**ON Semiconductor** 

Is Now

# Onsemí

To learn more about onsemi<sup>™</sup>, please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

# **Programmable Timer**

The MC14536B programmable timer is a 24–stage binary ripple counter with 16 stages selectable by a binary code. Provisions for an on–chip RC oscillator or an external clock are provided. An on–chip monostable circuit incorporating a pulse–type output has been included. By selecting the appropriate counter stage in conjunction with the appropriate input clock frequency, a variety of timing can be achieved.

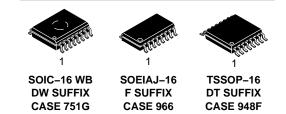
#### Features

- 24 Flip–Flop Stages Will Count From 2<sup>0</sup> to 2<sup>24</sup>
- Last 16 Stages Selectable By Four-Bit Select Code
- 8-Bypass Input Allows Bypassing of First Eight Stages
- Set and Reset Inputs
- Clock Inhibit and Oscillator Inhibit Inputs
- On-Chip RC Oscillator Provisions
- On-Chip Monostable Output Provisions
- Clock Conditioning Circuit Permits Operation with Very Long Rise and Fall Times
- Test Mode Allows Fast Test Sequence
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low–Power TTL Loads or One Low–Power Schottky TTL Load over the Rated Temperature Range
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

#### MAXIMUM RATINGS (Voltages Referenced to V<sub>SS</sub>)

|                                                      |                                       | 66,                           |      |
|------------------------------------------------------|---------------------------------------|-------------------------------|------|
| Rating                                               | Symbol                                | Value                         | Unit |
| DC Supply Voltage Range                              | V <sub>DD</sub>                       | -0.5 to +18.0                 | V    |
| Input or Output Voltage Range<br>(DC or Transient)   | V <sub>in</sub> ,<br>V <sub>out</sub> | -0.5 to V <sub>DD</sub> + 0.5 | V    |
| Input or Output Current<br>(DC or Transient) per Pin | I <sub>in</sub> , I <sub>out</sub>    | ±10                           | mA   |
| Power Dissipation per Package (Note 1)               | PD                                    | 500                           | mW   |
| Ambient Temperature Range                            | T <sub>A</sub>                        | -55 to +125                   | °C   |
| Storage Temperature Range                            | T <sub>stg</sub>                      | -65 to +150                   | °C   |
| Lead Temperature, (8–Second Soldering)               | TL                                    | 260                           | °C   |

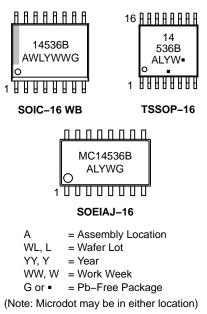
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


1. Temperature Derating: "D/DW" Packages:  $-7.0 \text{ mW}^\circ\text{C}$  from 65°C to 125°C This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V<sub>in</sub> and V<sub>out</sub> should be constrained to the range V<sub>SS</sub>  $\leq$  (V<sub>in</sub> or V<sub>out</sub>)  $\leq$  V<sub>DD</sub>.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either  $V_{SS}$  or  $V_{DD}$ ). Unused outputs must be left open.



# **ON Semiconductor®**


http://onsemi.com



## PIN ASSIGNMENT

| SET [             | 1● | 16 | ] V <sub>DD</sub> |
|-------------------|----|----|-------------------|
| RESET [           | 2  | 15 | ] MONO-IN         |
| IN 1 [            | 3  | 14 | OSC INH           |
| OUT 1 [           | 4  | 13 | ] DECODE          |
| OUT 2 [           | 5  | 12 | ] D               |
| 8-BYPASS [        | 6  | 11 | ] C               |
| CLOCK INH         | 7  | 10 | ] В               |
| v <sub>ss</sub> [ | 8  | 9  | ] A [             |

#### MARKING DIAGRAMS



#### **ORDERING INFORMATION**

See detailed ordering and shipping information in the package dimensions section on page 12 of this data sheet.

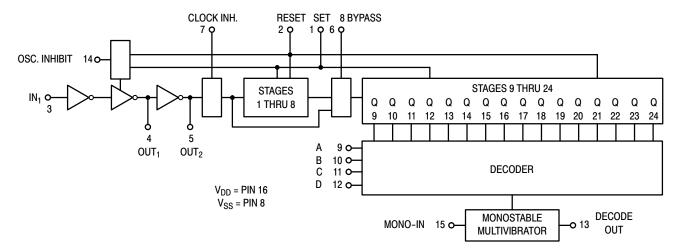



Figure 1. Block Diagram

| In <sub>1</sub> | Set | Reset | Clock<br>Inh | OSC<br>Inh | Out 1 | Out 2 | Decode<br>Out            |
|-----------------|-----|-------|--------------|------------|-------|-------|--------------------------|
| ~               | 0   | 0     | 0            | 0          | ~     | ~     | No<br>Change             |
| ~               | 0   | 0     | 0            | 0          | ~     | 7     | Advance to<br>next state |
| Х               | 1   | 0     | 0            | 0          | 0     | 1     | 1                        |
| Х               | 0   | 1     | 0            | 0          | 0     | 1     | 0                        |
| х               | 0   | 0     | 1            | 0          | -     | -     | No<br>Change             |
| х               | 0   | 0     | 0            | 1          | 0     | 1     | No<br>Change             |
| 0               | 0   | 0     | 0            | Х          | 0     | 1     | No<br>Change             |
| 1               | 0   | 0     | 0            |            | ~     | 7     | Advance to<br>next state |

#### FUNCTION TABLE

X = Don't Care

#### ELECTRICAL CHARACTERISTICS (Voltages Referenced to V<sub>SS</sub>)

|                                                                                                                                                               |                      |                 |                        | - 5                                                                                                                                                                                                                                                    | 5°C                  |                               | 25°C                           | 25°C 125°C           |                                |                      |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------|--------------------------------|----------------------|--------------------------------|----------------------|------|
| Characteristi                                                                                                                                                 | c                    | Symbol          | V <sub>DD</sub><br>Vdc | Min                                                                                                                                                                                                                                                    | Мах                  | Min                           | Typ<br>(Note 2)                | Max                  | Min                            | Мах                  | Unit |
| Output Voltage $V_{in} = V_{DD}$ or 0                                                                                                                         | "0" Level            | V <sub>OL</sub> | 5.0<br>10<br>15        | -<br>-<br>-                                                                                                                                                                                                                                            | 0.05<br>0.05<br>0.05 | _<br>_<br>_                   | 0<br>0<br>0                    | 0.05<br>0.05<br>0.05 | -<br>-<br>-                    | 0.05<br>0.05<br>0.05 | Vdc  |
| $V_{in} = 0 \text{ or } V_{DD}$                                                                                                                               | "1" Level            | V <sub>OH</sub> | 5.0<br>10<br>15        | 4.95<br>9.95<br>14.95                                                                                                                                                                                                                                  | -<br>-<br>-          | 4.95<br>9.95<br>14.95         | 5.0<br>10<br>15                |                      | 4.95<br>9.95<br>14.95          |                      | Vdc  |
| Input Voltage<br>( $V_O = 4.5 \text{ or } 0.5 \text{ Vdc}$ )<br>( $V_O = 9.0 \text{ or } 1.0 \text{ Vdc}$ )<br>( $V_O = 13.5 \text{ or } 1.5 \text{ Vdc}$ )   | "0" Level            | V <sub>IL</sub> | 5.0<br>10<br>15        | -<br>-<br>-                                                                                                                                                                                                                                            | 1.5<br>3.0<br>4.0    | -<br>-<br>-                   | 2.25<br>4.50<br>6.75           | 1.5<br>3.0<br>4.0    | -<br>-<br>-                    | 1.5<br>3.0<br>4.0    | Vdc  |
|                                                                                                                                                               | "1" Level            | V <sub>IH</sub> | 5.0<br>10<br>15        | 3.5<br>7.0<br>11                                                                                                                                                                                                                                       | -<br>-<br>-          | 3.5<br>7.0<br>11              | 2.75<br>5.50<br>8.25           | -<br>-<br>-          | 3.5<br>7.0<br>11               |                      | Vdc  |
| Output Drive Current<br>( $V_{OH} = 2.5 \text{ Vdc}$ )<br>( $V_{OH} = 4.6 \text{ Vdc}$ )<br>( $V_{OH} = 9.5 \text{ Vdc}$ )<br>( $V_{OH} = 13.5 \text{ Vdc}$ ) | Source<br>Pins 4 & 5 | Іон             | 5.0<br>5.0<br>10<br>15 | -1.2<br>-0.25<br>-0.62<br>-1.8                                                                                                                                                                                                                         | -<br>-<br>-          | -1.0<br>-0.25<br>-0.5<br>-1.5 | -1.7<br>-0.36<br>-0.9<br>-3.5  |                      | -0.7<br>-0.14<br>-0.35<br>-1.1 |                      | mAdc |
| $\begin{array}{l} (V_{OH} = 2.5 \ \text{Vdc}) \\ (V_{OH} = 4.6 \ \text{Vdc}) \\ (V_{OH} = 9.5 \ \text{Vdc}) \\ (V_{OH} = 13.5 \ \text{Vdc}) \end{array}$      | Source<br>Pin 13     |                 | 5.0<br>5.0<br>10<br>15 | -3.0<br>-0.64<br>-1.6<br>-4.2                                                                                                                                                                                                                          | -<br>-<br>-<br>-     | -2.4<br>-0.51<br>-1.3<br>-3.4 | -4.2<br>-0.88<br>-2.25<br>-8.8 |                      | -1.7<br>-0.36<br>-0.9<br>-2.4  | -<br>-<br>-          | mAdc |
| $(V_{OL} = 0.4 \text{ Vdc})$<br>$(V_{OL} = 0.5 \text{ Vdc})$<br>$(V_{OL} = 1.5 \text{ Vdc})$                                                                  | Sink                 | I <sub>OL</sub> | 5.0<br>10<br>15        | 0.64<br>1.6<br>4.2                                                                                                                                                                                                                                     | -<br>-<br>-          | 0.51<br>1.3<br>3.4            | 0.88<br>2.25<br>8.8            | -<br>-<br>-          | 0.36<br>0.9<br>2.4             |                      | mAdc |
| Input Current                                                                                                                                                 |                      | l <sub>in</sub> | 15                     | _                                                                                                                                                                                                                                                      | ±0.1                 | -                             | ±0.00001                       | ±0.1                 | -                              | ±1.0                 | μAdc |
| Input Capacitance<br>(V <sub>in</sub> = 0)                                                                                                                    |                      | C <sub>in</sub> | -                      | -                                                                                                                                                                                                                                                      | -                    | -                             | 5.0                            | 7.5                  | _                              | -                    | pF   |
| Quiescent Current (Per I                                                                                                                                      | Package)             | I <sub>DD</sub> | 5.0<br>10<br>15        | -<br>-<br>-                                                                                                                                                                                                                                            | 5.0<br>10<br>20      | _<br>_<br>_                   | 0.010<br>0.020<br>0.030        | 5.0<br>10<br>20      | -<br>-<br>-                    | 150<br>300<br>600    | μAdc |
| Total Supply Current (No<br>(Dynamic plus Quiescen<br>Per Package)<br>( $C_L = 50 \text{ pF}$ on all output<br>buffers switching)                             | it,                  | ΙŢ              | 5.0<br>10<br>15        | $\begin{split} I_{T} &= (1.50 \; \mu \text{A/kHz}) \; \text{f} + \text{I}_{\text{DD}} \\ I_{T} &= (2.30 \; \mu \text{A/kHz}) \; \text{f} + \text{I}_{\text{DD}} \\ I_{T} &= (3.55 \; \mu \text{A/kHz}) \; \text{f} + \text{I}_{\text{DD}} \end{split}$ |                      |                               |                                |                      | μAdc                           |                      |      |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
2. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
3. The formulas given are for the typical characteristics only at 25°C.
4. To calculate total supply current at loads other than 50 pF:

 $I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$ 

where:  $I_T$  is in  $\mu A$  (per package),  $C_L$  in pF,  $V = (V_{DD} - V_{SS})$  in volts, f in kHz is input frequency, and k = 0.003.

# SWITCHING CHARACTERISTICS (Note 5) (C<sub>L</sub> = 50 pF, T<sub>A</sub> = $25^{\circ}$ C)

| Characteristic                                                                                                                                                                                                                                                             | Symbol                                 | V <sub>DD</sub> | Min                | Typ (Note 6)       | Max                  | Unit |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------|--------------------|--------------------|----------------------|------|
| Output Rise and Fall Time (Pin 13)<br>$t_{TLH}$ , $t_{THL} = (1.5 \text{ ns/pF}) C_L + 25 \text{ ns}$<br>$t_{TLH}$ , $t_{THL} = (0.75 \text{ ns/pF}) C_L + 12.5 \text{ ns}$<br>$t_{TLH}$ , $t_{THL} = (0.55 \text{ ns/pF}) C_L + 9.5 \text{ ns}$                           | t <sub>TLH</sub> ,<br>t <sub>THL</sub> | 5.0<br>10<br>15 | _<br>_<br>_        | 100<br>50<br>40    | 200<br>100<br>80     | ns   |
| Propagation Delay Time<br>Clock to Q1, 8–Bypass (Pin 6) High<br>$t_{PLH}$ , $t_{PHL} = (1.7 \text{ ns/pF}) C_L + 1715 \text{ ns}$<br>$t_{PLH}$ , $t_{PHL} = (0.66 \text{ ns/pF}) C_L + 617 \text{ ns}$<br>$t_{PLH}$ , $t_{PHL} = (0.5 \text{ ns/pF}) C_L + 425 \text{ ns}$ | t <sub>PLH</sub> ,<br>t <sub>PHL</sub> | 5.0<br>10<br>15 |                    | 1800<br>650<br>450 | 3600<br>1300<br>1000 | ns   |
| Clock to Q1, 8–Bypass (Pin 6) Low<br>$t_{PLH}$ , $t_{PHL} = (1.7 \text{ ns/pF}) C_L + 3715 \text{ ns}$<br>$t_{PLH}$ , $t_{PHL} = (0.66 \text{ ns/pF}) C_L + 1467 \text{ ns}$<br>$t_{PLH}$ , $t_{PHL} = (0.5 \text{ ns/pF}) C_L + 1075 \text{ ns}$                          | t <sub>PLH</sub> ,<br>t <sub>PHL</sub> | 5.0<br>10<br>15 |                    | 3.8<br>1.5<br>1.1  | 7.6<br>3.0<br>2.3    | μs   |
| Clock to Q16<br>$t_{PHL}$ , $t_{PLH} = (1.7 \text{ ns/pF}) C_L + 6915 \text{ ns}$<br>$t_{PHL}$ , $t_{PLH} = (0.66 \text{ ns/pF}) C_L + 2967 \text{ ns}$<br>$t_{PHL}$ , $t_{PLH} = (0.5 \text{ ns/pF}) C_L + 2175 \text{ ns}$                                               | t <sub>PLH</sub> ,<br>t <sub>PHL</sub> | 5.0<br>10<br>15 |                    | 7.0<br>3.0<br>2.2  | 14<br>6.0<br>4.5     | μs   |
| Reset to $Q_n$<br>$t_{PHL} = (1.7 \text{ ns/pF}) C_L + 1415 \text{ ns}$<br>$t_{PHL} = (0.66 \text{ ns/pF}) C_L + 567 \text{ ns}$<br>$t_{PHL} = (0.5 \text{ ns/pF}) C_L + 425 \text{ ns}$                                                                                   | t <sub>PHL</sub>                       | 5.0<br>10<br>15 | _<br>_<br>_        | 1500<br>600<br>450 | 3000<br>1200<br>900  | ns   |
| Clock Pulse Width                                                                                                                                                                                                                                                          | t <sub>WH</sub>                        | 5.0<br>10<br>15 | 600<br>200<br>170  | 300<br>100<br>85   | -<br>-<br>-          | ns   |
| Clock Pulse Frequency (50% Duty Cycle)                                                                                                                                                                                                                                     | f <sub>cl</sub>                        | 5.0<br>10<br>15 | _<br>_<br>_        | 1.2<br>3.0<br>5.0  | 0.4<br>1.5<br>2.0    | MHz  |
| Clock Rise and Fall Time                                                                                                                                                                                                                                                   | t <sub>TLH</sub> ,<br>t <sub>THL</sub> | 5.0<br>10<br>15 |                    | No Limit           |                      | -    |
| Reset Pulse Width                                                                                                                                                                                                                                                          | t <sub>WH</sub>                        | 5.0<br>10<br>15 | 1000<br>400<br>300 | 500<br>200<br>150  | -                    | ns   |

The formulas given are for the typical characteristics only at 25°C.
 Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

#### **PIN DESCRIPTIONS**

#### INPUTS

**SET (Pin 1)** – A high on Set asynchronously forces Decode Out to a high level. This is accomplished by setting an output conditioning latch to a high level while at the same time resetting the 24 flip–flop stages. After Set goes low (inactive), the occurrence of the first negative clock transition on  $IN_1$ causes Decode Out to go low. The counter's flip–flop stages begin counting on the second negative clock transition of  $IN_1$ . When Set is high, the on–chip RC oscillator is disabled. This allows for very low–power standby operation.

**RESET (Pin 2)** – A high on Reset asynchronously forces Decode Out to a low level; all 24 flip–flop stages are also reset to a low level. Like the Set input, Reset disables the on–chip RC oscillator for standby operation.

**IN**<sub>1</sub> (**Pin 3**) – The device's internal counters advance on the negative–going edge of this input. IN<sub>1</sub> may be used as an external clock input or used in conjunction with  $OUT_1$  and  $OUT_2$  to form an RC oscillator. When an external clock is used, both  $OUT_1$  and  $OUT_2$  may be left unconnected or used to drive 1 LSTTL or several CMOS loads.

**8–BYPASS (Pin 6)** – A high on this input causes the first 8 flip–flop stages to be bypassed. This device essentially becomes a 16–stage counter with all 16 stages selectable. Selection is accomplished by the A, B, C, and D inputs. (See the truth tables.)

**CLOCK INHIBIT (Pin 7)** – A high on this input disconnects the first counter stage from the clocking source. This holds the present count and inhibits further counting. However, the clocking source may continue to run. Therefore, when Clock Inhibit is brought low, no oscillator startup time is required. When Clock Inhibit is low, the counter will start counting on the occurrence of the first negative edge of the clocking source at  $IN_1$ .

**OSC INHIBIT (Pin 14)** – A high level on this pin stops the RC oscillator which allows for very low–power standby operation. May also be used, in conjunction with an external clock, with essentially the same results as the Clock Inhibit input.

**MONO–IN** (Pin 15) – Used as the timing pin for the on–chip monostable multivibrator. If the Mono–In input is connected to  $V_{SS}$ , the monostable circuit is disabled, and Decode Out is directly connected to the selected Q output. The monostable circuit is enabled if a resistor is connected between Mono–In and  $V_{DD}$ . This resistor and the device's internal capacitance will determine the minimum output pulse widths. With the addition of an external capacitor to  $V_{SS}$ , the pulse width range may be extended. For reliable operation the resistor value should be limited to the range of 5 k $\Omega$  to 100 k $\Omega$  and the capacitor value should be limited to a maximum of 1000 pf. (See figures 4, 5, 6, and 11).

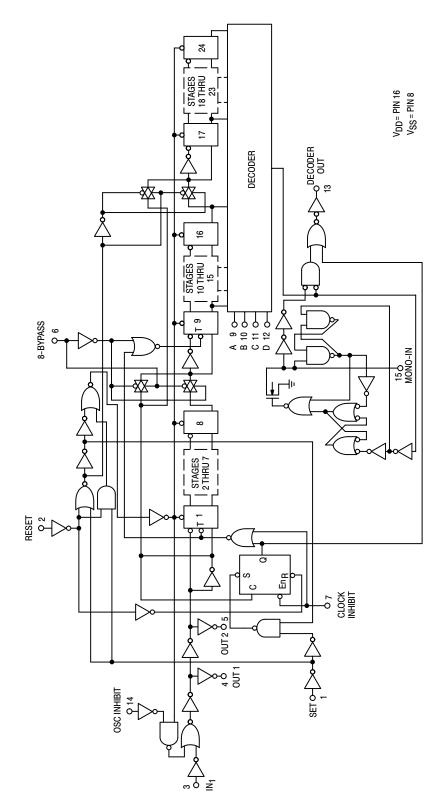
A, B, C, D (Pins 9, 10, 11, 12) – These inputs select the flip–flop stage to be connected to Decode Out. (See the truth tables.)

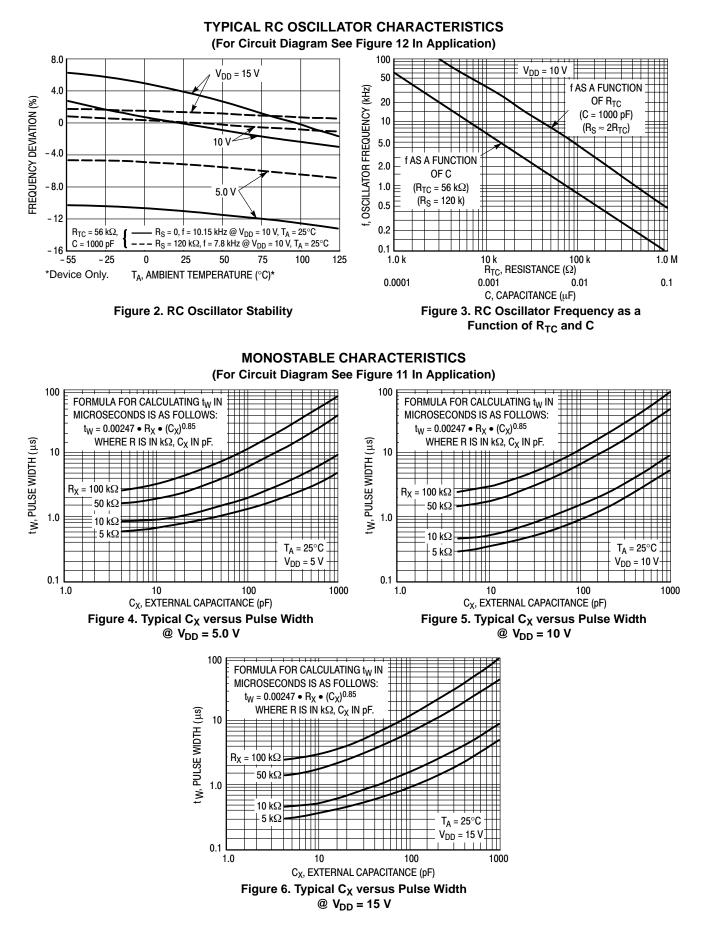
#### OUTPUTS

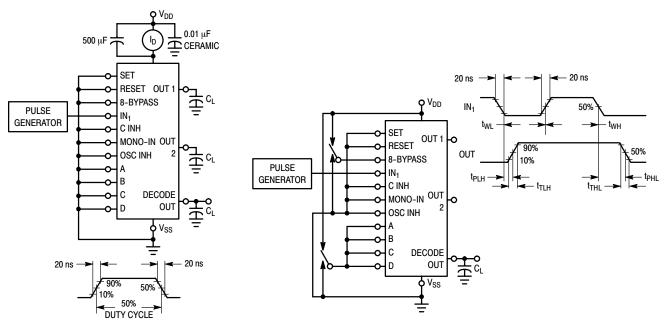
**OUT<sub>1</sub>, OUT<sub>2</sub> (Pin 4, 5)** – Outputs used in conjunction with  $IN_1$  to form an RC oscillator. These outputs are buffered and may be used for  $2^0$  frequency division of an external clock.

**DECODE OUT (Pin 13)** – Output function depends on configuration. When the monostable circuit is disabled, this output is a 50% duty cycle square wave during free run.

#### TEST MODE


The test mode configuration divides the 24 flip–flop stages into three 8–stage sections to facilitate a fast test sequence. The test mode is enabled when 8–Bypass, Set and Reset are at a high level. (See Figure 9.)


|          | In | Stage Selected |   |   |                |
|----------|----|----------------|---|---|----------------|
| 8–Bypass | D  | С              | В | Α | for Decode Out |
| 0        | 0  | 0              | 0 | 0 | 9              |
| 0        | 0  | 0              | 0 | 1 | 10             |
| 0        | 0  | 0              | 1 | 0 | 11             |
| 0        | 0  | 0              | 1 | 1 | 12             |
| 0        | 0  | 1              | 0 | 0 | 13             |
| 0        | 0  | 1              | 0 | 1 | 14             |
| 0        | 0  | 1              | 1 | 0 | 15             |
| 0        | 0  | 1              | 1 | 1 | 16             |
| 0        | 1  | 0              | 0 | 0 | 17             |
| 0        | 1  | 0              | 0 | 1 | 18             |
| 0        | 1  | 0              | 1 | 0 | 19             |
| 0        | 1  | 0              | 1 | 1 | 20             |
| 0        | 1  | 1              | 0 | 0 | 21             |
| 0        | 1  | 1              | 0 | 1 | 22             |
| 0        | 1  | 1              | 1 | 0 | 23             |
| 0        | 1  | 1              | 1 | 1 | 24             |


#### TRUTH TABLES

|          | In | Stage Selected |   |   |                |
|----------|----|----------------|---|---|----------------|
| 8–Bypass | D  | С              | в | Α | for Decode Out |
| 1        | 0  | 0              | 0 | 0 | 1              |
| 1        | 0  | 0              | 0 | 1 | 2              |
| 1        | 0  | 0              | 1 | 0 | 3              |
| 1        | 0  | 0              | 1 | 1 | 4              |
| 1        | 0  | 1              | 0 | 0 | 5              |
| 1        | 0  | 1              | 0 | 1 | 6              |
| 1        | 0  | 1              | 1 | 0 | 7              |
| 1        | 0  | 1              | 1 | 1 | 8              |
| 1        | 1  | 0              | 0 | 0 | 9              |
| 1        | 1  | 0              | 0 | 1 | 10             |
| 1        | 1  | 0              | 1 | 0 | 11             |
| 1        | 1  | 0              | 1 | 1 | 12             |
| 1        | 1  | 1              | 0 | 0 | 13             |
| 1        | 1  | 1              | 0 | 1 | 14             |
| 1        | 1  | 1              | 1 | 0 | 15             |
| 1        | 1  | 1              | 1 | 1 | 16             |

# LOGIC DIAGRAM









#### FUNCTIONAL TEST SEQUENCE

Test function (Figure 9) has been included for the reduction of test time required to exercise all 24 counter stages. This test function divides the counter into three 8–stage sections and 255 counts are loaded in each of the 8–stage sections in parallel. All flip–flops are now at a "1". The counter is now returned to the normal 24–stages in series configuration. One more pulse is entered into  $In_1$  which will cause the counter to ripple from an all "1" state to an all "0" state.

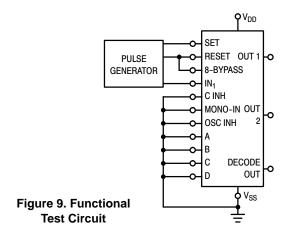
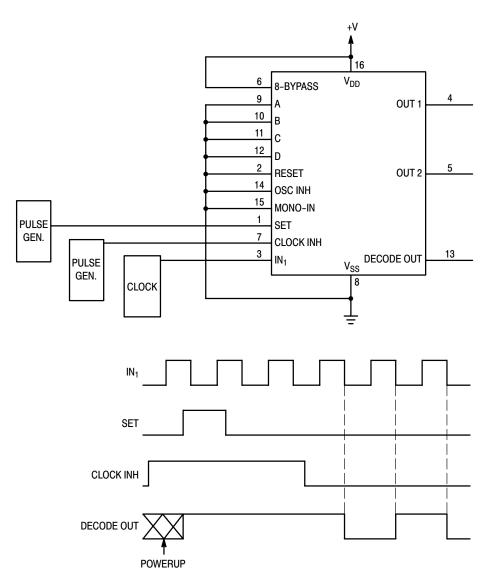
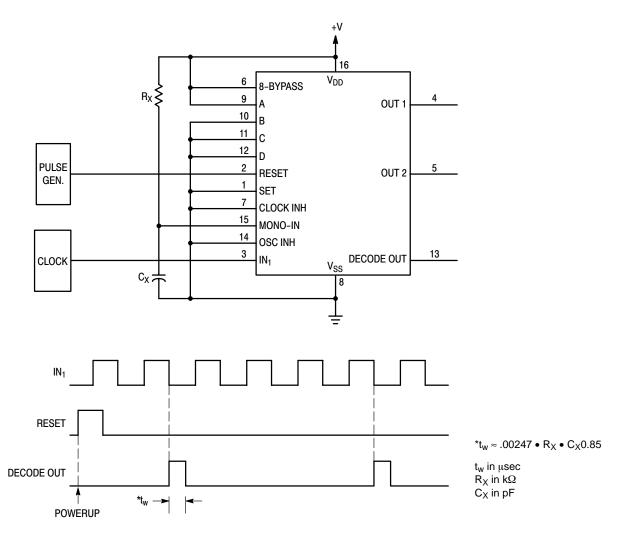



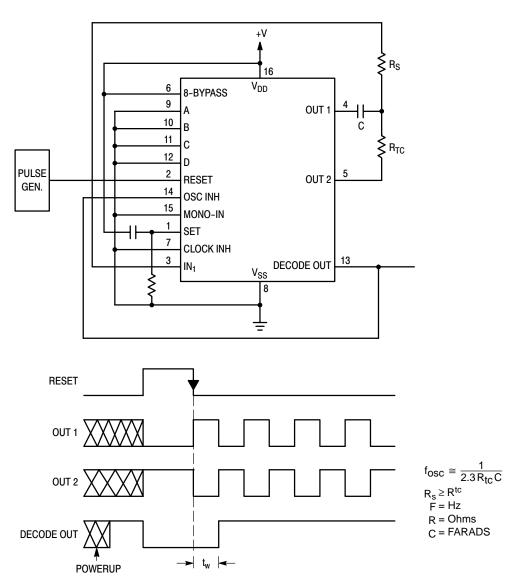

Figure 8. Switching Time Test Circuit and Waveforms


#### FUNCTIONAL TEST SEQUENCE

|                       | Inputs |       |          | Outputs                   | Comments                                                                                                                                  |  |
|-----------------------|--------|-------|----------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|
| In <sub>1</sub>       | Set    | Reset | 8–Bypass | Decade Out<br>Q1 thru Q24 | All 24 stages are in Reset mode.                                                                                                          |  |
| 1                     | 0      | 1     | 1        | 0                         |                                                                                                                                           |  |
| 1                     | 1      | 1     | 1        | 0                         | Counter is in three 8 stage sections in parallel mode.                                                                                    |  |
| 0                     | 1      | 1     | 1        | 0                         | First "1" to "0" transition of clock.                                                                                                     |  |
| 1<br>0<br>-<br>-<br>- | 1      | 1     | 1        |                           | 255 "1" to "0" transitions are clocked in the counter.                                                                                    |  |
| 0                     | 1      | 1     | 1        | 1                         | The 255 "1" to "0" transition.                                                                                                            |  |
| 0                     | 0      | 0     | 0        | 1                         | Counter converted back to 24 stages in series mode.<br>Set and Reset must be connected together and simultaneously<br>go from "1" to "0". |  |
| 1                     | 0      | 0     | 0        | 1                         | In <sub>1</sub> Switches to a "1".                                                                                                        |  |
| 0                     | 0      | 0     | 0        | 0                         | Counter Ripples from an all "1" state to an all "0" state.                                                                                |  |



NOTE: When power is first applied to the device, DECODE OUT can be either at a high or low state. On the rising edge of a SET pulse the output goes high if initially at a low state. The output remains high if initially at a high state. Because CLOCK INH is held high, the clock source on the input pin has no effect on the output. Once CLOCK INH is taken low, the output goes low on the first negative clock transition. The output returns high depending on the 8–BYPASS, A, B, C, and D inputs, and the clock input period. A 2<sup>n</sup> frequency division (where n = the number of stages selected from the truth table) is obtainable at DECODE OUT. A 2<sup>0</sup>-divided output of IN<sub>1</sub> can be obtained at OUT<sub>1</sub> and OUT<sub>2</sub>.


# Figure 10. Time Interval Configuration Using an External Clock, Set, and Clock Inhibit Functions (Divide-by-2 Configured)



NOTE: When Power is first applied to the device with the RESET input going high, DECODE OUT initializes low. Bringing the RESET input low enables the chip's internal counters. After RESET goes low, the 2<sup>n</sup>/2 negative transition of the clock input causes DECODE OUT to go high. Since the MONO–IN input is being used, the output becomes monostable. The pulse width of the output is dependent on the external timing components. The second and all subsequent pulses occur at 2<sup>n</sup> x (the clock period) intervals where n = the number of stages selected from the truth table.

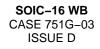
Figure 11. Time Interval Configuration Using an External Clock, Reset, and Output Monostable to Achieve a Pulse Output (Divide-by-4 Configured)

MC14536B



NOTE: This circuit is designed to use the on-chip oscillation function. The oscillator frequency is determined by the external R and C components. When power is first applied to the device, DECODE OUT initializes to a high state. Because this output is tied directly to the OSC INH input, the oscillator is disabled. This puts the device in a low-current standby condition. The rising edge of the RESET pulse will cause the output to go low. This in turn causes OSC INH to go low. However, while RESET is high, the oscillator is still disabled (i.e.: standby condition). After RESET goes low, the output remains low for 2<sup>n</sup>/2 of the oscillator's period. After the part times out, the output again goes high.

Figure 12. Time Interval Configuration Using On–Chip RC Oscillator and Reset Input to Initiate Time Interval (Divide–by–2 Configured)

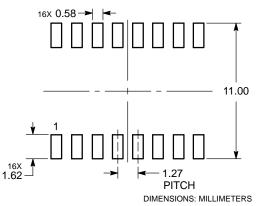

#### **ORDERING INFORMATION**


| Device                              | Package                 | Shipping <sup>†</sup> |
|-------------------------------------|-------------------------|-----------------------|
| MC14536BDWG                         | SOIC-16 WB<br>(Pb-Free) | 47 Units / Rail       |
| NLV14536BDWG*                       | SOIC-16 WB<br>(Pb-Free) | 47 Units / Rail       |
| MC14536BDWR2G                       | SOIC-16 WB<br>(Pb-Free) | 1000 / Tape & Reel    |
| NLV14536BDWR2G*                     | SOIC-16 WB<br>(Pb-Free) | 1000 / Tape & Reel    |
| NLV14536BDTR2G*<br>(In Development) | TSSOP-16<br>(Pb-Free)   | 2500 / Tape & Reel    |
| MC14536BFELG                        | SOEIAJ–16<br>(Pb–Free)  | 2000 / Tape & Reel    |

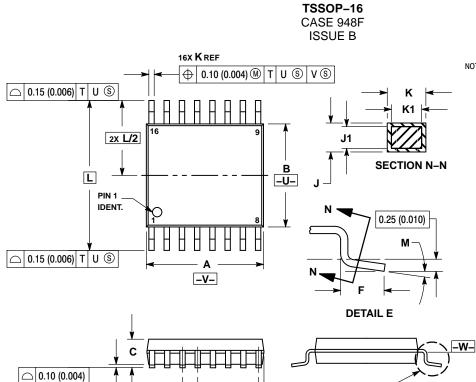
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
 \*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP

Capable.

#### PACKAGE DIMENSIONS







- NOTES:
  1. DIMENSIONS ARE IN MILLIMETERS.
  2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
  3. DIMENSIONS D AND E DO NOT INLCUDE MOLD PROTRUSION.
  4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
  5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION. MATERIAL CONDITION.

|     | MILLIMETERS |       |  |  |  |  |
|-----|-------------|-------|--|--|--|--|
| DIM | MIN         | MAX   |  |  |  |  |
| Α   | 2.35        | 2.65  |  |  |  |  |
| A1  | 0.10        | 0.25  |  |  |  |  |
| В   | 0.35        | 0.49  |  |  |  |  |
| С   | 0.23        | 0.32  |  |  |  |  |
| D   | 10.15       | 10.45 |  |  |  |  |
| Ε   | 7.40        | 7.60  |  |  |  |  |
| е   | 1.27        | BSC   |  |  |  |  |
| н   | 10.05       | 10.55 |  |  |  |  |
| h   | 0.25        | 0.75  |  |  |  |  |
| L   | 0.50        | 0.90  |  |  |  |  |
| q   | 0 °         | 7 °   |  |  |  |  |

SOLDERING FOOTPRINT



#### PACKAGE DIMENSIONS



G

-T- SEATING PLANE

D

NOTES:

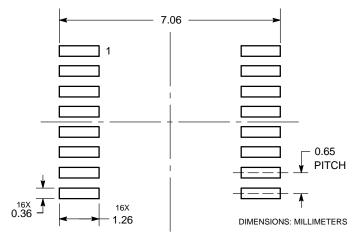
DIMENSIONING AND TOLERANCING PER ANSI

 1. DIMENSIONING AND CONTROLLING DIMENSION: MILLIMETER.
 2. CONTROLLING DIMENSION: MILLIMETER.
 CONTROLLING ADDES NOT INCLUDE MOLD
 CONTROL DIA SI 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.

A. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.

DIMENSION K DOES NOT INCLUDE DAMBAR 5. PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 5. TERMINAL NUMBERS ARE SHOWN FOR

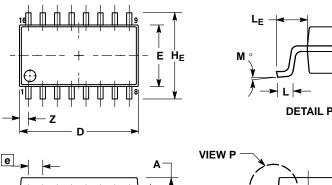
6.


6. TEHMINAL NUMBER OF ALL STOCK REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT 7. DIMENSION A 7 DATUM PLANE -W-.

|     | MILLIN | IETERS   | INCHES    |       |  |
|-----|--------|----------|-----------|-------|--|
| DIM | MIN    | MAX      | MIN       | MAX   |  |
| Α   | 4.90   | 5.10     | 0.193     | 0.200 |  |
| В   | 4.30   | 4.50     | 0.169     | 0.177 |  |
| С   |        | 1.20     |           | 0.047 |  |
| D   | 0.05   | 0.15     | 0.002     | 0.006 |  |
| F   | 0.50   | 0.75     | 0.020     | 0.030 |  |
| G   | 0.65   | BSC      | 0.026 BSC |       |  |
| Н   | 0.18   | 0.28     | 0.007     | 0.011 |  |
| J   | 0.09   | 0.20     | 0.004     | 0.008 |  |
| J1  | 0.09   | 0.16     | 0.004     | 0.006 |  |
| κ   | 0.19   | 0.30     | 0.007     | 0.012 |  |
| K1  | 0.19   | 0.25     | 0.007     | 0.010 |  |
| L   | 6.40   | 6.40 BSC |           | BSC   |  |
| М   | 0 °    | 8 °      | 0 °       | 8 °   |  |

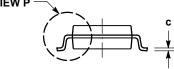
**SOLDERING FOOTPRINT\*** 

DETAIL E


Н



\*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


#### PACKAGE DIMENSIONS

SOEIAJ-16 CASE 966 **ISSUE A** 



0.10 (0.004)





NOTES

- 1. DIMENSIO Y14.5M. 1982 DIMENSIONING AND TOLERANCING PER ANSI
- CONTROLLING DIMENSION: MILLIMETER DIMENSIONS D AND E DO NOT INCLUDE 3. MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15
- (0.006) PER SIDE. . TERMINAL NUMBERS ARE SHOWN FOR 4.
- THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) 5 TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 ( 0.018)

|                | MILLIN | IETERS | INC   | HES   |  |
|----------------|--------|--------|-------|-------|--|
| DIM            | MIN    | MAX    | MIN   | MAX   |  |
| Α              |        | 2.05   |       | 0.081 |  |
| A <sub>1</sub> | 0.05   | 0.20   | 0.002 | 0.008 |  |
| b              | 0.35   | 0.50   | 0.014 | 0.020 |  |
| С              | 0.10   | 0.20   | 0.007 | 0.011 |  |
| D              | 9.90   | 10.50  | 0.390 | 0.413 |  |
| Е              | 5.10   | 5.45   | 0.201 | 0.215 |  |
| е              | 1.27   | BSC    | 0.050 | BSC   |  |
| HE             | 7.40   | 8.20   | 0.291 | 0.323 |  |
| L              | 0.50   | 0.85   | 0.020 | 0.033 |  |
| LE             | 1.10   | 1.50   | 0.043 | 0.059 |  |
| Μ              | 0 °    | 10 °   | 0 °   | 10 °  |  |
| Q <sub>1</sub> | 0.70   | 0.90   | 0.028 | 0.035 |  |
| Z              |        | 0.78   |       | 0.031 |  |

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and the 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent–Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT

h 0.13 (0.005) 🕅

 $\oplus$ 

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

MC14536B/D