	1	f1 = fRXa f2 = fRXa - 190 MHz PRX2 = -24 dBm Input 2 signals (f1, f2)		5	8	dB			
G-8	ШРЗ	IIP3_LGTa	1	f1 = fRXa + 3.5 MHz f2 = fRXa + 6.5 MHz PRX1 = -15 dBm PRX2 = -15 dBm Input 2 signals (f1, f2)	0	20		dBm			

	Product Standards	AN26	218A
		Total Pages	Page
		32	21

Electrical Characteristics (Reference values for design) (continued) at $V_{CC} = 2.7 \text{ V}$ to 2.875V

Notes) • All characteristics are specified under $T_a = -20^{\circ}$ C to 85°C, fRXb = 869 MHz to 895 MHz, PRXb = -30 dBm, CW

	Parameter	Symbol	Test		Reference		alues		
B No.			Circuit	Conditions	Min	Тур	Max	Unit	Notes
800 MI	Hz : LNA AC characteristics (H	ligh-gain mode	/ Low-	gain mode)					
I-1	Gain Step	G∆Tb	2	$G\Delta Tb = GHTb - GLTb$	17.2	22.2	24.5	dB	
I-2	In - band gain deviation	Gch∆Tb	2		_		2	dB	_
800 MI	Hz : LNA AC characteristics (H	ligh-gain mode	e)						
I-3	Power gain	GHTb	2	f1 = fRXb f2 = fRXb - 45 MHz PRX1 = -30 dBm PRX2 = -24 dBm Input 2 signals (f1, f2)	14.2	16.7	19.2	dB	
I-4	Noise figure	NFHTb	2	f1 = fRXb f2 = fRXb - 45 MHz PRX2 = -24 dBm Input 2 signals (f1, f2)		1.8	2.6	dB	
I-5	IIP3	IIP3H1Tb	2	f1 = fRXb + 10 MHz f2 = fRXb + 20 MHz Input 2 signals (f1, f2)	-11	-5		dBm	

	Product Standards	AN26	218A
		Total Pages	Page
		32	22

Electrical Characteristics (Reference values for design) (continued) at V_{CC} = 2.7 V to 2.875V

Notes) • All characteristics are specified under $T_a = -20^{\circ}$ C to 85°C, fRXb = 869 MHz to 895 MHz, PRXb = -30 dBm, CW

	Demonster		Test	0	Reference v		alues				
B No.	Parameter	Symbol	Circuit	Conditions	Min	Тур	Max	Unit	Notes		
800 MH	800 MHz : LNA AC characteristics (Low-gain mode)										
I-6	Power gain	GLTb	2	f1 = fRXb f2 = fRXb - 45 MHz PRX1 = -24 dBm PRX2 = -24 dBm Input 2 signals (f1, f2)	-6.5	-5.5	-3.5	dB			
I-7	Noise figure	NFLTb	2	f1 = fRXb f2 = fRXb - 45 MHz PRX2 = -24 dBm Input 2 signals (f1, f2)		5.5	8.5	dB			
I-8	ПРЗ	IIP3_LGTb	2	f1 = fRXb + 3.5 MHz f2 = fRXb + 6.5 MHz PRX1 = -15 dBm PRX2 = -15 dBm Input 2 signals (f1, f2)	0	20		dBm			

	Product Standards	AN26	218A
		Total Pages	Page
		32	23

Electrical Characteristics (Reference values for design) (continued) at V_{CC} = 2.7 V to 2.875V

Notes) • All characteristics are specified under $T_a = -20^{\circ}$ C to 85° C, fRXc = 1884.9 MHz to 1879.9 MHz, PRXc = -30 dBm, CW

	Parameter	Symbol	Test		Reference		alues		
B No.			Circuit	Conditions	Min	Тур	Max	Unit	Notes
1.7 GH	z : LNA AC characteristics (H	ligh-gain mode	/ Low-g	jain mode)					
H-1	Gain Step	G∆Tc	3	$G\Delta Tc = GHTc - GLTc$	17.2	21.5	24.5	dB	—
H-2	In - band gain deviation	Gch∆Tc	3			_	2	dB	—
1.7 GH	z : LNA AC characteristics (H	ligh-gain mode)						
Н-3	Power gain	GHTc	3	f1 = fRXc f2 = fRXc - 95 MHz PRX1 = -30 dBm PRX2 = -24 dBm Input 2 signals (f1, f2)	14	16.5	19	dB	
H-4	Noise figure	NFHTc	3	f1 = fRXc f2 = fRXc - 95 MHz PRX2 = -24 dBm Input 2 signals (f1, f2)		1.65	2.5	dB	
Н-5	IIP3	IIP3H1Tc	3	f1 = fRXc + 10 MHz f2 = fRXc + 20 MHz Input 2 signals (f1, f2)	-8	-3		dBm	_

	Product Standards	AN26218A		
		Total Pages	Page	
		32	24	

Electrical Characteristics (Reference values for design) (continued) at $V_{CC} = 2.7 \text{ V}$ to 2.875V

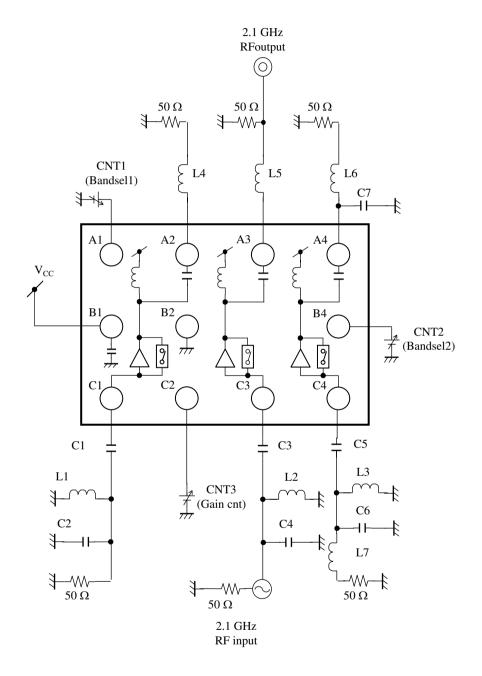
Notes) • All characteristics are specified under $T_a = -20^{\circ}$ C to 85° C, fRXc = 1884.9 MHz to 1879.9 MHz, PRXc = -30 dBm, CW

	Damanatan		Test		Reference values				
B No.	Parameter	Symbol	Circuit Conditions		Min	Тур	Max	Unit	Notes
1.7 GH	1.7 GHz : LNA AC characteristics (Low-gain mode)								
Н-6	Power gain	GLTc	3	f1 = fRXc f2 = fRXc - 95 MHz PRX1 = -24 dBm PRX2 = -24 dBm Input 2 signals (f1, f2)	-6.5	-5.0	-3.5	dB	
H-7	Noise figure	NFLTc	3	f1 = fRXc f2 = fRXc - 95 MHz PRX2 = -24 dBm Input 2 signals (f1, f2)		5.0	8.0	dB	
H-8	IIP3	IIP3_LGTc	3	f1 = fRXc + 3.5 MHz f2 = fRXc + 6.5 MHz PRX1 = -15 dBm PRX2 = -15 dBm Input 2 signals (f1, f2)	0	20		dBm	

	Product Standards	AN26218A		
		Total Pages	Page	
		32	25	

Control Pins Mode Table

Note) Control voltage range : See B No. DC-7 / B No. DC-8 at page 8.


CNT1 (Band Select1) (A1)	CNT2 (Band Select2) (B4)	CNT3 (Gain Control) (C2)	Band1 (2.1 GHz)	Band2 (800 MHz)	Band3 (1.7 GHz)	Mode
Low	Low	High	High-Gain	Off	Off	2.1 GHz High-Gain
Low	ow Low	Low	Low-Gain	Off	Off	2.1 GHz Low-Gain
	igh Low	High	Off	High-Gain	Off	800 MHz High-Gain
nigii		Low	Off	Low-Gain	Off	800 MHz Low-Gain
Low	High	High	Off	Off	High-Gain	1.7 GHz High-Gain
		Low	Off	Off	Low-Gain	1.7 GHz Low-Gain
High	High	_	_		_	—

Total Pages 32 Page 26

Test Circuit Diagram

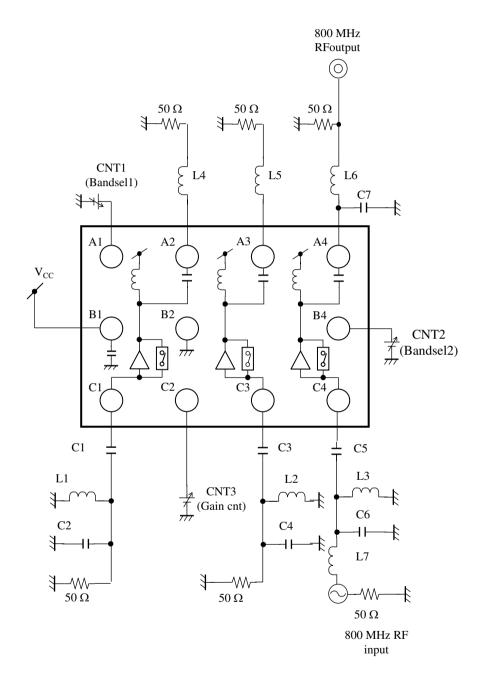
Test Circuit 1

(Top View)

Note) External components : See page 29

2011-07-20		
Established	Revised	
		Semiconductor Company, Panasonic Corporatio

Total Pages

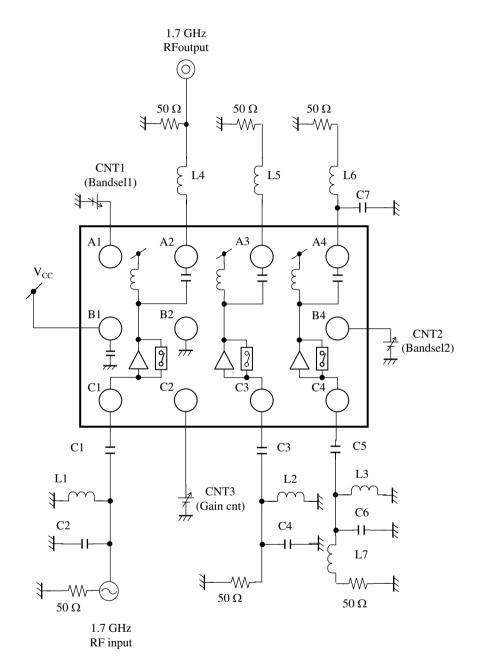

32

Page 27

■ Test Circuit Diagram (continued)

Test Circuit 2

(Top View)


Note) External components : See page 29

Total Pages 32 Page 28

■ Test Circuit Diagram (continued)

• Test Circuit 3

(Top View)

Note) External components : See page 29

2011-07-20		
Established	Revised	
		Semiconductor Company, Panasonic Corporatio

32

Total Pages Page 29

■ Test Circuit Diagram (continued)

• External Components

Components	Size	Value	Part Number	Vendor
L1	0603	1.3 nH	LQP03T1N3B04	Murata
L2	0603	1.2 nH	LQP03T1N2B04	Murata
L3	0603	3.6 nH	LQP03T3N6B04	Murata
L4	0603	4.7 nH	LQP03T4N7H04	Murata
L5	0603	2.6 nH	LQP03T2N6B04	Murata
L6	0603	12 nH	LQP03T12NH04	Murata
L7	0603	10 nH	LQP03T10NH04	Murata
C1	0603	68 pF	GRM0332C1E680JD01	Murata
C2	0603	6.0 pF	GJM0332C1E6R0BB01	Murata
C3	0603	68 pF	GRM0332C1E680JD01	Murata
C4	0603	5.0 pF	GJM0332C1E5R0BB01	Murata
C5	0603	68 pF	GRM0332C1E680JD01	Murata
C6	0603	8.0 pF	GJM0334C1E8R0BB01	Murata
C7	0603	1.0 pF	GJM0334C1E1R0BB01	Murata

	AN26	218A
Product Standards	Total Pages	Page
	32	30

Technical Data

• I/O block circuit diagrams and pin function descriptions

Note) The characteristics listed below are reference values derived from the design of the IC and are not guaranteed.

Pin No.	Voltage	Internal Circuit	Description
A1	_	(AI) (I) (I) (I) (I) (I) (I) (I) (I) (I) (2.1 GHz / 800 MHz / 1.7 GHz Band selective SW 1 0.60 V or less : Low 2.16 V or more : High
A2		A2 GND	1.7 GHz LNA RF Output
A3		Refer to A2	2.1 GHz LNA RF Output
A4		Refer to A2	800 MHz LNA RF Output
B1	2.8 V		Voltage supply (V _{CC})
B2	0.0 V		GND
B4	_	Refer to A1	2.1 GHz / 800 MHz / 1.7 GHz Band selective SW 2 0.60 V or less : Low 2.16 V or more : High

	AN26	218A
Product Standards	Total Pages	Page
	32	31

■ Technical Data (continued)

• I/O block circuit diagrams and pin function descriptions (continued)

Note) The characteristics listed below are reference values derived from the design of the IC and are not guaranteed.

Pin No.	Voltage	Internal Circuit	Description
C1	0.75 V	V _{cc}	1.7 GHz LNA RF Input
C2	—	Refer to A1	High-Gain / Low-Gain selective SW 0.60 V or less : Low 2.16 V or more : High
C3	0.75 V	Refer to C1	2.1 GHz LNA RF Input
C4	0.75 V	Refer to C1	800 MHz LNA RF Input

Product Standards

Page

32

Usage Notes

- Special attention and precaution in using
 - 1. This IC is intended to be used for general electronic equipment [UMTS Triple Band handset].
 - Consult our sales staff in advance for information on the following applications:
 - Special applications in which exceptional quality and reliability are required, or if the failure or malfunction of this IC may directly jeopardize life or harm the human body.
 - Any applications other than the standard applications intended.
 - (1) Space appliance (such as artificial satellite, and rocket)
 - (2) Traffic control equipment (such as for automobile, airplane, train, and ship)
 - (3) Medical equipment for life support
 - (4) Submarine transponder
 - (5) Control equipment for power plant
 - (6) Disaster prevention and security device
 - (7) Weapon
 - (8) Others : Applications of which reliability equivalent to (1) to (7) is required

It is to be understood that our company shall not be held responsible for any damage incurred as a result of or in connection with your using the IC described in this book for any special application, unless our company agrees to your using the IC in this book for any special application.

- 2. Pay attention to the direction of LSI. When mounting it in the wrong direction onto the PCB (printed-circuit-board), it might smoke or ignite.
- 3. Pay attention in the PCB (printed-circuit-board) pattern layout in order to prevent damage due to short circuit between pins. In addition, refer to the Pin Description for the pin configuration.
- 4. Perform a visual inspection on the PCB before applying power, otherwise damage might happen due to problems such as a solderbridge between the pins of the semiconductor device. Also, perform a full technical verification on the assembly quality, because the same damage possibly can happen due to conductive substances, such as solder ball, that adhere to the LSI during transportation.
- 5. Take notice in the use of this product that it might break or occasionally smoke when an abnormal state occurs such as output pin-V_{CC} short (Power supply fault), output pin-GND short (Ground fault), or output-to-output-pin short (load short). And, safety measures such as an installation of fuses are recommended because the extent of the above-mentioned damage and smoke emission will depend on the current capability of the power supply.
- 6. When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.

Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.

- 7. When using the LSI for new models, verify the safety including the long-term reliability for each product.
- 8. When the application system is designed by using this LSI, be sure to confirm notes in this book. Be sure to read the notes to descriptions and the usage notes in the book.
- 9. Due to unshielded structure of this IC, under exposure of light, function and characteristic of the product cannot be guaranteed. During normal operation or even under testing condition, please ensure that IC is not exposed to light.
- 10. Basically, chip surface is ground potential. Please design to ensure no contact between chip surface and metal shielding.

2011-07-20	
Established	Revised

Semiconductor Company, Panasonic Corporation