

CMOS 3 V/5 V, Wide Bandwidth Quad 2:1 Mux in Chip Scale Package

ADG784

FEATURES

Low Insertion Loss and On Resistance: 4 Ω Typical

On-Resistance Flatness <2 Ω

Bandwidth >200 MHz

Single 3 V/5 V Supply Operation

Rail-to-Rail Operation

Very Low Distortion: <1%

Low Quiescent Supply Current (100 nA Typical)

Fast Switching Times

ton 10 ns

tope 4 ns

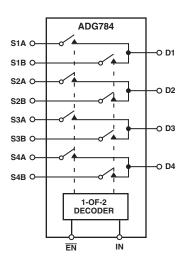
TTL/CMOS Compatible

For Functionally Equivalent Devices in 16-Lead QSOP/

SOIC Packages, See ADG774

APPLICATIONS 100VG-AnvLAN

Token Ring 4 Mbps/16 Mbps


ATM25/155

NIC Adapter and Hubs

Audio and Video Switching

Relay Replacement

FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION

The ADG784 is a monolithic CMOS device comprising four 2:1 multiplexer/demultiplexers with high impedance outputs. The CMOS process provides low power dissipation yet gives high switching speed and low on resistance. The on-resistance variation is typically less than 0.5 Ω with an input signal ranging from 0 V to 5 V.

The bandwidth of the ADG784 is greater than 200 MHz and this, coupled with low distortion (typically 0.5%), makes the part suitable for switching fast ethernet signals.

The on-resistance profile is very flat over the full analog input range ensuring excellent linearity and low distortion when switching audio signals. Fast switching speed, coupled with high signal bandwidth, also makes the parts suitable for video signal switching. CMOS construction ensures ultralow power dissipation making the parts ideally suited for portable and battery powered instruments.

The ADG784 operates from a single 3.3~V/5~V supply and is TTL logic compatible. The control logic for each switch is shown in the Truth Table.

These switches conduct equally well in both directions when ON, and have an input signal range that extends to the supplies. In the OFF condition, signal levels up to the supplies are blocked. The ADG784 switches exhibit break-beforemake switching action.

PRODUCT HIGHLIGHTS

- 1. Also Available as ADG774 in 16-Lead QSOP and SOIC.
- 2. Wide Bandwidth Data Rates >200 MHz.
- 3. Ultralow Power Dissipation.
- Extended Signal Range.
 The ADG784 is fabricated on a CMOS process giving an increased signal range that fully extends to the supply rails.
- 5. Low Leakage over Temperature.
- Break-Before-Make Switching.
 This prevents channel shorting when the switches are configured as a multiplexer.
- 7. Crosstalk is typically -70 dB @ 30 MHz.
- 8. Off isolation is typically -60 dB @ 10 MHz.
- 9. Available in Chip Scale Package (CSP).

REV. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

ADG784—SPECIFICATIONS

SINGLE SUPPLY ($V_{DD} = 5 \text{ V} \pm 10\%$, GND = 0 V. All specifications T_{MIN} to T_{MAX} unless otherwise noted.)

	B Version				
Parameter	25°C	T _{MIN} to T _{MAX}	Unit	Test Conditions/Comments	
ANALOG SWITCH					
Analog Signal Range		0 V to V _{DD}	V		
On Resistance (R _{ON})	2.2	о т со трр	Ω typ	$V_{\rm D} = 0 \text{ V to } V_{\rm DD}, I_{\rm S} = -10 \text{ mA}$	
(1401)		5	Ω max	1D 0 1 10 1DD, 23 10 1111	
On Resistance Match Between					
Channels (ΔR_{ON})	0.15		Ω typ	$V_D = 0 \text{ V to } V_{DD}, I_S = -10 \text{ mA}$	
		0.5	Ω max		
On Resistance Flatness (R _{FLAT(ON)})	0.5		Ω typ	$V_D = 0 \text{ V to } V_{DD}$; $I_S = -10 \text{ mA}$	
		1	Ω max		
LEAKAGE CURRENTS					
Source OFF Leakage I _S (OFF)	±0.01		nA typ	$V_D = 4.5 \text{ V}, V_S = 1 \text{ V}; V_D = 1 \text{ V}, V_S = 4.5 \text{ V};$	
,	±0.5	±1	nA max	Test Circuit 2	
Drain OFF Leakage I _D (OFF)	±0.01		nA typ	$V_D = 4.5 \text{ V}, V_S = 1 \text{ V}; V_D = 1 \text{ V}, V_S = 4.5 \text{ V};$	
	±0.5	±1	nA max	Test Circuit 2	
Channel ON Leakage ID, IS (ON)	±0.01		nA typ	$V_D = V_S = 4.5 \text{ V}; V_D = V_S = 1 \text{ V}; \text{ Test Circuit } 3$	
	±0.5	±1	nA max		
DIGITAL INPUTS					
Input High Voltage, V _{INH}		2.4	V min		
Input Low Voltage, V _{INL}		0.8	V max		
Input Current		0.0	7 111421		
I _{INL} or I _{INH}	0.001		μA typ	$V_{IN} = V_{INL}$ or V_{INH}	
TINL OF TINH	0.001	±0.5	μA max	VIN VINE OF VINH	
DYNAMIC CHARACTERISTICS ²					
t _{ON}		10	ns typ	$R_L = 100 \Omega$, $C_L = 35 pF$,	
CON		20	ns max	$V_S = 3 \text{ V}$; Test Circuit 4	
t_{OFF}		4	ns typ	$R_L = 100 \Omega$, $C_L = 35 pF$,	
OFF		8	ns max	$V_S = 3 \text{ V}$; Test Circuit 4	
Break-Before-Make Time Delay, t _D		5	ns typ	$R_L = 100 \Omega$, $C_L = 35 pF$,	
Droug Dereit France Time Desay, of		1	ns min	$V_{S1} = V_{S2} = 5 \text{ V}$; Test Circuit 5	
Off Isolation		-65	dB typ	$R_L = 100 \Omega$, $f = 10 MHz$; Test Circuit 7	
Channel-to-Channel Crosstalk		-75	dB typ	$R_L = 100 \Omega$, $f = 10 MHz$; Test Circuit 8	
Bandwidth –3 dB		240	MHz typ	$R_L = 100 \Omega$; Test Circuit 6	
Distortion		0.5	% typ	$R_{\rm L} = 100 \Omega$	
Charge Injection		10	pC typ	$C_L = 1 \text{ nF}$; Test Circuit 9	
C _S (OFF)		10	pF typ	f = 1 kHz	
$C_{\rm D}$ (OFF)		20	pF typ	f = 1 kHz	
C_D , C_S (ON)		30	pF typ	f = 1 MHz	
POWER REQUIREMENTS				$V_{\rm DD} = 5.5 \text{ V}$	
*				Digital Inputs = 0 V or V_{DD}	
$I_{ m DD}$		1	μA max		
•	0.001		μA typ		
$ m I_{IN}$		1	μA typ	$V_{IN} = 5 \text{ V}$	
I_{O}		100	mA max	$V_S/V_D = 0 V$	

-2-REV. A

NOTES ¹Temperature ranges are as follows: B Version, -40°C to +85°C.

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

SINGLE SUPPLY ($V_{DD} = 3~V~\pm~10\%$, GND = 0 V. All specifications T_{MIN} to T_{MAX} unless otherwise noted.)

Parameter 2		3 Version T _{MIN} to T _{MAX}	Unit	Test Conditions/Comments	
	23 0	- MAX	Cint	Test conditions/comments	
ANALOG SWITCH Analog Signal Range		0 V to V _{DD}	V		
On Resistance (R _{ON})	4	O V TO VDD	Ω typ	$V_D = 0 \text{ V to } V_{DD}, I_S = -10 \text{ mA}$	
on resistance (RON)	1	10	Ω max	VD OVIOVDD, IS TO IMI	
On Resistance Match Between					
Channels (ΔR_{ON})	0.15		Ω typ	$V_D = 0 \text{ V to } V_{DD}, I_S = -10 \text{ mA}$	
		0.5	Ω max		
On Resistance Flatness (R _{FLAT(ON)})	2		Ω typ	$V_D = 0 \text{ V to } V_{DD}, I_S = -10 \text{ mA}$	
		4	Ω max		
LEAKAGE CURRENTS					
Source OFF Leakage I _S (OFF)	±0.01		nA typ	$V_D = 3 \text{ V}, V_S = 1 \text{ V}; V_D = 1 \text{ V}, V_S = 3 \text{ V};$	
	±0.5	± 1	nA max	Test Circuit 2	
Drain OFF Leakage I _D (OFF)	±0.01		nA typ	$V_D = 3 \text{ V}, V_S = 1 \text{ V}; V_D = 1 \text{ V}, V_S = 3 \text{ V};$	
Charact ONLI sales at 1 (ON)	±0.5	±1	nA max	Test Circuit 2	
Channel ON Leakage I _D , I _S (ON)	±0.01 ±0.5	±1	nA typ nA max	$V_D = V_S = 3 \text{ V}; V_D = V_S = 1 \text{ V}; \text{ Test Circuit } 3$	
	±0.5	<u> </u>	III IIIax		
DIGITAL INPUTS		2.0	***		
Input High Voltage, V _{INH}		2.0	V min		
Input Low Voltage, V _{INL} Input Current		0.4	V max		
I _{INL} or I _{INH}	0.001		μA typ	$V_{IN} = V_{INL}$ or V_{INH}	
TINL OF TINH	0.001	±0.5	μA max	VIN VINL OF VINH	
DYNAMIC CHARACTERISTICS ²			,		
t _{ON}		12	ns typ	$R_{L} = 100 \Omega, C_{L} = 35 pF,$	
-010		25	ns max	$V_S = 1.5 \text{ V}$; Test Circuit 4	
$t_{ m OFF}$		5	ns typ	$R_{L} = 100 \Omega, C_{L} = 35 \mathrm{pF},$	
		10	ns max	$V_S = 1.5 \text{ V}$; Test Circuit 4	
Break-Before-Make Time Delay, t _D		5	ns typ	$R_L = 100 \Omega, C_L = 35 pF,$	
		1	ns min	$V_{S1} = V_{S2} = 3 \text{ V}$; Test Circuit 5	
Off Isolation		-65 -55	dB typ	$R_L = 50 \Omega$, $f = 10 MHz$; Test Circuit 7	
Channel-to-Channel Crosstalk Bandwidth –3 dB		-75 240	dB typ	$R_L = 50 \Omega$, $f = 10 MHz$; Test Circuit 8	
Distortion		240	MHz typ % typ	$R_L = 50 \Omega$; Test Circuit 6 $R_L = 50 \Omega$	
Charge Injection		3	pC typ	$C_L = 1 \text{ nF}$; Test Circuit 9	
C _s (OFF)		10	pF typ	f = 1 kHz	
$C_{\rm D}$ (OFF)		20	pF typ	f = 1 kHz	
$C_D, C_S (ON)$		30	pF typ	f = 1 MHz	
POWER REQUIREMENTS			1	V _{DD} = 3.3 V	
10 WER RECOINEMENTS				$V_{DD} = 3.3 \text{ V}$ Digital Inputs = 0 V or V_{DD}	
I_{DD}		1	μA max	0	
	0.001		μA typ		
$I_{ m IN}$		1	μA typ	$V_{IN} = 3 V$	
I_{O}		100	mA max	$V_S/V_D = 0 V$	

Specifications subject to change without notice.

Table I. Truth Table

EN	IN	D1	D2	D 3	D4	Function
1	X	Hi-Z	Hi-Z	Hi-Z	Hi-Z	DISABLE
0	0	S1A	S2A	S3A	S4A	IN = 0
0	1	S1B	S2B	S3B	S4B	IN = 1

REV. A -3-

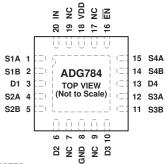
NOTES

¹Temperature ranges are as follows: B Version, -40°C to +85°C.

²Guaranteed by design, not subject to production test.

ADG784

ABSOLUTE MAXIMUM RATINGS¹


$(T_A = 25^{\circ}C \text{ unless otherwise noted.})$
V_{DD} to GND0.3 V to +6 V
Analog, Digital Inputs ² -0.3 V to $V_{DD} + 0.3 \text{ V}$ or
30 mA, Whichever Occurs First
Continuous Current, S or D
Peak Current, S or D 300 mA
(Pulsed at 1 ms, 10% Duty Cycle max)
Operating Temperature Range
Industrial (B Version)40°C to +85°C
Storage Temperature Range65°C to +150°C
Junction Temperature
Chip Scale Package
θ_{JA} Thermal Impedance
Lead Temperature, Soldering
Vapor Phase (60 sec)
Infrared (15 sec)
ESD

NOTES

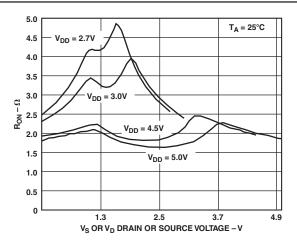
¹Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

²Overvoltages at IN, S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

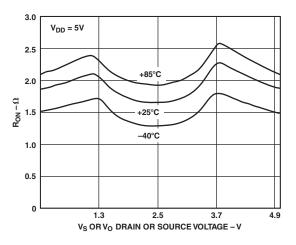
PIN CONFIGURATION

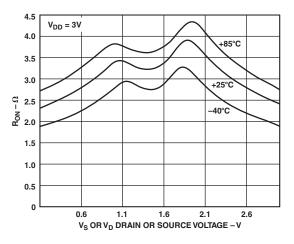
NOTES
1. NC = NO CONNECT.
2. EXPOSED PAD TIED TO SUBSTRATE, GND.

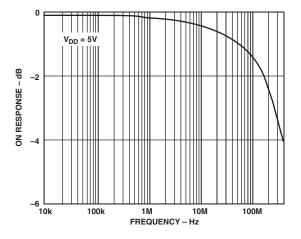
TERMINOLOGY


TERMINOLOGI						
$\overline{\mathrm{V}_{\mathrm{DD}}}$	Most Positive Power Supply Potential.					
GND	Ground (0 V) Reference.					
S	Source Terminal. May be an input or output.					
D	Drain Terminal. May be an input or output.					
IN	Logic Control Input.					
$\overline{\mathrm{EN}}$	Logic Control Input.					
R_{ON}	Ohmic resistance between D and S.					
$\Delta R_{\rm ON}$	On Resistance match between any two channels i.e., $R_{ON} \max - R_{ON} \min$.					
R _{FLAT(ON)}	Flatness is defined as the difference between the maximum and minimum value of on resis- tance as measured over the specified analog signal range.					
I _S (OFF)	Source Leakage Current with the switch "OFF."					
I_D (OFF)	Drain Leakage Current with the switch "OFF."					
I_D , I_S (ON)	Channel Leakage Current with the switch "ON."					
$V_{D}(V_{S})$	Analog Voltage on Terminals D, S.					
C_{S} (OFF)	"OFF" Switch Source Capacitance.					
C_D (OFF)	"OFF" Switch Drain Capacitance.					
C_D , C_S (ON)	"ON" Switch Capacitance.					
t _{ON}	Delay between applying the digital control input and the output switching on. See Test Circuit 4.					
$t_{ m OFF}$	Delay between applying the digital control input and the output switching Off.					
t _D	"OFF" time or "ON" time measured between the 90% points of both switches, when switching from one address state to another. See Test Circuit 5.					
Crosstalk	A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.					
Off Isolation	A measure of unwanted signal coupling through an "OFF" switch.					
Bandwidth	Frequency response of the switch in the ON state measured at 3 dB down.					
Distortion	$R_{\rm FLAT(ON)}/R_{\rm L}$					

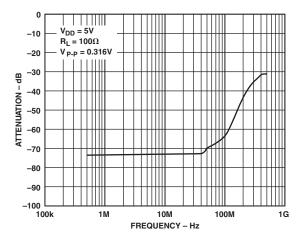
CAUTION_


ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG784 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

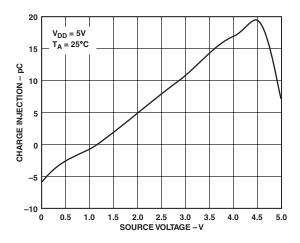

Typical Performance Characteristics—ADG784


TPC 1. On Resistance as a Function of V_D (V_S) for Various Single Supplies


TPC 2. On Resistance as a Function of V_D (V_S) for Different Temperatures with 5 V Single Supplies


TPC 3. On Resistance as a Function of V_D (V_S) for Different Temperatures with 3 V Single Supplies

TPC 4. On Response vs. Frequency


TPC 5. Off Isolation vs. Frequency

TPC 6. Crosstalk vs. Frequency

REV. A -5-

ADG784

TPC 7. Charge Injection vs. Source Voltage

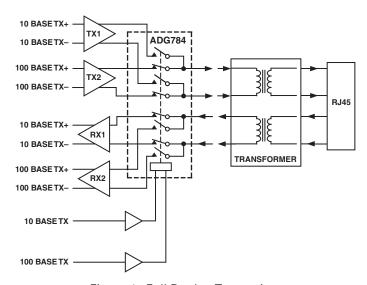


Figure 1. Full Duplex Transceiver

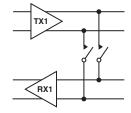
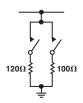
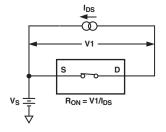
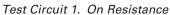
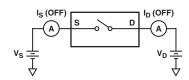


Figure 2. Loop Back

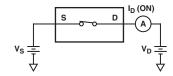


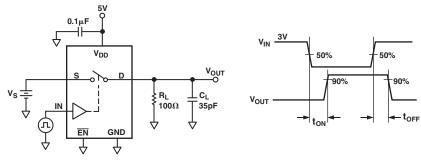

Figure 3. Line Termination

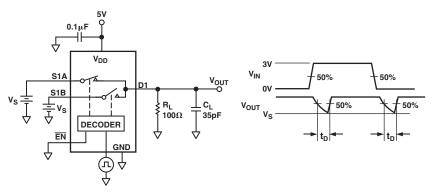


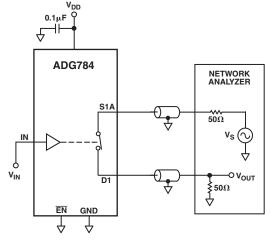

Figure 4. Line Clamp

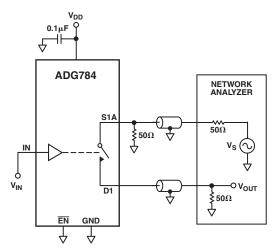
-6- REV. A

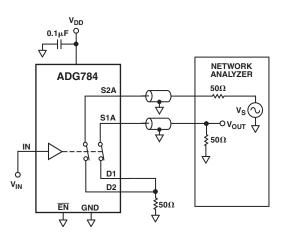

Test Circuits

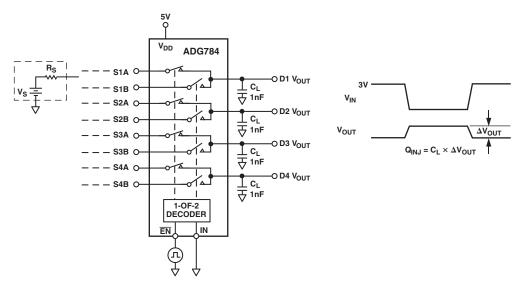



Test Circuit 2. Off Leakage


Test Circuit 3. On Leakage


Test Circuit 4. Switching Times


Test Circuit 5. Break-Before-Make Time Delay


Test Circuit 6. Bandwidth

Test Circuit 7. Off Isolation

Test Circuit 8. Channel-to-Channel Crosstalk

Test Circuit 9. Charge Injection

OUTLINE DIMENSIONS

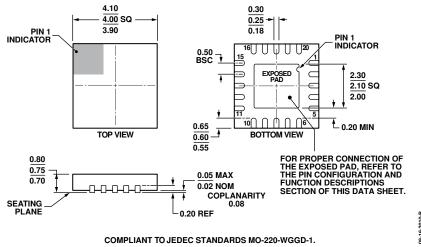


Figure 37. 20-Lead Lead Frame Chip Scale Package [LFCSP_WQ] 4 mm × 4 mm Body, Very Very Thin Quad (CP-20-6) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
ADG784BCPZ	-40°C to +85°C	20-Lead LFCSP_WQ	CP-20-6
ADG784BCPZ-REEL	-40°C to +85°C	20-Lead LFCSP_WQ	CP-20-6
ADG784BCPZ-REEL7	−40°C to +85°C	20-Lead LFCSP_WQ	CP-20-6

¹ Z = RoHS Compliant Part.

REVISION HISTORY

2/13-Rev. 0 to Rev. A

4/01—Revision 0: Initial Version

