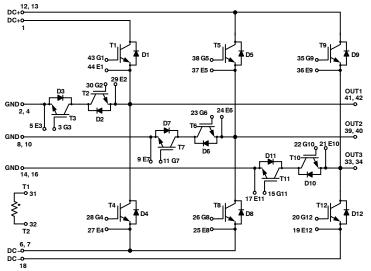
Q1 3-Phase TNPC Module

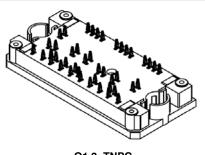

The NXH25T120L2Q1PG/PTG is a case power module containing a three channel T-type neutral-point clamped (TNPC) circuit. Each channel has a two 1200 V, 25 A IGBTs with inverse diodes and two 650 V, 20 A IGBTs with inverse diodes. The module contains an NTC thermistor.

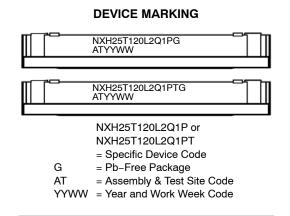
Features

- Low Package Height
- Compact 82.5 mm x 37.4 mm x 12 mm Package
- Press-fit Pins
- Options with Pre-applied Thermal Interface Material (TIM) and Without Pre-applied TIM
- Thermistor

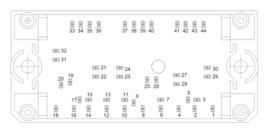
Typical Applications

- Solar Inverters
- UPS





ON Semiconductor®


www.onsemi.com

Q1 3-TNPC PRESS FIT CASE 180AS

PIN ASSIGNMENTS

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

Table 1. MAXIMUM RATINGS (Note 1)

Rating	Symbol	Value	Unit	
HALF BRIDGE IGBT				
Collector-Emitter Voltage	V _{CES}	1200	V	
Gate-Emitter Voltage	V _{GE}	±20	V	
Continuous Collector Current @ $T_c = 80^{\circ}C (T_J = 175^{\circ}C)$	Ι _C	25	А	
Pulsed Collector Current (T _J = 175°C)	I _{Cpulse}	75	А	
Maximum Power Dissipation (T _J = 175°C)	P _{tot}	81	W	
Short Circuit Withstand Time @ V_{GE} = 15 V, V_{CE} = 600 V, T_J \leq 150°C	T _{sc}	5	μs	
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C	
Maximum Operating Junction Temperature	T _{JMAX}	150	°C	
NEUTRAL POINT IGBT				
Collector-Emitter Voltage	V _{CES}	650	V	
Gate-Emitter Voltage	V _{GE}	±20	V	
Continuous Collector Current @ $T_c = 80^{\circ}C (T_J = 175^{\circ}C)$	Ι _C	20	А	
Pulsed Collector Current (T _J = 175°C)	I _{Cpulse}	60	А	
Maximum Power Dissipation (T _J = 175°C)	P _{tot}	50	W	
Short Circuit Withstand Time @ V_{GE} = 15 V, V_{CE} = 400 V, T_J \le 150^\circ C	T _{sc}	5	μs	
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C	
Maximum Operating Junction Temperature	T _{JMAX}	150	°C	
HALF BRIDGE DIODE				
Peak Repetitive Reverse Voltage	V _{RRM}	1200	V	
Continuous Forward Current @ T _c = 80°C (T _J = 175°C)	١ _F	15	А	
Repetitive Peak Forward Current (T _J = 175°C)	I _{FRM}	45	А	
Maximum Power Dissipation (T _J = 175°C)	P _{tot}	43	W	
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C	
Maximum Operating Junction Temperature	T _{JMAX}	150	°C	
NEUTRAL POINT DIODE				
Peak Repetitive Reverse Voltage	V _{RRM}	650	V	
Continuous Forward Current @ $T_c = 80^{\circ}C (T_J = 175^{\circ}C)$	١ _F	15	А	
Repetitive Peak Forward Current (T _J = 175°C)	I _{FRM}	45	А	
Maximum Power Dissipation (T _J = 175°C)	P _{tot}	39	W	
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C	
Maximum Operating Junction Temperature	T _{JMAX}	150	°C	
THERMAL PROPERTIES	·			
Storage Temperature range	T _{stg}	-40 to 125	°C	
INSULATION PROPERTIES	<u> </u>		•	
Isolation test voltage, t = 1 sec, 60Hz	V _{is}	3000	V _{RMS}	
Creepage distance		12.7	mm	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe

Operating parameters.

Table 2. RECOMMENDED OPERATING RANGES

Rating	Symbol	Min	Max	Unit
Module Operating Junction Temperature	Т _Ј	-40	150	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Table 3. ELECTRICAL CHARACTERISTICS T_J = 25°C unless otherwise noted

Parameter	Parameter Test Conditions		Min	Тур	Мах	Unit
HALF BRIDGE IGBT CHARACTERISTICS						
Collector-Emitter Cutoff Current	V _{GE} = 0 V, V _{CE} = 1200 V	I _{CES}	_	-	300	μA
Collector-Emitter Saturation Voltage	V_{GE} = 15 V, I _C = 25 A, T _J = 25°C	V _{CE(sat)}	-	1.90	2.50	V
	V_{GE} = 15 V, I _C = 25 A, T _J = 125°C		-	1.96	-	
Gate-Emitter Threshold Voltage	$V_{GE} = V_{CE}$, $I_C = 1.5 \text{ mA}$	V _{GE(TH)}	4.90	5.49	6.50	V
Gate Leakage Current	V _{GE} = 20 V, V _{CE} = 0 V	I _{GES}	—	-	300	nA
Turn-on Delay Time	T _J = 25°C	t _{d(on)}	-	59	-	ns
Rise Time	V _{CE} = 350 V, I _C = 15 A V _{GE} = ±15 V, R _G = 15 Ω	t _r	-	26	-	
Turn-off Delay Time	$V_{GE} = \pm 13 V, R_{G} = 13 \Sigma_{2}$	t _{d(off)}	-	242	-	
Fall Time		t _f	-	52	-	
Turn-on Switching Loss per Pulse		Eon	-	220	-	μJ
Turn off Switching Loss per Pulse		E _{off}	-	240	_	
Turn-on Delay Time	$T_{\rm J} = 125^{\circ}{\rm C}$	t _{d(on)}	-	48	-	ns
Rise Time	V _{CE} = 350 V, I _C = 15 A V _{GE} = ±15 V, R _G = 15 Ω	t _r	-	29	-	
Turn-off Delay Time	$v_{GE} = \pm 13 v, n_G = 13 s_2$	t _{d(off)}	-	293	-	
Fall Time		t _f	_	258	_	
Turn-on Switching Loss per Pulse		E _{on}	_	400	_	μJ
Turn off Switching Loss per Pulse		E _{off}	_	710	_	
Input Capacitance	V _{CE} = 20 V, V _{GE} = 0 V. f = 10 kHz	C _{ies}	_	8502	_	pF
Output Capacitance		C _{oes}	-	187	-	
Reverse Transfer Capacitance		C _{res}	-	154	-	
Total Gate Charge	V_{CE} = 600 V, I_{C} = 25 A, V_{GE} = ±15 V	Qg	-	352	-	nC
Thermal Resistance - chip-to-heatsink	Thermal grease, Thickness \leq 2.25 Mil, λ = 2.9 W/mK	R _{thJH}	-	1.17	-	°C/W
NEUTRAL POINT DIODE CHARACTERIS	rics					
Diode Forward Voltage	I _F = 15 A, T _J = 25°C	V _F	-	2.43	-	V
	I _F = 15 A, T _J = 125°C		_	1.60	-	
Combined IGBT + Diode Voltage Drop	I _F = 15 A, T _J = 25°C	V _{DT}	-	3.76	4.60	V
Reverse Recovery Time	$T_J = 25^{\circ}C$	t _{rr}	_	59	-	ns
Reverse Recovery Charge	$V_{CE} = 350 \text{ V}, \text{ I}_{C} = 15 \text{ A}$	Q _{rr}	_	0.21	-	μC
Peak Reverse Recovery Current	V_{GE} = ±15 V, R_{G} = 15 Ω	I _{RRM}	_	7	-	А
Peak Rate of Fall of Recovery Current		di/dt	_	106	-	A/μs
Reverse Recovery Energy		E _{rr}	_	40	-	μJ
Reverse Recovery Time	T _J = 125°C	t _{rr}	_	67	-	ns
Reverse Recovery Charge	$V_{CE} = 350 \text{ V}, \text{ I}_{C} = 15 \text{ A}$	Q _{rr}	_	0.69	_	μC
Peak Reverse Recovery Current	V_{GE} = ±15 V, R_{G} = 15 Ω	I _{RRM}	_	19	_	А
Peak Rate of Fall of Recovery Current	1	di/dt	-	451	-	A/μs
Reverse Recovery Energy	1	E _{rr}	-	100	-	μJ
Thermal Resistance - chip-to-heatsink	Thermal grease, Thickness \leq 2.25 Mil, λ = 2.9 W/mK	R _{thJH}	_	2.45	_	°C/W

Table 3. ELECTRICAL CHARACTERISTICS T_J = 25°C unless otherwise noted

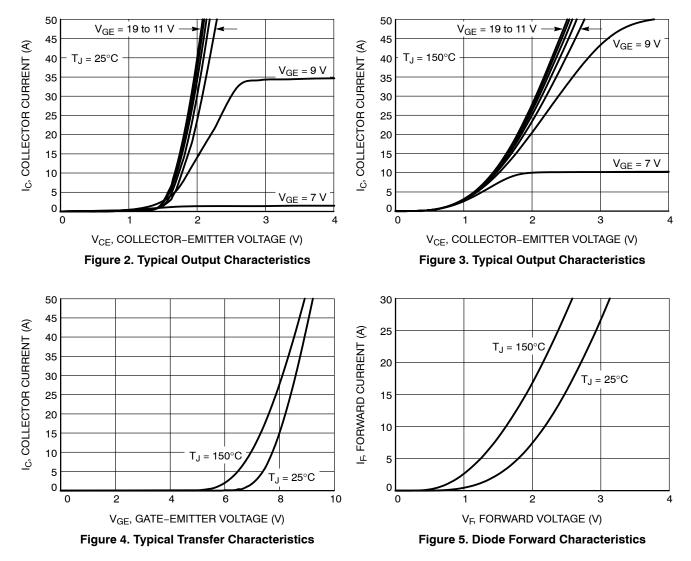
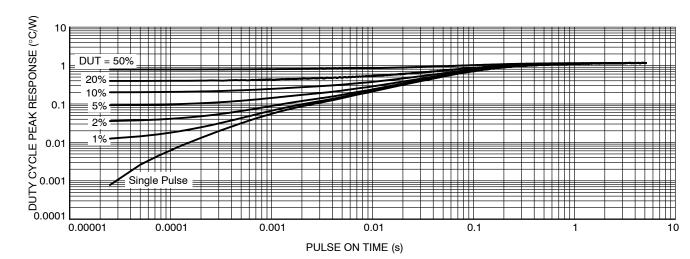

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit	
NEUTRAL POINT IGBT CHARACTERISTI	CS						
Collector-Emitter Cutoff Current	$V_{GE} = 0 V, V_{CE} = 650 V$	I _{CES}	-	-	200	μΑ	
Collector-Emitter Saturation Voltage	V_{GE} = 15 V, I _C = 20 A, T _J = 25°C	V _{CE(sat)}	-	1.49	-	V	
	V_{GE} = 15 V, I _C = 20 A, T _J = 125°C	1	-	1.61	-	1	
Gate-Emitter Threshold Voltage	$V_{GE} = V_{CE}, I_{C} = 1.65 \text{ mA}$	V _{GE(TH)}	4.70	5.68	6.50	V	
Gate Leakage Current	V_{GE} = 20 V, V_{CE} = 0 V	I _{GES}	_	-	200	nA	
Turn-on Delay Time	$T_J = 25^{\circ}C$	t _{d(on)}	_	33	-	ns	
Rise Time	V _{CE} = 350 V, I _C = 15 A V _{GE} = ±15V, R _G = 15 Ω	t _r	_	18	-	1	
Turn-off Delay Time	$V_{GE} = \pm 15V, H_G = 15.22$	t _{d(off)}	_	126	-	1	
Fall Time	-	t _f	-	43	_	1	
Turn-on Switching Loss per Pulse	-	E _{on}	-	250	_	μJ	
Turn off Switching Loss per Pulse	-	E _{off}	-	180	-	1	
Turn-on Delay Time $T_J = 125^{\circ}C$		t _{d(on)}	-	31	-	ns	
Rise Time	$V_{CE} = 350 \text{ V}, I_C = 15 \text{ A}$	t _r	_	19	-	1	
Turn-off Delay Time	V_{GE} = ±15 V, R_{G} = 15 Ω	t _{d(off)}	-	138	-	1	
Fall Time	-	t _f	-	72	-	1	
Turn-on Switching Loss per Pulse	-	E _{on}	-	390	-	uJ	
Turn off Switching Loss per Pulse	-	E _{off}	-	300	-	1	
Input Capacitance	V _{CE} = 20 V, V _{GE} = 0 V, f = 10 kHz	C _{ies}	-	3837	-	pF	
Output Capacitance	-	C _{oes}	-	127	-	1	
Reverse Transfer Capacitance	-	C _{res}	-	104	-	1	
Total Gate Charge	V_{CE} = 480 V, I _C = 20 A, V_{GE} = ±15 V	Qg	-	166	_	nC	
Thermal Resistance – chip-to-heatsink	Thermal grease, Thickness \leq 2.25 Mil, λ = 2.9 W/mK	R _{thJH}	-	1.90	-	°C/W	
HALF BRIDGE DIODE CHARACTERISTIC	S						
Diode Forward Voltage	I _F = 15 A, T _J = 25°C	VF	_	2.47	3	V	
	I _F = 15 A, T _J = 125°C	1 1	-	1.97	_	1	
Reverse Recovery Time	T _J = 25°C	t _{rr}	-	63	-	ns	
Reverse Recovery Charge	$V_{CE} = 350 \text{ V}, I_C = 15 \text{ A}$	Q _{rr}	-	0.45	-	μC	
Peak Reverse Recovery Current	V_{GE} = ±15 V, R_{G} = 15 Ω	I _{RRM}	-	17	_	А	
Peak Rate of Fall of Recovery Current	-	di/dt	-	313	_	A/μs	
Reverse Recovery Energy	-	E _{rr}	-	70	_	μJ	
Reverse Recovery Time	T _J = 125°C	t _{rr}	_	233	_	ns	
Reverse Recovery Charge	V _{CE} = 350 V, I _C = 15 A	Q _{rr}	_	1.55	_	μC	
Peak Reverse Recovery Current	V_{GE} = ±15 V, R_{G} = 15 Ω	I _{RRM}	_	22	_	A	
Peak Rate of Fall of Recovery Current	1	di/dt	_	76	_	A/μs	
Reverse Recovery Energy	1	E _{rr}	_	360		μJ	
Thermal Resistance – chip-to-heatsink	Thermal grease, Thickness \leq 2.25 Mil, λ = 2.9 W/mK	R _{thJH}	_	2.21		°C/W	

Table 3. ELECTRICAL CHARACTERISTICS T_J = 25°C unless otherwise noted

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit		
THERMISTOR CHARACTERISTICS								
Nominal resistance	T = 25°C	R ₂₅	-	22	-	kΩ		
Nominal resistance	T = 100°C	R ₁₀₀	-	1468	-	Ω		
Deviation of R25		$\Delta R/R$	-5		5	%		
Power dissipation		PD	-	200	-	mW		
Power dissipation constant			-	2	-	mW/K		
B-value	B(25/50), tolerance ±3%		-	3950	-	К		
B-value	B(25/100), tolerance $\pm 3\%$		-	3998	-	К		


ORDERING INFORMATION

Orderable Part Number	Marking	Package	Shipping
NXH25T120L2Q1PG	NXH25T120L2Q1PG	Q1 3-Phase TNPC – Case 180AS Press-fit Pins (Pb – Free)	21 Units / Blister Tray
NXH25T120L2Q1PTG	NXH25T120L2Q1PTG	Q1 3-Phase TNPC - Case 180AS Press-fit Pins with pre-applied thermal interface material (TIM) (Pb - Free)	21 Units / Blister Tray

TYPICAL CHARACTERISTICS – HALF BRIDGE IGBT AND DIODE

TYPICAL CHARACTERISTICS – HALF BRIDGE IGBT AND DIODE

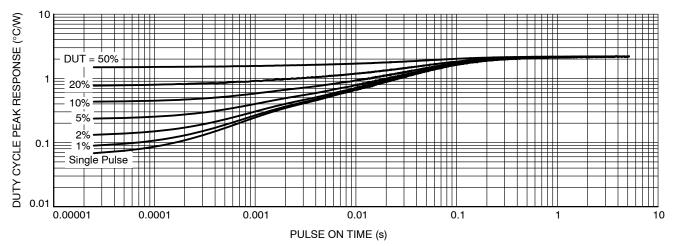
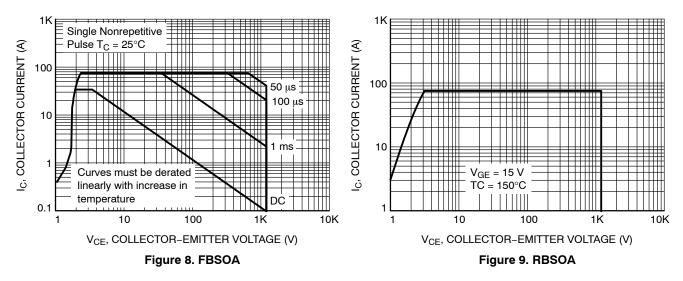



Figure 7. Transient Thermal Impedance (Half Bridge Diode)

TYPICAL CHARACTERISTICS – HALF BRIDGE IGBT AND DIODE

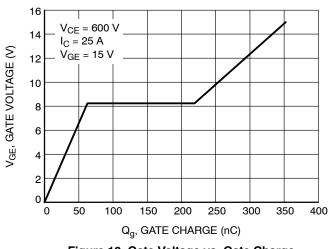
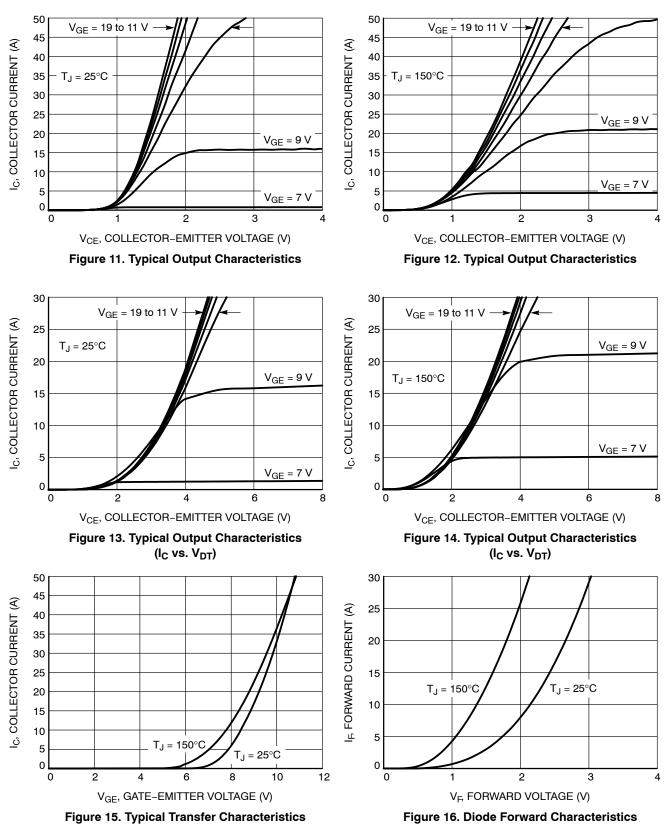



Figure 10. Gate Voltage vs. Gate Charge

TYPICAL CHARACTERISTICS - NEUTRAL POINT IGBT AND DIODE

TYPICAL CHARACTERISTICS - NEUTRAL POINT IGBT AND DIODE

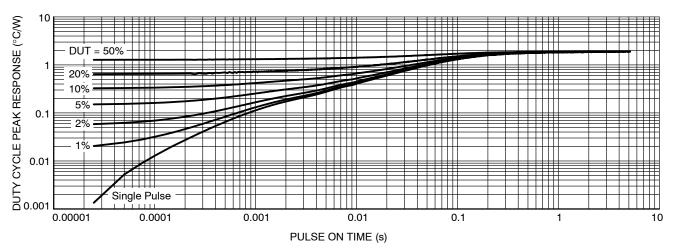
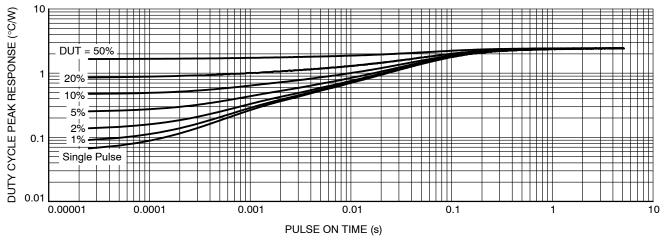
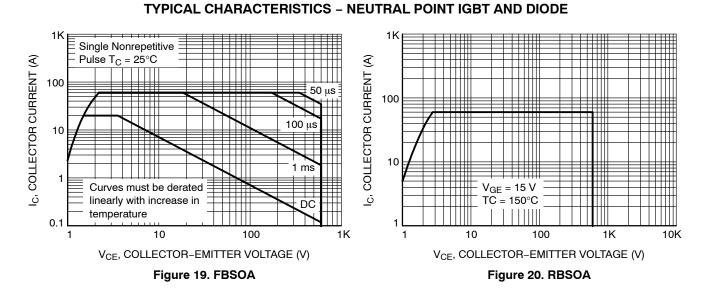
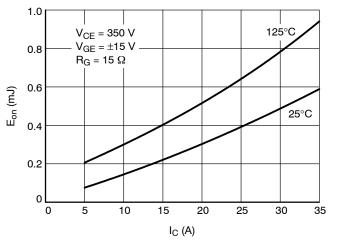
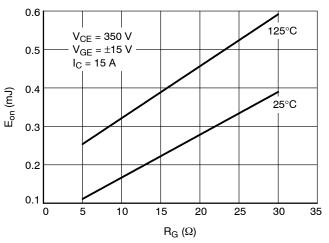


Figure 17. Transient Thermal Impedance (Neutral Point IGBT)

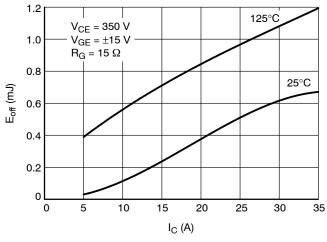




Figure 18. Transient Thermal Impedance (Neutral Point Diode)



V_{CE} = 480 V I_C = 20 A V_{GE}, GATE VOLTAGE (V) V_{GE} = 15 V Q_g, GATE CHARGE (nC)

Figure 21. Gate Voltage vs. Gate Charge


TYPICAL CHARACTERISTICS - HALF BRIDGE IGBT COMUTATES NEUTRAL POINT DIODE

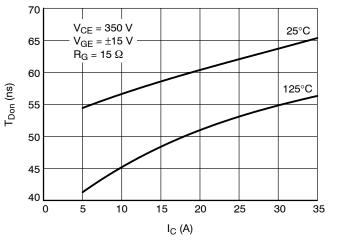
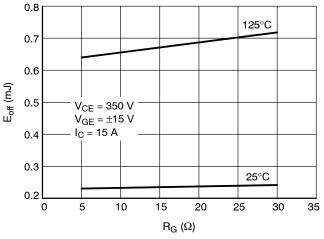
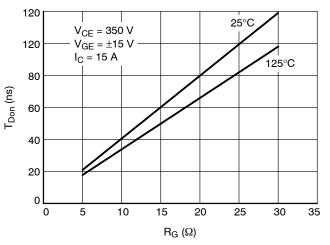
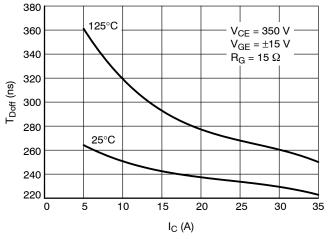
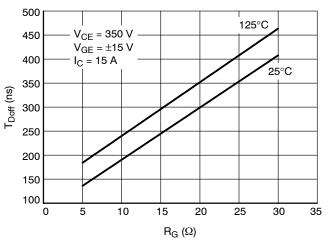


Figure 26. Typical Switching Time T_{Don} vs. I_C


Figure 25. Typical Switching Loss E_{off} vs. R_{G}

TYPICAL CHARACTERISTICS - HALF BRIDGE IGBT COMUTATES NEUTRAL POINT DIODE

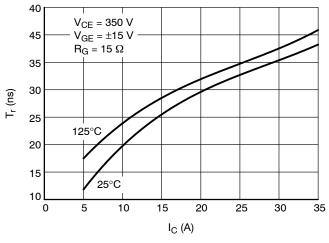


Figure 30. Typical Switching Time T_r vs. I_C

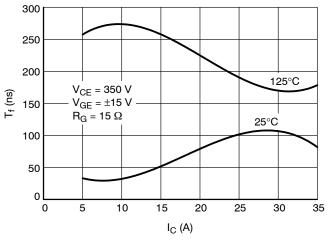
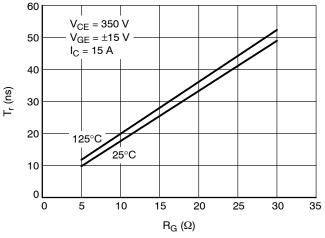
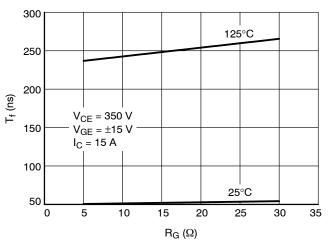
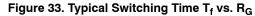
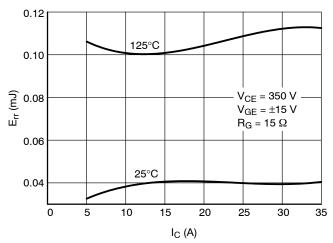
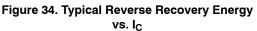
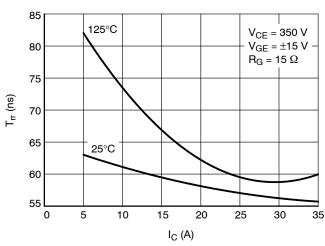


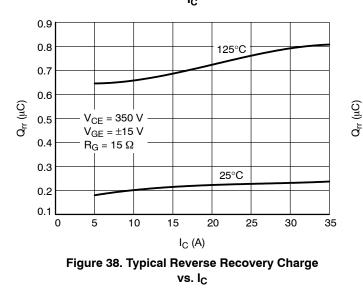
Figure 32. Typical Switching Time T_f vs. I_C


Figure 31. Typical Switching Time T_r vs. R_G






TYPICAL CHARACTERISTICS - HALF BRIDGE IGBT COMUTATES NEUTRAL POINT DIODE

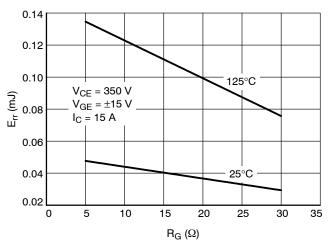
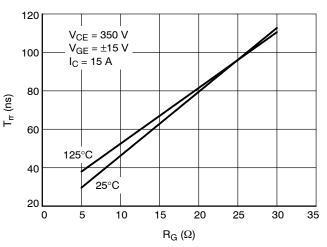
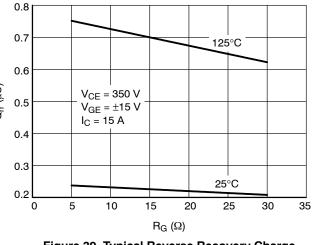
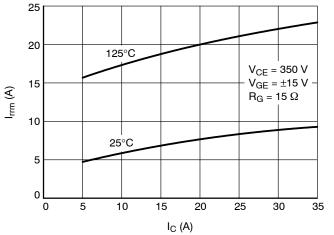
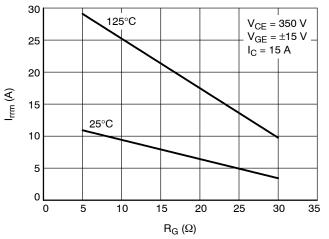
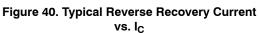
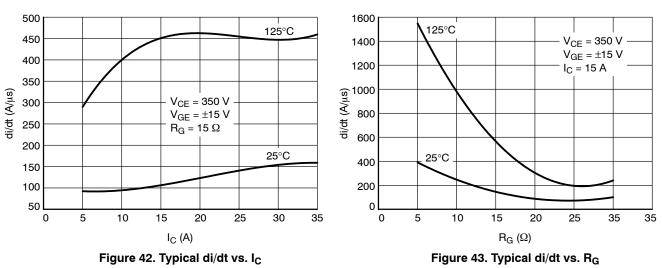


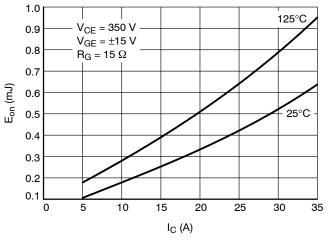
Figure 35. Typical Reverse Recovery Energy vs. R_G


Figure 37. Typical Reverse Recovery Time vs. R_G




TYPICAL CHARACTERISTICS – HALF BRIDGE IGBT COMUTATES NEUTRAL POINT DIODE



TYPICAL CHARACTERISTICS – NEUTRAL POINT IGBT COMUTATES HALF BRIDGE DIODE

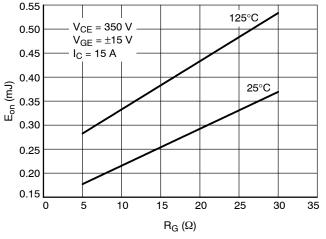


Figure 45. Typical Switching Energy $\rm E_{on}$ vs. $\rm R_{G}$

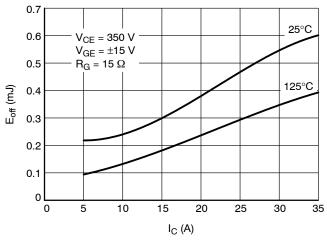


Figure 46. Typical Switching Energy E_{off} vs. I_C

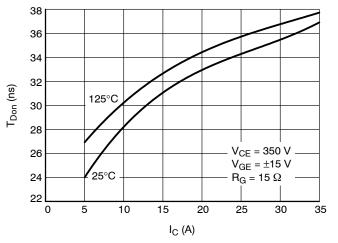
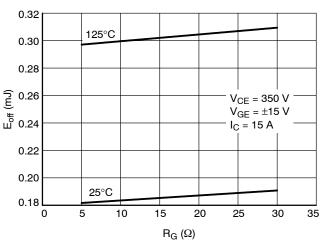
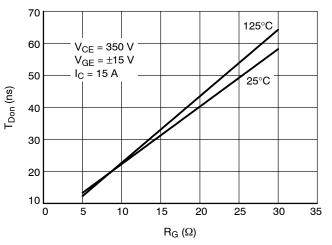
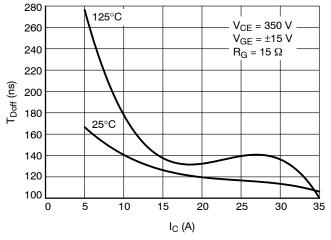
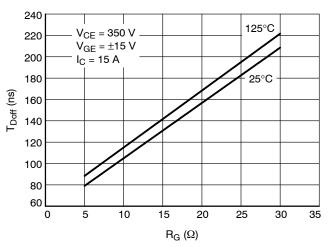
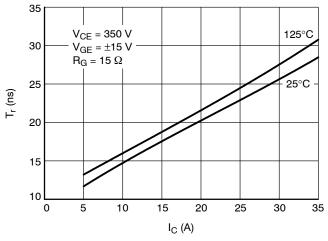
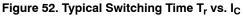


Figure 48. Typical Switching Time T_{Don} vs. I_C


Figure 47. Typical Switching Energy ${\rm E}_{\rm off}$ vs. ${\rm R}_{\rm G}$


TYPICAL CHARACTERISTICS - NEUTRAL POINT IGBT COMUTATES HALF BRIDGE DIODE



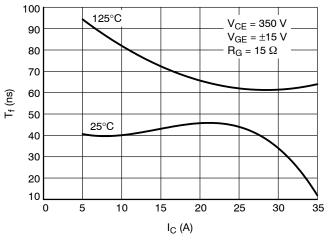
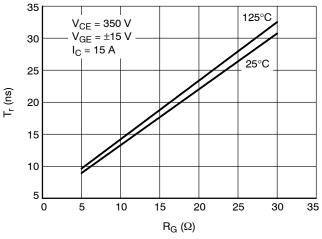
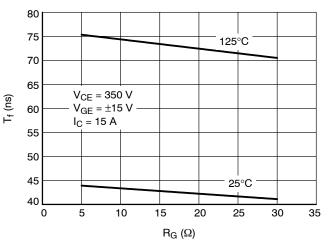
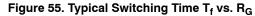
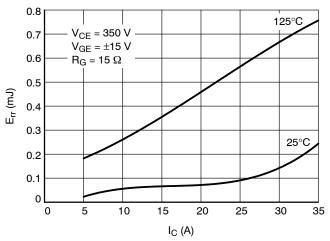
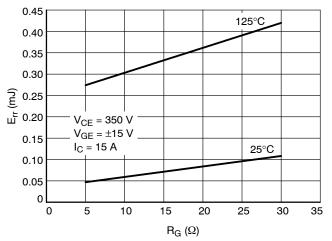
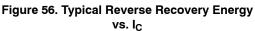
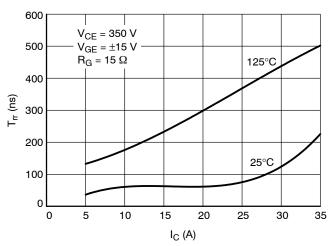


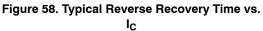
Figure 54. Typical Switching Time T_f vs. I_C

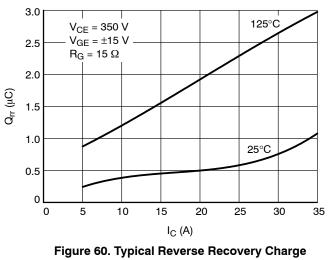






Figure 53. Typical Switching Time T_r vs. R_G



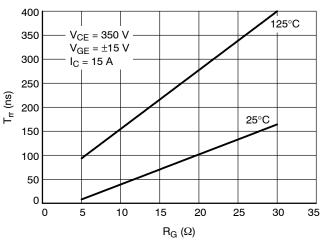
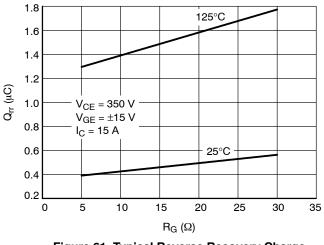
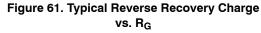
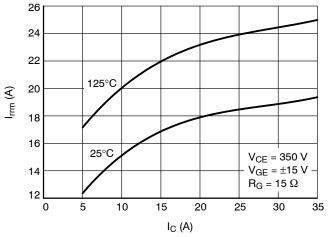


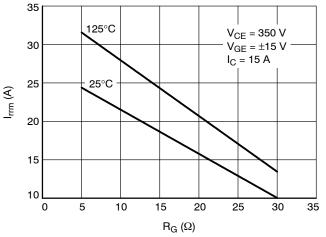

TYPICAL CHARACTERISTICS - NEUTRAL POINT IGBT COMUTATES HALF BRIDGE DIODE

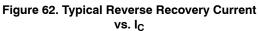


vs. I_C

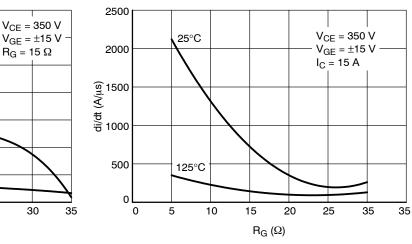
Figure 57. Typical Reverse Recovery Energy vs. R_G

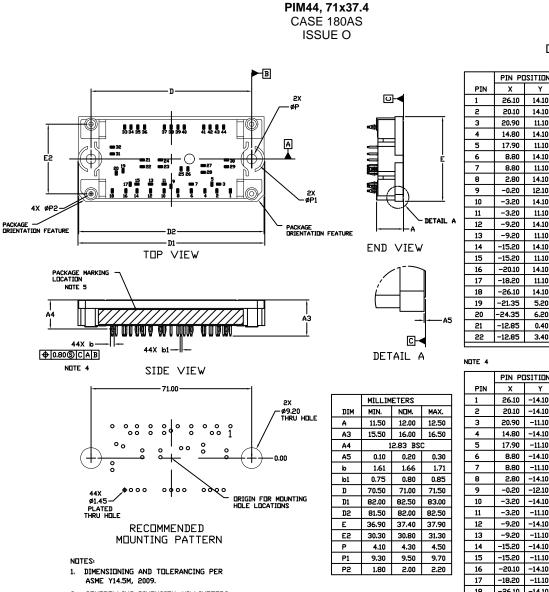

Figure 59. Typical Reverse Recovery Time vs. R_G



TYPICAL CHARACTERISTICS – NEUTRAL POINT IGBT COMUTATES HALF BRIDGE DIODE



(sn/q) 400 25°C


125°C

 $I_{C}\left(A\right)$ Figure 64. Typical di/dt vs. I_{C}

Figure 65. Typical di/dt vs. R_{G}

2. CONTROLLING DIMENSION: MILLIMETERS

DIMENSIONS & AND &1 APPLY TO THE PLATED З. TERMINALS AND ARE MEASURED AT DIMENSION A4.

- 4. POSITION OF THE CENTER OF THE TERMINALS IS DETERMINED FROM DATUM B THE CENTER OF DIMENSION D, X DIRECTION, AND FROM DATUM A, Y DIRECTION. POSITIONAL TOLERANCE, AS NOTED IN DRAWING, APPLIES TO EACH TERMINAL IN BOTH DIRECTIONS.
- 5. PACKAGE MARKING IS LOCATED AS SHOWN ON THE SIDE OPPOSITE THE PACKAGE ORIENTATION FEATURES.

NDM.	MAX.	2	20.10	-14.10	24
12.00	12.50	з	20.90	-11.10	25
16.00	16.50	4	14.80	-14.10	26
.83 BS	С	5	17.90	-11.10	27
0.20	0.30	6	8.80	-14.10	28
1.66	1.71	7	8.80	-11.10	29
0.80	0.85	8	2.80	-14.10	30
71.00	71.50	9	-0.20	-12.10	31
82.50	83.00	10	-3.20	-14.10	32
82.00	82.50	11	-3.20	-11.10	33
37.40	37.90	12	-9.20	-14.10	34
30.80	31.30	13	-9.20	-11.10	35
4.30	4.50	14	-15.20	-14.10	36
9.50	9.70	15	-15.20	-11.10	37
2.00	2.20	16	-20.10	-14.10	38
		17	-18.20	-11.10	39
		18	-26.10	-14.10	40
		19	-21.35	-5.20	41
		20	-24.35	-6.20	42
		21	-12.85	-0.40	43

22

-12.85 -3.40

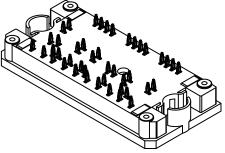
DOCUMENT NUMBER:	98AON92314G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	PIM44, 71x37.4		PAGE 1 OF 2				

ON Semiconductor and () are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights or the rights of others.

ote 4						
	PIN POSITION				PIN PC	ISITION
PIN	х	Y		PIN	x	Y
1	26.10	-14.10		23	-4.85	-3.40
2	20.10	-14.10		24	-4.85	-0.40
3	20.90	-11.10		25	4.30	-4.40
4	14.80	-14.10		26	7.30	-4.40
5	17.90	-11.10		27	14.05	-2.90
6	8.80	-14.10		28	14.05	-5.90
7	8.80	-11.10		29	24.35	-3.40
8	2.80	-14.10		30	24.35	-0.40
9	-0.20	-12.10		31	-26.10	2.25
10	-3.20	-14.10		32	-26.10	5.25
11	-3.20	-11.10		33	-20.65	14.10
12	-9.20	-14.10		34	-17.85	14.10
13	-9.20	-11.10		35	-14.85	14.10
14	-15.20	-14.10		36	-11.85	14.10
15	-15.20	-11.10		37	-3.10	14.10
16	-20.10	-14.10		38	-0.10	14.10
17	-18.20	-11.10		39	2.90	14.10
18	-26.10	-14.10		40	5.70	14.10
19	-21.35	-5.20		41	14.30	14.10

44

		PIN PC	ISITION		PIN PE	ISITION
	PIN	x	Y	PIN	X	Y
	1	26.10	14.10	23	-4.85	3.40
	2	20.10	14.10	24	-4.85	0.40
	3	20.90	11.10	25	4.30	4.40
	4	14.80	14.10	26	7.30	4.40
	5	17.90	11.10	27	14.05	2.90
	6	8.80	14.10	28	14.05	5.90
	7	8.80	11.10	29	24.35	3.40
	8	2.80	14.10	30	24.35	0.40
	9	-0.20	12.10	31	-26.10	-2.25
	10	-3.20	14.10	32	-26.10	-5.25
	11	-3.20	11.10	33	-20.65	-14.10
A	12	-9.20	14.10	34	-17.85	-14.10
	13	-9.20	11.10	35	-14.85	-14.10
	14	-15.20	14.10	36	-11.85	-14.10
	15	-15.20	11.10	37	-3.10	-14.10
	16	-20.10	14.10	38	-0.10	-14.10
	17	-18.20	11.10	39	2.90	-14.10
	18	-26.10	14.10	40	5.70	-14.10
	19	-21.35	5.20	41	14.30	-14.10
5	20	-24.35	6.20	42	17.10	-14.10
,	21	-12.85	0.40	43	20.10	-14.10
	22	-12.85	3.40	44	23.10	-14.10


DATE 25 JUN 2018

17.10 14.10

20.10 14.10

14.10

23.10

DATE 15 JUN 2018

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code

G = Pb–Free Package

AT = Assembly & Test Site Code

YYWW = Year and Work Week Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON92314G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION: PIM44, 71x37.4 PAGE 2 OF 2							
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconducto without limitation special, consequential or in	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or cidental damages. ON Semiconductor does not convey any license under consemic comp	or guarantee regarding r circuit, and specifically				

© Semiconductor Components Industries, LLC, 2018

www.onsemi.com 2

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales