- EPIC[™] (Enhanced-Performance Implanted CMOS) Process
- Operating Range 2-V to 5.5-V V_{CC}
- Packaged in Plastic Small-Outline Transistor Package

description

The SN74AHC2G02 contains dual 2-input NOR gates that perform the Boolean function $Y = \overline{A} \bullet \overline{B}$ or $Y = \overline{A} + \overline{B}$ in positive logic.

The SN74AHC2G02 is characterized for operation from -40°C to 85°C.

FUNCTION TABLE (each gate)

INP	UTS	OUTPUT
Α	В	Υ
Н	Χ	L
Х	Н	L
L	L	Н

logic symbol†

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

$$\begin{array}{c|c}
1A & \hline
1 & \hline
2 & \hline
\end{array}$$

$$\begin{array}{c|c}
7 & 1Y \\
2A & \hline
\end{array}$$

$$\begin{array}{c|c}
5 & \hline
\end{array}$$

$$\begin{array}{c|c}
3 & 2Y \\
\end{array}$$

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC is a trademark of Texas Instruments Incorporated.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	0.5 V to 7 V
Input voltage range, V _I (see Note 1)	
Output voltage range, V _O (see Note 1)	
Input clamp current, I _{IK} (V _I < 0)	–20 mA
Output clamp current, I _{OK} (V _O < 0 or V _O > V _{CC})	
Continuous output current, I_O ($V_O = 0$ to V_{CC})	±25 mA
Continuous current through V _{CC} or GND	±50 mA
Package thermal impedance, θ _{JA} (see Note 2)	296°C/W
Storage temperature range, T _{stg}	—65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions (see Note 3)

			MIN	MAX	UNIT
Vcc	Supply voltage		2	5.5	V
		V _{CC} = 2 V	1.5		
VIH	High-level input voltage	V _{CC} = 3 V	2.1		V
	H High-level input voltage L Low-level input voltage Input voltage Output voltage High-level output current L Low-level output current Input transition rise or fall rate	V _{CC} = 5.5 V	3.85		
		V _{CC} = 2 V		0.5	
VIL	Low-level input voltage	V _{CC} = 3 V		0.9	V
		V _{CC} = 5.5 V	2 5.5 = 2 V 1.5 = 3 V 2.1 = 5.5 V 3.85 = 2 V 0.5 = 3 V 0.9 = 5.5 V 1.65 0 5.5 0 VCC = 2 V -50 = 3.3 V ± 0.3 V -4 = 5 V ± 0.5 V -8 = 2 V 50 = 3.3 V ± 0.3 V 4 = 5 V ± 0.5 V 8 = 3.3 V ± 0.3 V 100		
٧ _I	Input voltage		0	5.5	V
VΟ	Output voltage		0	VCC	V
		V _{CC} = 2 V		-50	μΑ
lон	High-level input voltage $ \begin{array}{c} V_{CC} = 3 \text{ V} \\ V_{CC} = 5.5 \\ \hline V_{CC} = 5.5 \\ \hline V_{CC} = 2 \text{ V} \\ \hline V_{CC} = 3 \text{ V} \\ \hline V_{CC} = 3 \text{ V} \\ \hline V_{CC} = 5.5 \\ \hline \\ Input voltage \\ \hline \\ Output voltage \\ \hline \\ High-level output current \\ \hline V_{CC} = 2 \text{ V} \\ \hline V_{CC} = 3.3 \\ \hline V_{CC} = 5 \text{ V} \\ \hline V_{CC} = 5 \text{ V} \\ \hline V_{CC} = 2 \text{ V} \\ \hline V_{CC} = 5 \text{ V} \\ \hline V_{CC} = 3.3 $	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		-4	mA
		$V_{CC} = 5 V \pm 0.5 V$		-8	IIIA
		V _{CC} = 2 V		50	μΑ
loL	Low-level input voltage Input voltage Output voltage High-level output current Low-level output current v Input transition rise or fall rate	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		4	mA
		$V_{CC} = 5 V \pm 0.5 V$		8	IIIA
A+/A>4	·	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$		100	ns/V
Δt/Δv	input transition rise of fail fate	$V_{CC} = 5 V \pm 0.5 V$		20	115/ V
TA	Operating free-air temperature		-40	85	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

^{2.} The package thermal impedance is calculated in accordance with JESD 51.

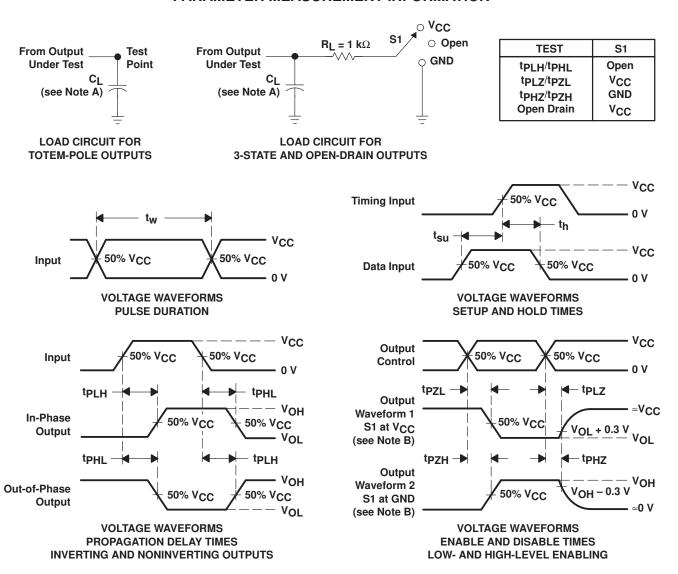
PRODUCT PREVIEW

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	vcc	T _A = 25°C			MAINI	MAY	UNIT
PANAMETEN	TEST CONDITIONS		MIN	TYP	MAX	MIN	MAX	UNIT
			1.9	2		1.9		
	I _{OH} = -50 μA	3 V	2.9	3		2.9		
Voн		4.5 V	4.4	4.5		4.4		V
	I _{OH} = -4 mA		2.58			2.48		
	I _{OH} = -8 mA	4.5 V	3.94			3.8		
					0.1		0.1	
	I _{OL} = 50 μA	3 V			0.1		0.1	
V _{OL}					0.1		0.1	V
	I _{OL} = 4 mA	3 V			0.36		0.44	
	I _{OL} = 8 mA	4.5 V			0.36		0.44	
Ι _Ι	$V_I = V_{CC}$ or GND	5.5 V			±0.1		±1	μΑ
lcc	$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V			1		10	μΑ
Ci	V _I = V _{CC} or GND	5 V						рF

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	LOAD CAPACITANCE	T _A = 25°C	MIN M	AX UNIT																					
PANAMETER	(INPUT)	(OUTPUT)		MIN TYP MAX	IVIIIN IVI	AX ONIT																					
^t PLH	A or B	Y	C _I = 15 pF																								
^t PHL	AOIB		'		'	'	'	'	'	ľ	ľ	'	ľ	'	'	Į.	1	' OL =	Ι ΟΕ = 13 βΙ	OL = 13 bi	OL = 13 pi	ο <u>Γ</u> = 13 βι	Ο <u>Γ</u> = 13 β 1	OL = 10 pi	OL = 10 pi		
^t PLH	A or B	V	V	V	C. 50 pE			ns																			
^t PHL	AUIB	r	C _L = 50 pF			IIS																					


switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	LOAD CAPACITANCE	T _A = 25°C			MIN	MAV	UNIT	
PARAMETER	(INPUT)	(OUTPUT)		MIN	TYP	MAX	IVIIN	MAX	UNIT	
[†] PLH	A or B	V	C 15 pE						ns	
^t PHL	AOIB	'	C _L = 15 pF	OL = 13 β1						115
^t PLH	A or B		C _I = 50 pF						ne	
tPHL	1 AUID		OL = 50 PF						ns	

operating characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

	PARAMETER		TYP	UNIT
C _{pd}	Power dissipation capacitance	No load, f = 1 MHz		pF

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \Omega$, $t_f \leq 3$ ns. $t_f \leq 3$ ns.
- D. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated